JPH0511047B2 - - Google Patents

Info

Publication number
JPH0511047B2
JPH0511047B2 JP63107684A JP10768488A JPH0511047B2 JP H0511047 B2 JPH0511047 B2 JP H0511047B2 JP 63107684 A JP63107684 A JP 63107684A JP 10768488 A JP10768488 A JP 10768488A JP H0511047 B2 JPH0511047 B2 JP H0511047B2
Authority
JP
Japan
Prior art keywords
silicon nitride
cmhn
gas
reaction
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63107684A
Other languages
Japanese (ja)
Other versions
JPH01278405A (en
Inventor
Isao Imai
Toshiji Ishii
Koichi Sueyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10768488A priority Critical patent/JPH01278405A/en
Publication of JPH01278405A publication Critical patent/JPH01278405A/en
Publication of JPH0511047B2 publication Critical patent/JPH0511047B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、針状晶窒化ケイ素の製造方法に関
するものである。 従来の技術 例えば、特許第838421号は、弗化物、酸性弗化
物または珪弗化物を付着した非晶質シリカ粉末に
炭素質物質の粉末を混合し、窒素雰囲気中で1300
〜1600℃に焼成することを特徴とする針状晶窒化
ケイ素の製造方法について開示している。 発明が解決しようとする問題点 前述の方法を含め従来の針状晶窒化ケイ素の製
造方法は、シリカ粉末と炭素粉末の混合物を反応
させる固相−固相反応である。このため、シリカ
とカーボンの混合が不十分になり易い。混合が不
十分な場合、反応が不均一になる。反応が不均一
になると、生成するウイスカーの径が不揃いにな
つたり、粒子状の窒化ケイ素が生成し易くなる。 発明の目的 前述の問題点に鑑み本発明は、収率がよく、粒
状の窒化ケイ素を含まず、しかも径のそろつた針
状晶窒化ケイ素を得ることのできる針状晶窒化ケ
イ素の製造方法を提供することを目的としてい
る。 問題点を解決するための手段 本発明の針状晶窒化ケイ素の製造方法において
は、シリカ粉末あるいは、シリカ粉末に遷移金
属、アルカリ金属、アルカリ土類金属、遷移金属
のハロゲン化物、アルカリ金属のハロゲン化物、
または遷移金属のハロゲン化物の6種のうちから
選んだ少なくとも1種を加えた混合物を出発物質
とする。前記混合物の混合比は、シリカ粉末1モ
ル部に対して前述の6種のうちから選んだ少なく
とも1種は0.001〜1.0モル部である。アンモニア
(NH3)ガスと炭化水素(CmHn)ガスとの混合
ガスの混合比を、CmHnをCH4に換算して
NH3/CH4=0.5〜2000(体積比)にし、かつ800
℃〜1650℃の温度でシリカ粉末と必要に応じて前
記混合物を加熱して窒化ケイ素を針状にすること
によつて針状晶窒化ケイ素を製造する。 針状晶窒化ケイ素は基本的にはの反応で作ら
れる。 3SiO2+4NH3 →Si3N4+6H2O … SiO2にFe,Ni,Co等の遷移金属、アルカリ金
属、アルカリ土類金属あるいはこれらのハロゲン
化物を添加することにより、添加しない場合に比
べ、より速く反応を進行させ、かつ生成するSi3
N4の形態を針状晶(ウイスカー)とすることが
できる。これらの添加物の添加量が、SiO21モ
ル部に対し、0.001モル部より少ないと、触媒と
しての効果が得られない。また、1モル部を超え
ると、原料シリカと化合し、ガラス相を生成し、
反応速度を著しく低下させる。 の反応により生成するH2Oの分圧を下げ、
の反応をよりすみやかに進行させるために炭化
水素(CmHn)ガスを用いる(第式参照)。 mH2O+CmHn →mCO+(m+n/2)H2 … このように、反応ガスとしては、NH3
CmHnの混合ガスを用いる。そして混合ガスの流
速を0.1〜10mm/秒に設定する。NH3とCmHnの
混合割合について述べると、CmHnをCH4に換算
して、NH3/CH4が0.5(体積比)より小さい場合
には、NH3の分圧が低くなりすぎて反応の進行
が遅くなりがちである。NH3/CH4>2000の場
合には、CmHnを添加する効果がほとんどなくな
る。 次に反応温度について述べる。反応温度が800
℃より低温では実質的に反応が進行しない。1650
℃より高温ではSiCが生成し、得られる針状晶窒
化ケイ素の純度が低下する。 実施例 実施例 1 平均粒径0.02μmのシリカ粉末3gを窒化ケイ
素製ルツボに入れ、さらにそのルツボを黒鉛製ル
ツボに入れて、高周波誘導炉中にセツトした。こ
のルツボをNH3とC3H8との混合気流(たとえば
1mm/秒)において、1400℃で4時間保持し、針
状晶窒化ケイ素を得た。得られた生成物について
X線回析およびSEMによる形状観察を行つた。
その結果を表1に示す。 平均粒径0.02μmのシリカ粉末3gにNaClを対
シリカモル比で0.05加えた。これにアセトンを加
えてメノウ乳バチで混合し、その後乾燥した。得
られた混合物を実施例1と同様の方法で針状晶窒
化ケイ素を製造した。ただし、加熱温度は1450℃
である(実施例2)。 実施例3では、NaFを対シリカモル比で0.5加
え、実施例1と同様の方法で針状晶窒化ケイ素を
製造した。 同様に表1に示す条件で実施例4〜6において
針状晶窒化ケイ素を製造し、形状観察を行つた。 また、表1に示す条件で比較例1〜4において
針状晶窒化ケイ素の製造を試み、形状観察を行つ
た。 この結果、実施例1〜6によれば、長さ及び径
の比較的そろつた針状晶窒化ケイ素が収率よく得
られることが明らかになつた。 また、窒化ケイ素製ボートにシリカ粉末を入
れ、そのボートをアルミナ炉芯管中にセツトし
て、窒化ケイ素の針状化を図つてもよい。 発明の結果 本発明の針状晶窒化ケイ素の製造方法によれ
ば、収率よく短時間で、粒状の窒化ケイ素を含ま
ず、比較的径のそろつた針状晶窒化ケイ素を得る
ことができる。 【表】
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing acicular silicon nitride. Conventional technology For example, in Japanese Patent No. 838421, carbonaceous material powder is mixed with amorphous silica powder to which fluoride, acidic fluoride, or silicofluoride is attached, and
Discloses a method for producing acicular silicon nitride characterized by firing at a temperature of ~1600°C. Problems to be Solved by the Invention Conventional methods for producing acicular silicon nitride, including the methods described above, are solid phase-solid phase reactions in which a mixture of silica powder and carbon powder is reacted. For this reason, silica and carbon tend to be insufficiently mixed. If mixing is insufficient, the reaction will be non-uniform. If the reaction becomes non-uniform, the diameters of the generated whiskers will be uneven, and particulate silicon nitride will be more likely to be generated. Purpose of the Invention In view of the above-mentioned problems, the present invention provides a method for producing acicular silicon nitride that has a good yield, does not contain granular silicon nitride, and can obtain acicular silicon nitride with a uniform diameter. is intended to provide. Means for Solving the Problems In the method for producing acicular silicon nitride of the present invention, silica powder or silica powder contains transition metals, alkali metals, alkaline earth metals, halides of transition metals, halides of alkali metals, etc. monster,
Alternatively, a mixture containing at least one selected from six types of transition metal halides is used as a starting material. The mixing ratio of the mixture is 0.001 to 1.0 parts by mole of at least one selected from the above six types to 1 part by mole of silica powder. The mixture ratio of ammonia (NH 3 ) gas and hydrocarbon (CmHn) gas is calculated by converting CmHn to CH 4 .
NH 3 /CH 4 = 0.5 to 2000 (volume ratio), and 800
Acicular silicon nitride is produced by heating the mixture optionally with silica powder at a temperature of 1650°C to 1650°C to make the silicon nitride into needles. Acicular silicon nitride is basically produced by the reaction of . 3SiO 2 +4NH 3 →Si 3 N 4 +6H 2 O... By adding transition metals such as Fe, Ni, Co, alkali metals, alkaline earth metals, or halides of these to SiO 2 , compared to the case without addition, Si 3 that allows the reaction to proceed faster and is produced
The form of N 4 can be in the form of needles (whiskers). If the amount of these additives added is less than 0.001 mol part per 1 mol part of SiO 2 , no catalytic effect can be obtained. In addition, if it exceeds 1 mole part, it will combine with the raw material silica and produce a glass phase.
Significantly slows down the reaction rate. Lower the partial pressure of H 2 O produced by the reaction of
Hydrocarbon (CmHn) gas is used to make the reaction proceed more quickly (see formula 1). mH 2 O + CmHn → mCO + (m + n / 2) H 2 ... In this way, the reaction gases are NH 3 and
A mixed gas of CmHn is used. Then, the flow rate of the mixed gas is set to 0.1 to 10 mm/sec. Regarding the mixing ratio of NH 3 and CmHn, if CmHn is converted to CH 4 and NH 3 /CH 4 is less than 0.5 (volume ratio), the partial pressure of NH 3 will be too low and the reaction will not proceed. tends to be delayed. When NH 3 /CH 4 >2000, the effect of adding CmHn is almost lost. Next, the reaction temperature will be described. Reaction temperature is 800℃
The reaction does not substantially proceed at temperatures lower than ℃. 1650
At temperatures higher than ℃, SiC is generated and the purity of the obtained acicular silicon nitride decreases. Examples Example 1 3 g of silica powder with an average particle size of 0.02 μm was placed in a silicon nitride crucible, and the crucible was further placed in a graphite crucible, which was then set in a high frequency induction furnace. This crucible was maintained at 1400° C. for 4 hours in a mixed gas flow of NH 3 and C 3 H 8 (for example, 1 mm/sec) to obtain acicular silicon nitride. The shape of the obtained product was observed by X-ray diffraction and SEM.
The results are shown in Table 1. NaCl was added to 3 g of silica powder with an average particle size of 0.02 μm at a molar ratio of 0.05 to silica. Acetone was added to this, mixed with an agate milk drum, and then dried. Acicular silicon nitride was produced from the resulting mixture in the same manner as in Example 1. However, the heating temperature is 1450℃
(Example 2). In Example 3, acicular silicon nitride was produced in the same manner as in Example 1 except that NaF was added at a molar ratio of 0.5 to silica. Similarly, acicular silicon nitride was produced in Examples 4 to 6 under the conditions shown in Table 1, and the shapes were observed. Further, production of acicular silicon nitride was attempted in Comparative Examples 1 to 4 under the conditions shown in Table 1, and the shapes were observed. As a result, it was revealed that according to Examples 1 to 6, acicular silicon nitride having relatively uniform length and diameter could be obtained in good yield. Alternatively, silica powder may be placed in a silicon nitride boat, and the boat may be set in an alumina furnace tube to form the silicon nitride into an acicular shape. Results of the Invention According to the method for producing acicular silicon nitride of the present invention, acicular silicon nitride containing no particulate silicon nitride and having a relatively uniform diameter can be obtained in a high yield and in a short time. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニア(NH3)ガスと炭化水素
(CmHn)ガスの混合ガスの混合比が炭化水素
(CmHn)をCH4に換算してCH4に対するNH3
体積比(NH3/CH4)が0.5〜2000になるように
調整し、該混合ガスの流速を0.1〜10mm/秒とし、
かつ800℃〜1650℃の温度でシリカ粉末に遷移金
属、アルカリ金属、アルカリ土類金属、遷移金属
のハロゲン化物、アルカリ金属のハロゲン化物、
または遷移金属のハロゲン化物の6種のうちから
選んだ少なくとも1種を、該シリカ粉末1モル部
に対して0.001〜1.0モル加えた混合物を加熱して
窒化ケイ素を針状にすることを特徴とする針状晶
窒化ケイ素の製造方法。
1 The mixture ratio of ammonia (NH 3 ) gas and hydrocarbon (CmHn) gas is 0.5 when the hydrocarbon (CmHn) is converted to CH 4 and the volume ratio of NH 3 to CH 4 (NH 3 /CH 4 ) is 0.5. ~2000, and the flow rate of the mixed gas was set to 0.1 to 10 mm/sec.
and transition metals, alkali metals, alkaline earth metals, transition metal halides, alkali metal halides,
Alternatively, a mixture of 0.001 to 1.0 mol of at least one selected from six types of transition metal halides per 1 mol part of the silica powder is heated to make the silicon nitride into needle-like shapes. A method for producing acicular silicon nitride.
JP10768488A 1988-05-02 1988-05-02 Production of acicular silicon nitride Granted JPH01278405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10768488A JPH01278405A (en) 1988-05-02 1988-05-02 Production of acicular silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10768488A JPH01278405A (en) 1988-05-02 1988-05-02 Production of acicular silicon nitride

Publications (2)

Publication Number Publication Date
JPH01278405A JPH01278405A (en) 1989-11-08
JPH0511047B2 true JPH0511047B2 (en) 1993-02-12

Family

ID=14465348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10768488A Granted JPH01278405A (en) 1988-05-02 1988-05-02 Production of acicular silicon nitride

Country Status (1)

Country Link
JP (1) JPH01278405A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814290A (en) * 1995-07-24 1998-09-29 Hyperion Catalysis International Silicon nitride nanowhiskers and method of making same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673603A (en) * 1979-11-14 1981-06-18 Toshiba Corp Manufacture of silicon nitride
JPS63162516A (en) * 1986-12-26 1988-07-06 Toshiba Ceramics Co Ltd Production of silicon nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673603A (en) * 1979-11-14 1981-06-18 Toshiba Corp Manufacture of silicon nitride
JPS63162516A (en) * 1986-12-26 1988-07-06 Toshiba Ceramics Co Ltd Production of silicon nitride

Also Published As

Publication number Publication date
JPH01278405A (en) 1989-11-08

Similar Documents

Publication Publication Date Title
US4619905A (en) Process for the synthesis of silicon nitride
JPS62167209A (en) Alpha-sialon powder and its production
JPS62241812A (en) Manufacture of silicon nitride
JPH0511047B2 (en)
JPH0151443B2 (en)
JPS63159297A (en) Production of silicon carbide whisker
JP2639687B2 (en) Method for producing acicular silicon nitride
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPS6126600A (en) Preparation of beta type silicon carbide whisker
JPS63156098A (en) Production of silicon carbide whisker
JPH03232800A (en) Production of silicon carbide whisker
JPS6348840B2 (en)
JPH0313166B2 (en)
JPS58176109A (en) Production of alpha-type silicon nitride
JP2604753B2 (en) Method for producing silicon carbide whiskers
JPH0259413A (en) Production of beta-type silicon carbide powder
JPS6272600A (en) Production of silicon carbide whisker
JPH0274598A (en) Production of silicon nitride whisker
JPH0353280B2 (en)
JPS6259599A (en) Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide
JPH02111700A (en) Production of silicon carbide whisker
JPS5951483B2 (en) Aluminum nitride manufacturing method
JPH0723216B2 (en) Method for producing fibrous magnesium oxide
JPH03279300A (en) Production of sic whisker