JPS5951483B2 - Aluminum nitride manufacturing method - Google Patents

Aluminum nitride manufacturing method

Info

Publication number
JPS5951483B2
JPS5951483B2 JP2408376A JP2408376A JPS5951483B2 JP S5951483 B2 JPS5951483 B2 JP S5951483B2 JP 2408376 A JP2408376 A JP 2408376A JP 2408376 A JP2408376 A JP 2408376A JP S5951483 B2 JPS5951483 B2 JP S5951483B2
Authority
JP
Japan
Prior art keywords
oxide
aluminum nitride
weight
heating
nitrogen atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2408376A
Other languages
Japanese (ja)
Other versions
JPS52107299A (en
Inventor
操一郎 元井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP2408376A priority Critical patent/JPS5951483B2/en
Publication of JPS52107299A publication Critical patent/JPS52107299A/en
Publication of JPS5951483B2 publication Critical patent/JPS5951483B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は窒化アルミニウムの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aluminum nitride.

窒化アルミニウムは溶融金属にぬれにくく、しかも20
00℃までの高温でも機械的強度に優れ、熱衝撃抵抗も
高いことから工業的にその発展が期待されている耐火材
料であり、また常温での熱伝導性の大なることからも電
子工業材料としての応用が強く期待されている。
Aluminum nitride is difficult to wet with molten metal, and
It is a fireproof material that is expected to be developed industrially because it has excellent mechanical strength even at high temperatures up to 00°C and high thermal shock resistance, and it is also a material for the electronics industry because of its high thermal conductivity at room temperature. There are strong expectations for its application as

これまで、窒化アルミニウムの製造方法としては、多く
の提案がなされているが、それらを大別すると次の2つ
の方法に分けることができる。
Until now, many proposals have been made as methods for producing aluminum nitride, but these can be roughly divided into the following two methods.

すなわち、第1の方法は、金属アルミニウムに窒素又は
アンモニアを直接反応させる方法であり、第2の方法は
、アルミナとカーボンとの混合物を窒素雰囲気中で加熱
する方法である。
That is, the first method is a method in which metal aluminum is directly reacted with nitrogen or ammonia, and the second method is a method in which a mixture of alumina and carbon is heated in a nitrogen atmosphere.

しかし、第1の方法では溶融した金属アルミニウムと窒
素とが約400℃から反応を開始し、約1400℃まで
の昇温期間において生成した窒化アルミニウムが金属ア
ルミニウムの表面を覆うため以後の反応の進行が妨げら
れる。
However, in the first method, the reaction between molten metal aluminum and nitrogen starts at about 400°C, and the aluminum nitride produced during the heating period up to about 1400°C covers the surface of metal aluminum, which hinders the progress of the subsequent reaction. is hindered.

また、金属アルミニウムとしては粉末を使うため比較的
多量の酸化物が混入することは避けえず、窒化アルミニ
ウム生成効率、純度共に低い。
Furthermore, since powder is used as aluminum metal, it is inevitable that a relatively large amount of oxides will be mixed in, and both aluminum nitride production efficiency and purity are low.

また、第2の方法では1600℃から1800℃までの
高温を必要とするばかりでなく、複雑な反応が生起する
ため窒化アルミニウムの純度、生成効率は低い。
Furthermore, the second method not only requires a high temperature of 1,600° C. to 1,800° C., but also involves complex reactions, resulting in low purity and production efficiency of aluminum nitride.

本発明者は、水酸化アルミニウムに炭素質物質を混合し
、その混合物を窒素雰囲気中で1300〜1600℃に
加熱することにより、従来方法では考えられない低温で
高純度の窒化アルミニウムを高収率で製造しうること、
また上記混合物に対し、さらに弗化カリ、弗化ソーダ等
の弗化アルカリ金属、弗化マグネシウム、弗化カルシウ
ム等の弗化アルカリ土金属などの弗化物、鉄、酸化マグ
ネシウム、酸化力ルシュム、Fe01Fe203、Fe
3O4ノ鉄の酸化物、ニッケルの酸化物、コバルトの酸
化物、クロムの酸化物、マンガンの酸化物、バナジウム
の酸化物、ニオブの酸化物の1種又は2種以上の化合物
を0.2〜10重量%添加混合すると窒化反応は促進さ
れ、加熱温度が約100℃低下するので加熱温度を12
00〜1500℃にすることができると共に、加熱時間
が短縮されることを知見した。
By mixing a carbonaceous substance with aluminum hydroxide and heating the mixture to 1,300 to 1,600°C in a nitrogen atmosphere, the present inventor was able to produce high-purity aluminum nitride in a high yield at a low temperature unimaginable with conventional methods. that can be manufactured with
In addition, to the above mixture, fluorides such as potassium fluoride, alkali metal fluorides such as sodium fluoride, alkaline earth metal fluorides such as magnesium fluoride and calcium fluoride, iron, magnesium oxide, oxidizing force, Fe01Fe203 , Fe
One or more compounds of 3O4 iron oxide, nickel oxide, cobalt oxide, chromium oxide, manganese oxide, vanadium oxide, and niobium oxide at 0.2 to When 10% by weight is added and mixed, the nitriding reaction is accelerated and the heating temperature is lowered by about 100°C.
It has been found that the temperature can be raised to 00 to 1500°C and the heating time can be shortened.

本発明は上記知見に基づくものであって、第1の発明は
水酸化アルミニウムと炭素質物質との混合物を窒素雰囲
気中で1300−1600℃に加熱することを特徴とす
る窒化アルミニウムの製造方法であり、第2の発明は水
酸化アルミニウムと炭素質物質との混合物に弗化物、鉄
、酸化マグネシウム、酸化カルシウム、鉄の酸化物、ニ
ッケルの酸化物、コバルトの酸化物、クロムの酸化物、
マンガンの酸化物、バナジウムの酸化物及びニオブの酸
化物より選ばれた1種又は2種以上の化合物0.2〜1
0重量%を添加混合して窒素雰囲気中で1200−15
00℃に加熱することを特徴とする窒化アルミニウムの
製造方法である。
The present invention is based on the above findings, and the first invention is a method for producing aluminum nitride, which comprises heating a mixture of aluminum hydroxide and a carbonaceous substance to 1300-1600°C in a nitrogen atmosphere. In the second invention, fluoride, iron, magnesium oxide, calcium oxide, iron oxide, nickel oxide, cobalt oxide, chromium oxide,
One or more compounds selected from manganese oxide, vanadium oxide and niobium oxide 0.2 to 1
1200-15 in a nitrogen atmosphere by adding and mixing 0% by weight.
This is a method for producing aluminum nitride, which is characterized by heating to 00°C.

本発明において、アルミナ製造の中間生成物である水酸
化アルミニウムを使用することもできる。
In the present invention, aluminum hydroxide, which is an intermediate product of alumina production, can also be used.

本発明における炭素質物質としては、カーボンブラック
、オイルコークス、グラファイト等の炭素粉末で、この
ものを18〜24重量%、好ましくは20〜22重量%
、水酸化アルミニウムに対し内側で混合する。
The carbonaceous material used in the present invention is carbon powder such as carbon black, oil coke, graphite, etc., and the content thereof is 18 to 24% by weight, preferably 20 to 22% by weight.
, mix inside against aluminum hydroxide.

なお、炭素質物質を18重量%未満混合したときは、窒
化反応が円満に進行せず、酸化アルミニウムを残存した
窒化アルミニウムとなり、また24重量%を超すときは
炭素および炭化物が共存した窒化アルミニウムとなって
しまう。
Note that when less than 18% by weight of carbonaceous material is mixed, the nitriding reaction does not proceed smoothly, resulting in aluminum nitride with residual aluminum oxide, and when it exceeds 24% by weight, aluminum nitride containing carbon and carbides coexists. turn into.

次に、弗化物、鉄、酸化マグネシウム、酸化カルシウム
、鉄の酸化物、ニッケルの酸化物、クロムの酸化物、マ
ンガンの酸化物、バナジウムの酸化物又はニオブの酸化
物の添加混合量は、水酸化アルミニウム76〜82重量
%と炭素質物質24〜18重量%との混合物に対し、0
.2〜10重量%、好ましくは0.3〜5重量%である
Next, the mixing amount of fluoride, iron, magnesium oxide, calcium oxide, iron oxide, nickel oxide, chromium oxide, manganese oxide, vanadium oxide or niobium oxide is For a mixture of 76-82% by weight of aluminum oxide and 24-18% by weight of carbonaceous material, 0
.. 2 to 10% by weight, preferably 0.3 to 5% by weight.

この添加範囲をはずれ、上記化合物を0.2重量%未満
添加した場合は、窒化反応に与える影響は低下し、10
重量%を超える場合は窒化反応の促進効果は低減するば
かりでなく、過剰の物質が窒化アルミニウム中に残留し
純度が低下する。
If the above-mentioned compound is added at less than 0.2% by weight outside of this addition range, the influence on the nitriding reaction will be reduced, and 10
If the amount exceeds % by weight, not only will the effect of promoting the nitriding reaction be reduced, but an excessive amount of the substance will remain in the aluminum nitride, resulting in a decrease in purity.

加熱温度は化合物を添加混合しないときは1300〜1
600℃、化合物を0.2〜10重量%添加混合したと
きは1200〜1500℃であるが、いずれの場合も下
限よりも低い温度で加熱すると反応が容易に完結せず未
反応物が残留し、上限よりも高い温度で加熱するとAl
4C3、A12.OC,A1404Cなどの炭化物を副
生する。
The heating temperature is 1300-1 when no compound is added and mixed.
600℃, and 1200 to 1500℃ when 0.2 to 10% by weight of the compound is added and mixed, but in any case, if heated at a temperature lower than the lower limit, the reaction will not be completed easily and unreacted materials will remain. , when heated at a temperature higher than the upper limit, Al
4C3, A12. Carbides such as OC and A1404C are produced as by-products.

最後に、本発明の方法における加熱時間は数時間程度で
ある。
Finally, the heating time in the method of the invention is on the order of several hours.

本発明の方法によれば、加熱反応過程で金属アルミニウ
ムが生成することはないので、溶融アルミニウムの窒化
反応のように、反応速度が遅くなることがない。
According to the method of the present invention, metal aluminum is not generated during the heating reaction process, so the reaction rate does not slow down unlike the nitriding reaction of molten aluminum.

またアルミナとカーボンとの混合物を窒化する場合のよ
うな高温度での加熱を必要としないし、窒化物の収率の
低下も全く認められない。
Further, unlike the case of nitriding a mixture of alumina and carbon, heating at a high temperature is not required, and no decrease in the yield of nitride is observed.

これは水酸化アルミニウムが低温度域で加熱、脱水され
る過程で、結晶が極めて小さな細片に分割され、構造も
未編成のまま乱れた活性なアルミナとなり、このものが
窒素を吸着することによって窒化反応が促進されるもの
と考えられる。
This is a process in which aluminum hydroxide is heated and dehydrated in a low temperature range, and the crystals are split into extremely small pieces, resulting in disordered active alumina with an unorganized structure, which adsorbs nitrogen. It is thought that the nitriding reaction is promoted.

本発明を実施するに際しての熱源は気体、液体、固体燃
料または電気などのいずれれでもよく、これにより加熱
された窒化炉中に本発明の原料混合物を粉末又は粒状に
して静置又は流動状態にして窒化することができる。
The heat source used in carrying out the present invention may be gas, liquid, solid fuel, or electricity, and the raw material mixture of the present invention is made into powder or granules and allowed to stand still or in a fluid state in a heated nitriding furnace. can be nitrided.

実施例 1 水酸化アルミニウム粉末(試薬、粒径20μ以下)にオ
イルコークス粉末(平均粒径10μ)を内側で21重量
%混合した混合物をパンペレタイザーにて5〜8mm径
に造粒し、該造粒物を窒素雰囲気中で1500℃、3時
間30分加熱することにより窒化率100%で高純度の
窒化アルミニウムを得た。
Example 1 A mixture of aluminum hydroxide powder (reagent, particle size 20 μm or less) and oil coke powder (average particle size 10 μm) mixed inside at 21% by weight was granulated to a diameter of 5 to 8 mm using a pan pelletizer. High purity aluminum nitride with a nitriding rate of 100% was obtained by heating the particles at 1500° C. for 3 hours and 30 minutes in a nitrogen atmosphere.

実施例 2 アルミナ製造の際の中間生成物である水酸化アルミニウ
ム粉末(粒径60μ以下)にカーボンブラック(平均粒
径3μ)を内側で20重量%混合した混合物を実施例1
と同様に造粒し、該造粒物を窒素雰囲気中で1500C
13時間加熱することにより窒化率99%で高純度の窒
化アルミニウムを得た。
Example 2 Example 1 A mixture in which 20% by weight of carbon black (average particle size 3μ) was mixed inside aluminum hydroxide powder (particle size 60μ or less), which is an intermediate product during alumina production, was prepared.
Granulate in the same manner as above, and heat the granules at 1500C in a nitrogen atmosphere.
By heating for 13 hours, high purity aluminum nitride with a nitriding rate of 99% was obtained.

比較のためのアルミナ(粒径60μ以下)にカーボンブ
ラック(平均粒径3μ)を20重量%混合したものの造
粒物は窒素雰囲気中で1650’Cで12時間加熱して
も窒化率が70%であった。
For comparison, the granulated product made by mixing 20% by weight of carbon black (average particle size 3μ) with alumina (particle size 60μ or less) had a nitriding rate of 70% even when heated at 1650'C for 12 hours in a nitrogen atmosphere. Met.

実施例 3 アルミナ製造の際の中間生成物である水酸化アルミニウ
ム粉末(粒径60μ以下)カーボンブラック(平均粒径
3μ)を内削で20重量%加えた混合物に対し、さらに
弗化アンモン、鉄、酸化マグネシウム、酸化カルシウム
、Fe2O3、ニッケルの酸化物、コバルトの酸化物、
クロムの酸化物、マンガンの酸化物、バナジウムの酸化
物、ニオブの酸化物、鉄及び酸化マグネシウムのそれぞ
れを下表の如く外側で添加混合し、実施例1と同様に造
粒した造粒物を窒素雰囲気中で1400℃に加熱して窒
化アルミニウムを製造した結果は下表のとおりである。
Example 3 To a mixture in which 20% by weight of aluminum hydroxide powder (particle size 60 μm or less) and carbon black (average particle size 3 μm), which are intermediate products during alumina production, were added by internal grinding, ammonium fluoride and iron were added. , magnesium oxide, calcium oxide, Fe2O3, nickel oxide, cobalt oxide,
Chromium oxide, manganese oxide, vanadium oxide, niobium oxide, iron and magnesium oxide were added and mixed on the outside as shown in the table below, and the granules were granulated in the same manner as in Example 1. The results of producing aluminum nitride by heating to 1400° C. in a nitrogen atmosphere are shown in the table below.

Claims (1)

【特許請求の範囲】 1 水酸化アルミニウム76〜82重量%と炭素質物質
24〜18重量%との混合物を窒素雰囲気中で1300
〜1600℃に加熱することを特徴とする窒化アルミニ
ウムの製造方法。 2 炭素質物質がカーボンブラック、オイルコークス、
グラファイトの粉末である特許請求の範囲第1項記載の
窒化アルミニウムの製造方法。 3 水酸化アルミニウム76〜82重量%と炭素質物質
24〜18重量%との混合物に対し、弗化物、鉄、酸化
マグネシウム、酸化カルシウム、鉄の酸化物、ニッケル
の酸化物、コバルトの酸化物、クロムの酸化物、マンガ
ンの酸化物、バナジウムの酸化物及びニオブの酸化物よ
り選ばれた1種又は2種以上の化合物を0.2〜10重
量%重量%添加室素雰囲気中で1200〜1500℃に
加熱することを特徴とする窒化アルミニウムの製造方法
。 4 炭素質物質か勿−ボンブラック、オイルコークス、
グラファイトの粉末である特許請求の範囲第3項記載の
窒化アルミニウムの製造方法。
[Claims] 1. A mixture of 76 to 82% by weight of aluminum hydroxide and 24 to 18% by weight of carbonaceous material was heated to 1300% by weight in a nitrogen atmosphere.
A method for producing aluminum nitride, comprising heating to ~1600°C. 2 The carbonaceous material is carbon black, oil coke,
The method for producing aluminum nitride according to claim 1, which is graphite powder. 3. Fluoride, iron, magnesium oxide, calcium oxide, iron oxide, nickel oxide, cobalt oxide, One or more compounds selected from chromium oxide, manganese oxide, vanadium oxide, and niobium oxide are added in an amount of 0.2 to 10% by weight in a nitrogen atmosphere. A method for producing aluminum nitride, which comprises heating to ℃. 4 Carbonaceous substances, such as carbon black, oil coke,
The method for producing aluminum nitride according to claim 3, which is graphite powder.
JP2408376A 1976-03-08 1976-03-08 Aluminum nitride manufacturing method Expired JPS5951483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408376A JPS5951483B2 (en) 1976-03-08 1976-03-08 Aluminum nitride manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408376A JPS5951483B2 (en) 1976-03-08 1976-03-08 Aluminum nitride manufacturing method

Publications (2)

Publication Number Publication Date
JPS52107299A JPS52107299A (en) 1977-09-08
JPS5951483B2 true JPS5951483B2 (en) 1984-12-14

Family

ID=12128501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408376A Expired JPS5951483B2 (en) 1976-03-08 1976-03-08 Aluminum nitride manufacturing method

Country Status (1)

Country Link
JP (1) JPS5951483B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629124B2 (en) * 1989-09-13 1994-04-20 東京タングステン株式会社 Aluminum nitride powder manufacturing method, aluminum nitride sintered body and manufacturing method thereof

Also Published As

Publication number Publication date
JPS52107299A (en) 1977-09-08

Similar Documents

Publication Publication Date Title
US4292276A (en) Apparatus for producing silicon carbide
CN101717117A (en) Method for producing vanadium trioxide
US4551316A (en) Process for producing boron nitride of cubic system
US4217335A (en) Process for producing β-silicon carbide fine powder
US3351429A (en) Production of titanium diboride
US4619905A (en) Process for the synthesis of silicon nitride
JPS6112844B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS606908B2 (en) Method for producing active silicon carbide powder containing boron component
JPS5951483B2 (en) Aluminum nitride manufacturing method
JPS6111886B2 (en)
JPH0216270B2 (en)
US3194635A (en) Method for the production of aluminum refractory material
US2993761A (en) Compacts of finely particulate material
JP3929071B2 (en) Method for producing manganese sulfide
JPS6362449B2 (en)
JPH0416502A (en) Production of boron nitride
JPH08290905A (en) Hexagonal boron nitride powder and its production
KR0125761B1 (en) Solid state reaction of silicon or manganese oxides to carbides and their alloying with ferrous melts
JPS58115016A (en) Preparation of fine powdery silicon carbide
US2497583A (en) Preparation of magnesium nitride
US3141737A (en) Method for the preparation of aluminum nitride refractory material
AU648108B2 (en) A proces for the preparation of alpha-silicon nitride powder
JPH01103960A (en) Production of boron nitride sintered compact
CA2075466C (en) Method of producing silicon and an electric-arc low-shaft furnace and briquette for carrying out the process