JPH0216270B2 - - Google Patents

Info

Publication number
JPH0216270B2
JPH0216270B2 JP56189252A JP18925281A JPH0216270B2 JP H0216270 B2 JPH0216270 B2 JP H0216270B2 JP 56189252 A JP56189252 A JP 56189252A JP 18925281 A JP18925281 A JP 18925281A JP H0216270 B2 JPH0216270 B2 JP H0216270B2
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon carbide
silicon
reaction
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56189252A
Other languages
Japanese (ja)
Other versions
JPS5891070A (en
Inventor
Kunihiko Terase
Hitoshi Kijimuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56189252A priority Critical patent/JPS5891070A/en
Publication of JPS5891070A publication Critical patent/JPS5891070A/en
Publication of JPH0216270B2 publication Critical patent/JPH0216270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化珪素と窒化珪素の複合焼結体の製
法、特には、炭化珪素と窒化珪素が均一に混合分
散され、高温強度が大きく、耐熱衝撃性に優れた
複合焼結体の製法に関する。 最近、高温での使用に耐える機構部品にセラミ
ツクスを使用することが提唱され、いわゆるエン
ジニアリングセラミツクスとして各種のものが提
案されている。それらの多くのものは、非酸化物
セラミツクス、特には炭化珪素、窒化珪素を主体
とするものである。 これらの炭化珪素質セラミツクス、窒化珪素質
セラミツクスは、前者は、高温強度において優れ
るが、耐熱衝撃性に関して充分ではなく、一方、
後者は、耐熱衝撃性は優れるが、高温強度の方が
今一つ優れないという二律背反的な特性を有す
る。 本発明者等は、上記の各々が持つ欠点をおぎな
い、高温強度に優れ、耐熱衝撃性も充分な焼結体
を得る方法について検討を加えた結果、本発明を
見出したもので、本発明は、ハロゲンを含む無機
珪素化合物とアンモニアと、前記両者の反応によ
つて生成される窒化珪素を炭化珪素に転化せしめ
るに必要な理論量より少ない量の炭素質物質と
を、非酸化性雰囲気中において反応せしめること
により得られる炭化珪素と窒化珪素の混合粉末に
焼結助剤として周期律表族、族および族の
金属単体及びこれの酸加物、炭化物から選ばれる
1種もしくは2種以上を添加、混合し、非酸化性
雰囲気中で焼結もしくはホツトプレスすることを
特徴とする炭化珪素と窒化珪素の複合焼結体の製
法を要旨とするものである。 本発明の効果を充分に達成せしめるためには炭
化珪素と窒化珪素が充分に均一に分散せしめられ
ていることが必要であり、そのためには、炭化珪
素、窒化珪素ともに超微粒であることが好まし
い。即ち、炭化珪素と窒化珪素と混合粉末の表面
積が少くとも5m2/g以上、更に好ましくは10
m2/g以上とするのがよい。 このような超微粒を用いる場合の効果は上記の
他に、爾後の焼結の際に焼結反応が起りやすいと
いう利点をも有するものである。 また、混合粉末中の炭化珪素と窒化珪素の配合
割合は、高温強度と耐熱衝撃性に関しての要求性
能に応じて任意の割合に選ぶことが可能である
が、本発明者等の経験によれば、炭化珪素、窒化
珪素の一方が少くとも混合粉末中5重量%存在せ
しめることが好ましい。即ち、混合粉末中、炭化
珪素が5重量%以下では、高温強度を充分ならし
めるという炭化珪素を存在させる目的が達せられ
ず、また、窒化珪素が5重量%以下では耐熱衝撃
性を向上させるという窒化珪素を存在せしめる目
的が充分に達せられないことによる。 ここで、原料として用いられるハロゲンを含む
無機珪素化合物としては、例えば、SiCl4
SiHCl3,SiH3Cl2,SiH3Cl,SiBr4,SiHBr3
SiH2Br2,SiH3Br,SiI4,SiHI3,SiH2I2
SiH3I,SiCl2Br2,SiCl2I2等であり、これらは常
温でガス状のものもあるが、液状や固体状のもの
もあり、これらは均一な反応を速やかに実施する
為に、例えば適当な間接加熱等の手段により一旦
ガス化せしめて反応に供するのが適当である。 反応に用いられるアンモニアの量は、原料とし
て用いられるハロゲンを含む無機珪素化合物に対
し、モル比で0.1〜6を採用するのが適当である。 用いるアンモニアの量が前記範囲に満たない場
合には、ハロゲンを含む無機珪素化合物の反応率
が低く、工業的でなく、逆に前記範囲を超える場
合には、ハロゲン化アンモニウムの固体が析出
し、反応操作上困難を伴なうもので何れも好まし
くない。 そして、これら範囲のうち前記モル比0.5〜5
を採用する場合には、反応を効果的且つ工業的有
利に行なえるので特に好ましい。 次に、炭素質物質としては、例えば無定形炭
素、グラフアイト等の炭素そのものの他、含ハロ
ゲン飽和若しくは含ハロゲン不飽和炭化水素又は
含ハロゲン芳香族炭化水素のうち、何れもハロゲ
ン原子に対し水素の数が等しいか大であるもの等
を適宜一種若しくは二種以上混合して用いること
が出来る。 そしてこれら炭素質物質のうち、カーボンブラ
ツク、ジクロルエチレン、塩化メチル、塩化メチ
レン、ジクロルエタン、トリクロルエタン、塩化
ビニルを採用する場合には炭化珪素への転化率が
高くなるので好ましい。 これら炭素質物質の使用量は、ハロゲンを含む
無機珪素化合物とアンモニアの反応によつて生成
される窒化珪素を、炭化珪素に転化せしめるに必
要な理論量より少ない量用いられる。その具体的
な使用量は得ようとする窒化珪素と炭化珪素の混
合割合によつて異なるが、本発明の目的を達成す
る為には、一般に炭素に換算して珪素に対し、モ
ル比で0.05〜0.95程度を用いるのが適当である。 かくしてこれら原料は非酸化性雰囲気中で反応
せしめられる。反応温度は400〜1700℃程度を採
用するのが適当である。 反応温度が前記範囲に満たない場合には、アン
モニアが有効に利用されず、含ハロゲン珪素化合
物の反応率が低下し、逆に前記範囲を超える場合
には最終生成物の粒成長が顕著となるので何れも
好ましくない。 又、反応時間は0.1秒〜5時間を採用するのが
適当である。反応時間が前記範囲に満たない場合
には実質的に反応が進行せず、逆に前記範囲を超
える場合には、最終生成物の粒成長が顕著となる
ので何れも好ましくない。 本発明において、用いられる原料は、何れも同
時に一緒に混合されるのが普通であるが、所望に
より予め珪素の窒素化合物を得ておき、これによ
り炭素質物質を混合せしめ、言わば反応を2段に
することも出来る。 又、本発明に用いられる非酸化性雰囲気として
は、例えばアルゴン、ヘリウム、水素等のガス気
流を採用するのが適当である。酸化性雰囲気とな
ると、焼結原料として高温強度の低下原因となる
シリカが混入するので注意を要する。 さて、このような混合粉末を用いて焼結体を得
る方法としては、この混合粉末中に、適当な焼結
助剤を充分均一に分散せしめ、これを成形して非
酸化性雰囲気中で焼成する方法によることもでき
るし、また、焼結助剤を均一分散せしめた混合粉
末をカーボン等のモールドに入れ、非酸化性雰囲
気中でホツトプレスする方法でもよい。 ここで焼結助剤としては、周期律表の第族、
族及び族の金属単体及びこれの酸化物、酸化
物から選ばれる。 上記の中でも、酸化マグネシウム、硼素、炭化
硼素、酸化硼素、酸化アルミニウム、酸化イツト
リウム及び炭素から選ばれる1種ないし2種以上
が好ましい。 上記に例示した焼結助剤を具体的に使用するに
あたつては、原料粉末の炭化珪素と窒化珪素の配
合割合に応じて、その種類、量は選宜選択すれば
よいが、本発明者等の経験によれば、原料粉末中
に炭化珪素が多く配合されている時には、硼素、
炭化硼素、酸化硼素、酸化アルミニウム、炭素か
ら選ばれるものを用いるのがよく、窒化珪素の配
合割合が多い場合には酸化マグネシウム、酸化ア
ルミニウム、酸化イツトリウムから選ばれるもの
を用いるのがよい。 また、これらの焼結助剤は原料に配合する時
に、上述の化合物である必要はなく、例えば、上
記の化合物の金属元素を含む塩、例えば、ハロゲ
ン化物、炭酸塩、硝酸塩、硫酸塩、酢酸塩、アル
コレート等の中から、焼結時ないしホツトプレス
時に、上述の化合物に変化するものであつても勿
論よい。 また、焼結温度及びホツトプレス温度は、原料
中の炭化珪素と窒化珪素の配合割合に応じて選択
すればよく、焼結温度としては1700〜2100℃、ホ
ツトプレス温度としては1600〜2000℃から選ぶの
がよい。 非酸化性雰囲気としては窒素、アルゴン、水素
等の公知のものを用いることができる。 実施例 1〜5 内径36mm、長さ900mmの石英製反応管を内筒と
し、内径50mm、長さ1000mmのアルミナ管を外筒と
する外熱式流通型反応器と、反応管下部に取り付
けた反応生成物捕集器とからなる装置を用い、所
定温度に保持した反応管上部からハロゲン化珪素
(キヤリアガス:N2)、アンモニアガス、含ハロ
ゲン炭化水素(キヤリアガス:N2)をそれぞれ
別々の導入管から吹込み反応させた。 捕集器に補集された粉末状生成物を窒素雰囲気
下でグラフアイト製ルツボに移し、不活性ガス気
流中、電気炉で熱処理を行なつた。 反応条件及び熱処理条件と得られた粉末の分析
結果は表1の如くであつた。 この混合粉末を、実施例1〜3については焼結
助剤としてAl2O3を、原料に対する外掛け割合で
10重量%用い、これらを室温で200Kg/cm2のプレ
ス成形後、Ar雰囲気下1975℃で5時間焼結せし
めた。又実施例4,5については、焼結助剤とし
てMgOを同様に1重量%用い、同様にプレス成
形後、N2雰囲気下1750℃で5時間焼結せしめた。 焼結体の物性を表1に併記した。尚、表中耐熱
衝撃温度は、加熱サンプルを水中に投下した場
合、強度低下を生じない加熱温度である。
The present invention relates to a method for manufacturing a composite sintered body of silicon carbide and silicon nitride, and more particularly, to a method for manufacturing a composite sintered body in which silicon carbide and silicon nitride are uniformly mixed and dispersed, and has high high-temperature strength and excellent thermal shock resistance. Recently, the use of ceramics for mechanical parts that can withstand use at high temperatures has been proposed, and various types of so-called engineering ceramics have been proposed. Many of them are based on non-oxide ceramics, particularly silicon carbide and silicon nitride. These silicon carbide ceramics and silicon nitride ceramics have excellent high-temperature strength, but do not have sufficient thermal shock resistance;
The latter has a contradictory characteristic in that it has excellent thermal shock resistance but is not so good in high temperature strength. The present inventors have discovered the present invention as a result of research into a method for obtaining a sintered body that overcomes the drawbacks of each of the above, has excellent high-temperature strength, and has sufficient thermal shock resistance. , an inorganic silicon compound containing a halogen, ammonia, and a carbonaceous substance in an amount smaller than the theoretical amount required to convert silicon nitride produced by the reaction between the two into silicon carbide in a non-oxidizing atmosphere. To the mixed powder of silicon carbide and silicon nitride obtained by the reaction, one or more selected from the group of metals of the periodic table, groups and group metals, and their acid additions and carbides is added as a sintering aid. The gist of the present invention is a method for producing a composite sintered body of silicon carbide and silicon nitride, which is characterized by mixing and sintering or hot pressing in a non-oxidizing atmosphere. In order to fully achieve the effects of the present invention, it is necessary that silicon carbide and silicon nitride are sufficiently and uniformly dispersed, and for this purpose, it is preferable that both silicon carbide and silicon nitride are ultrafine particles. . That is, the surface area of the mixed powder of silicon carbide and silicon nitride is at least 5 m 2 /g, more preferably 10 m 2 /g or more.
It is preferable to set it to m 2 /g or more. In addition to the above-mentioned effects, the use of such ultrafine particles also has the advantage that a sintering reaction is more likely to occur during subsequent sintering. Furthermore, the blending ratio of silicon carbide and silicon nitride in the mixed powder can be selected as desired depending on the required performance regarding high temperature strength and thermal shock resistance, but according to the experience of the present inventors, It is preferable that at least 5% by weight of one of silicon carbide and silicon nitride be present in the mixed powder. That is, if the amount of silicon carbide in the mixed powder is less than 5% by weight, the purpose of the presence of silicon carbide, which is to provide sufficient high-temperature strength, cannot be achieved, and if the amount of silicon nitride is less than 5% by weight, the thermal shock resistance is improved. This is because the purpose of making silicon nitride exist cannot be fully achieved. Here, examples of the halogen-containing inorganic silicon compound used as a raw material include SiCl 4 ,
SiHCl 3 , SiH 3 Cl 2 , SiH 3 Cl, SiBr 4 , SiHBr 3 ,
SiH 2 Br 2 , SiH 3 Br, SiI 4 , SiHI 3 , SiH 2 I 2 ,
SiH 3 I, SiCl 2 Br 2 , SiCl 2 I 2, etc. Some of these are gaseous at room temperature, but others are liquid or solid. For example, it is appropriate to gasify the mixture by suitable means such as indirect heating and then use it for the reaction. The amount of ammonia used in the reaction is suitably 0.1 to 6 in molar ratio to the halogen-containing inorganic silicon compound used as a raw material. If the amount of ammonia used is less than the above range, the reaction rate of the halogen-containing inorganic silicon compound is low and is not industrially practical, whereas if it exceeds the above range, solid ammonium halide will precipitate. Both are unfavorable as they are accompanied by difficulties in reaction operation. Among these ranges, the molar ratio is 0.5 to 5.
It is particularly preferable to employ the following, since the reaction can be carried out effectively and industrially advantageously. Next, carbonaceous substances include, for example, carbon itself such as amorphous carbon and graphite, as well as halogen-containing saturated or halogen-containing unsaturated hydrocarbons, or halogen-containing aromatic hydrocarbons, all of which have hydrogen relative to halogen atoms. One type or a mixture of two or more types can be used as appropriate. Among these carbonaceous materials, it is preferable to use carbon black, dichloroethylene, methyl chloride, methylene chloride, dichloroethane, trichloroethane, and vinyl chloride because the conversion rate to silicon carbide increases. The amount of these carbonaceous substances used is smaller than the theoretical amount required to convert silicon nitride produced by the reaction between a halogen-containing inorganic silicon compound and ammonia into silicon carbide. The specific amount used varies depending on the mixing ratio of silicon nitride and silicon carbide to be obtained, but in order to achieve the purpose of the present invention, it is generally necessary to use a molar ratio of 0.05 to silicon in terms of carbon. It is appropriate to use about 0.95. These raw materials are then allowed to react in a non-oxidizing atmosphere. It is appropriate to adopt a reaction temperature of about 400 to 1700°C. If the reaction temperature is less than the above range, ammonia is not effectively utilized and the reaction rate of the halogen-containing silicon compound decreases, whereas if it exceeds the above range, grain growth of the final product becomes significant. So I don't like either of them. Further, it is appropriate to adopt a reaction time of 0.1 seconds to 5 hours. If the reaction time is less than the above range, the reaction will not substantially proceed, whereas if it exceeds the above range, the grain growth of the final product will become significant, which is not preferable. In the present invention, the raw materials used are usually mixed together at the same time, but if desired, a nitrogen compound of silicon is obtained in advance and the carbonaceous material is mixed with this, so that the reaction is carried out in two stages. It is also possible to Further, as the non-oxidizing atmosphere used in the present invention, it is appropriate to employ, for example, a gas flow of argon, helium, hydrogen, or the like. In an oxidizing atmosphere, silica, which is a sintering raw material and causes a decrease in high-temperature strength, will be mixed in, so care must be taken. Now, in order to obtain a sintered body using such a mixed powder, a suitable sintering aid is sufficiently uniformly dispersed in this mixed powder, and this is shaped and fired in a non-oxidizing atmosphere. Alternatively, a mixed powder in which a sintering aid is uniformly dispersed may be placed in a mold made of carbon or the like, and then hot pressed in a non-oxidizing atmosphere. Here, as the sintering aid, groups of the periodic table,
selected from group metals, elemental metals of groups, and oxides and oxides thereof. Among the above, one or more selected from magnesium oxide, boron, boron carbide, boron oxide, aluminum oxide, yttrium oxide, and carbon are preferred. When specifically using the sintering aid exemplified above, the type and amount may be selected depending on the blending ratio of silicon carbide and silicon nitride in the raw material powder, but the present invention According to the experience of researchers, when a large amount of silicon carbide is mixed in the raw material powder, boron,
It is preferable to use one selected from boron carbide, boron oxide, aluminum oxide, and carbon, and when the blending ratio of silicon nitride is large, it is preferable to use one selected from magnesium oxide, aluminum oxide, and yttrium oxide. In addition, when these sintering aids are added to the raw materials, they do not need to be the above-mentioned compounds; for example, salts containing metal elements of the above-mentioned compounds, such as halides, carbonates, nitrates, sulfates, and acetic acid. Of course, any salt, alcoholate, etc. that changes into the above-mentioned compound during sintering or hot pressing may be used. In addition, the sintering temperature and hot press temperature can be selected depending on the blending ratio of silicon carbide and silicon nitride in the raw materials, and the sintering temperature can be selected from 1700 to 2100℃, and the hot press temperature can be selected from 1600 to 2000℃. Good. Known non-oxidizing atmospheres such as nitrogen, argon, and hydrogen can be used. Examples 1 to 5 An externally heated flow-through reactor with a quartz reaction tube with an inner diameter of 36 mm and a length of 900 mm as the inner tube and an alumina tube with an inner diameter of 50 mm and a length of 1000 mm as the outer tube, and an externally heated flow-through reactor was installed at the bottom of the reaction tube. Silicon halide (carrier gas: N 2 ), ammonia gas, and halogen-containing hydrocarbon (carrier gas: N 2 ) are each introduced separately from the top of the reaction tube maintained at a predetermined temperature using a device consisting of a reaction product collector and a reaction product collector. A reaction was caused by blowing into the tube. The powdered product collected in the collector was transferred to a graphite crucible under a nitrogen atmosphere, and heat-treated in an electric furnace in an inert gas stream. The reaction conditions, heat treatment conditions, and analysis results of the obtained powder are as shown in Table 1. For Examples 1 to 3, this mixed powder was mixed with Al 2 O 3 as a sintering aid at an external ratio to the raw material.
Using 10% by weight, these were press-molded at room temperature to a pressure of 200 kg/cm 2 and then sintered at 1975° C. for 5 hours in an Ar atmosphere. For Examples 4 and 5, 1% by weight of MgO was similarly used as a sintering aid, and after press molding, sintering was performed at 1750° C. for 5 hours in an N 2 atmosphere. The physical properties of the sintered body are also listed in Table 1. In addition, the thermal shock resistance temperature in the table is a heating temperature that does not cause a decrease in strength when a heated sample is dropped into water.

【表】【table】

【表】 実施例 6〜10 実施例1と同一の反応装置を用いて、反応管上
部から四塩化珪素(キヤリアガス:N2)とアン
モニアガスとを別々の導入管から吹込み反応させ
た。但し、反応温度1000℃、反応時間2.5秒、
SiCl4濃度9容量%、NH3/SiCl4=1.3とした。
捕集器に捕集された粉末状中間生成物とカーボン
ブラツク(粒径約25mμ)とを窒素ガス雰囲気で
混合した後、グラフアイト製ルツボに移し、水素
気流中1550℃で2時間熱処理した。処理条件及び
得られた粉末の分析結果を表2に示した。 この混合粉末を用いて、実施例6,7について
は、焼結助剤としてB及びCを原料に対する外掛
け割合で1重量%用い、ホツトプレス成形後、
Ar雰囲気下1975℃で5時間焼結せしめた。又、
実施例8,9,10については、焼結助剤として
MgOを同様に1重量%用い、室温で200Kg/cm2
プレス成形後N2雰囲気1750℃で5時間焼結せし
めた。焼結体の物性を表2に併記した。 実施例 11〜15 実施例1と同様の反応を行なつて、捕集器に捕
集された粉末状中間生成物を、窒素ガス雰囲気下
でポリ塩化ビニルの塩化メチレン溶液に分散した
後、塩化メチレンを蒸発させて得られた固形物を
グラフアイト製ルツボにとり水素雰囲気下400℃
で1時間熱処理した後、1550℃に昇温して2時間
熱処理した。処理条件及び得られた粉末の分析結
果を表2に示した。 この混合粉末を用いて実施例11,12について
は、実施例1に従い、実施例13,14,15について
は実施例4に従つて焼結体を得た。焼結体の物性
を表2に併記した。
[Table] Examples 6 to 10 Using the same reaction apparatus as in Example 1, silicon tetrachloride (carrier gas: N 2 ) and ammonia gas were blown into the upper part of the reaction tube from separate introduction tubes to cause a reaction. However, the reaction temperature is 1000℃, the reaction time is 2.5 seconds,
The SiCl 4 concentration was 9% by volume, and the NH 3 /SiCl 4 =1.3.
The powdered intermediate product collected in the collector and carbon black (particle size: about 25 mμ) were mixed in a nitrogen gas atmosphere, then transferred to a graphite crucible and heat-treated at 1550° C. for 2 hours in a hydrogen stream. Table 2 shows the processing conditions and the analysis results of the obtained powder. Using this mixed powder, in Examples 6 and 7, B and C were used as sintering aids at an external ratio of 1% by weight to the raw material, and after hot press molding,
Sintering was performed at 1975°C for 5 hours in an Ar atmosphere. or,
For Examples 8, 9, and 10, as a sintering aid
Similarly, 1% by weight of MgO was used, and after press molding at room temperature to 200 kg/cm 2 , sintering was performed at 1750° C. in an N 2 atmosphere for 5 hours. The physical properties of the sintered body are also listed in Table 2. Examples 11 to 15 The same reaction as in Example 1 was carried out, and the powdered intermediate product collected in the collector was dispersed in a methylene chloride solution of polyvinyl chloride under a nitrogen gas atmosphere, and then chlorinated. The solid material obtained by evaporating methylene was placed in a graphite crucible at 400°C under a hydrogen atmosphere.
After heat treatment for 1 hour, the temperature was raised to 1550°C and heat treatment was performed for 2 hours. Table 2 shows the processing conditions and the analysis results of the obtained powder. Using this mixed powder, sintered bodies were obtained according to Example 1 for Examples 11 and 12, and according to Example 4 for Examples 13, 14, and 15. The physical properties of the sintered body are also listed in Table 2.

【表】 比較例 1〜2 原料として、純度99%の炭化珪素粉末及び窒化
珪素粉末を用い、各々単味の上記原料粉末に表3
に示す焼結助剤を所定量添加し、ボールミルで24
時間粉砕を兼ねて均一混合を実施した。 次に得られた混合粉末を表3に併記する条件で
焼結を行つた。得られた焼結体の特性を表3に併
記した。
[Table] Comparative Examples 1 to 2 Silicon carbide powder and silicon nitride powder with a purity of 99% were used as raw materials, and Table 3 was added to each of the above raw material powders.
Add the specified amount of the sintering aid shown in and mill it in a ball mill for 24 hours.
Uniform mixing was carried out while also serving as time pulverization. Next, the obtained mixed powder was sintered under the conditions listed in Table 3. The properties of the obtained sintered body are also listed in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ハロゲンを含む無機珪素化合物とアンモニア
と、前記両者の反応によつて生成される窒化珪素
を炭化珪素に転化せしめるに必要な理論量より少
ない量の炭素質物質とを、非酸化性雰囲気中にお
いて反応せしめることにより得られる炭化珪素と
窒化珪素の混合粉末に焼結助剤として、周期率表
族、族および族の金属担体及びこれの酸加
物、炭化物から選ばれる1種もしくは2種以上を
添加、混合し、非酸化性雰囲気中で焼結もしくは
ホツトプレスすることを特徴とする炭化珪素と窒
化珪素の複合焼結体の製法。 2 混合粉末が、炭化珪素と窒化珪素のいずれか
を少なくとも5重量%含むものである特許請求の
範囲第1項の炭化珪素と窒化珪素の複合焼結体の
製法。 3 混合粉末は、その非表面積が5m2/g以上で
ある特許請求の範囲第2項の炭化珪素と窒化珪素
の複合体の製法。 4 焼結助剤が酸化マグネシウム、硼素、炭化硼
素、酸化硼素、酸化アルミニウム、酸化イツトリ
ウム及び炭素から選ばれる1種又は2種以上であ
る特許請求の範囲第1項の炭化珪素と窒化珪素の
複合体の製法。
[Scope of Claims] 1. An inorganic silicon compound containing a halogen, ammonia, and a carbonaceous material in an amount smaller than the theoretical amount required to convert silicon nitride produced by the reaction of the two into silicon carbide, As a sintering aid for a mixed powder of silicon carbide and silicon nitride obtained by reacting in a non-oxidizing atmosphere, 1 selected from metal carriers of groups, groups and groups of the periodic table, and acid additions and carbides thereof. A method for producing a composite sintered body of silicon carbide and silicon nitride, which comprises adding and mixing one or more species and sintering or hot-pressing the mixture in a non-oxidizing atmosphere. 2. The method for producing a composite sintered body of silicon carbide and silicon nitride according to claim 1, wherein the mixed powder contains at least 5% by weight of either silicon carbide or silicon nitride. 3. The method for producing a composite of silicon carbide and silicon nitride according to claim 2, wherein the mixed powder has a non-surface area of 5 m 2 /g or more. 4. The composite of silicon carbide and silicon nitride according to claim 1, wherein the sintering aid is one or more selected from magnesium oxide, boron, boron carbide, boron oxide, aluminum oxide, yttrium oxide, and carbon. How the body is made.
JP56189252A 1981-11-27 1981-11-27 Manufacture of composite sintered body of silicon carbide and silicon nitride Granted JPS5891070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189252A JPS5891070A (en) 1981-11-27 1981-11-27 Manufacture of composite sintered body of silicon carbide and silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189252A JPS5891070A (en) 1981-11-27 1981-11-27 Manufacture of composite sintered body of silicon carbide and silicon nitride

Publications (2)

Publication Number Publication Date
JPS5891070A JPS5891070A (en) 1983-05-30
JPH0216270B2 true JPH0216270B2 (en) 1990-04-16

Family

ID=16238173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189252A Granted JPS5891070A (en) 1981-11-27 1981-11-27 Manufacture of composite sintered body of silicon carbide and silicon nitride

Country Status (1)

Country Link
JP (1) JPS5891070A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046973A (en) * 1983-08-25 1985-03-14 大森 守 Silicon carbide-silicon nitride sintered composite material and manufacture
JPS61158867A (en) * 1984-12-28 1986-07-18 工業技術院長 Enhancement for silicon nitride sintered body
JPS62148370A (en) * 1985-12-23 1987-07-02 工業技術院長 Manufacture of high oxidation-resistance silicon nitride base ceramics
JPS63134567A (en) * 1986-11-21 1988-06-07 株式会社豊田中央研究所 Ceramic composite body
US4829027A (en) * 1987-01-12 1989-05-09 Ceramatec, Inc. Liquid phase sintering of silicon carbide
JP2730245B2 (en) * 1990-01-29 1998-03-25 日産自動車株式会社 Method for producing silicon carbide / silicon nitride composite sintered body
EP0552381B1 (en) * 1991-08-13 1998-04-29 Sumitomo Electric Industries, Ltd. Composite silicon nitride sinter and production thereof
DE69512349T2 (en) 1994-11-21 2000-01-13 Honda Motor Co Ltd Process for the production of composite sintered bodies from silicon carbide and silicon nitride
FR2878520B1 (en) 2004-11-29 2015-09-18 Saint Gobain Ct Recherches FRICTION REFRACTOR BLOCK BASED ON SILICON CARBIDE WITH SILICON NITRIDE BOND

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551869A (en) * 1978-10-05 1980-04-15 Nissan Motor Fray preventing treatment apparatus of woven article
JPS5585470A (en) * 1978-12-15 1980-06-27 Hitachi Ltd Silicon carbide powder composition
JPS55109279A (en) * 1979-02-13 1980-08-22 Asahi Glass Co Ltd Manufacture of double density ceramic sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551869A (en) * 1978-10-05 1980-04-15 Nissan Motor Fray preventing treatment apparatus of woven article
JPS5585470A (en) * 1978-12-15 1980-06-27 Hitachi Ltd Silicon carbide powder composition
JPS55109279A (en) * 1979-02-13 1980-08-22 Asahi Glass Co Ltd Manufacture of double density ceramic sintered body

Also Published As

Publication number Publication date
JPS5891070A (en) 1983-05-30

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
US4342837A (en) Sinterable silicon carbide powders and sintered body produced therefrom
GB2132182A (en) Process for preparation of silicon nitride powder of good sintering property
JPH0216270B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US5075091A (en) Process for the preparation of silicon nitride
JPH0476924B2 (en)
JPS6111886B2 (en)
JP2907366B2 (en) Method for producing crystalline silicon nitride powder
JPS5839764B2 (en) Method for producing aluminum nitride powder
JP2907367B2 (en) Method for producing crystalline silicon nitride powder
JPH0649565B2 (en) Method for producing α-type silicon nitride powder
JP3285621B2 (en) Method for producing silicon nitride powder
JP2000044223A (en) Production of silicon carbide
JPH0143711B2 (en)
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JPS6146403B2 (en)
JPS61168567A (en) Manufacture of silicon carbide sintered body
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPS5891058A (en) Manufacture of mixture of silicon nitride and silicon carbide
JPS621564B2 (en)
JPH06172036A (en) Production of silicon nitride powder
JP2681843B2 (en) Manufacturing method of β-type silicon nitride whiskers