JPS6146403B2 - - Google Patents

Info

Publication number
JPS6146403B2
JPS6146403B2 JP54047769A JP4776979A JPS6146403B2 JP S6146403 B2 JPS6146403 B2 JP S6146403B2 JP 54047769 A JP54047769 A JP 54047769A JP 4776979 A JP4776979 A JP 4776979A JP S6146403 B2 JPS6146403 B2 JP S6146403B2
Authority
JP
Japan
Prior art keywords
powder
silicon carbide
calcium oxide
present
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54047769A
Other languages
Japanese (ja)
Other versions
JPS55140711A (en
Inventor
Kaoru Kase
Takashige Matsufuji
Mitsuhiko Furukawa
Hiroshi Yamamoto
Takashi Kitahira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP4776979A priority Critical patent/JPS55140711A/en
Publication of JPS55140711A publication Critical patent/JPS55140711A/en
Publication of JPS6146403B2 publication Critical patent/JPS6146403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 この発明は炭化ケイ素粉末の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicon carbide powder.

炭化ケイ素は高い高温強度とすぐれた耐熱耐蝕
性を持ち有望な耐熱性セラミツク材料として注目
を集めている。これら炭化ケイ素の焼結体は粉末
冶金法によつて作られるため原料となる炭化ケイ
素粉末は微細で活性に富む物が望ましい。
Silicon carbide is attracting attention as a promising heat-resistant ceramic material due to its high high-temperature strength and excellent heat and corrosion resistance. Since these sintered bodies of silicon carbide are produced by a powder metallurgy method, the silicon carbide powder used as the raw material is preferably fine and highly active.

従来炭化ケイ素粉末の製造においては、収率を
上げる目的から2000℃近くでの高温作業が必要
で、そのため反応後の生成物が焼結し、微細な粉
末を得るためには長時間の粉砕を必要とする等の
困難があつた。あるいは又、同様に高収率を得る
目的から金属ケイ素を原料とする等、出発原料の
厳選が必要であつた。
Conventionally, in the production of silicon carbide powder, high-temperature work at nearly 2000°C is required to increase yields, which results in sintering of the reaction products and requires long pulverization to obtain fine powder. There were some difficulties, such as needing to do so. Alternatively, for the purpose of similarly obtaining high yields, it has been necessary to carefully select starting materials, such as using metallic silicon as a raw material.

本発明の目的は、これら従来法の欠点を改良し
容易な炭化ケイ素粉末の製造方法を提供しようと
するものであり、その方法は、酸化ケイ素粉末と
炭素粉末の混合物に、酸化ケイ素に対し酸化カル
シウムをモル比で1対0.005〜0.06の割合で添加
し、非酸化性雰囲気において約1300℃〜1600℃の
範囲内で加熱することを特徴とする。
The purpose of the present invention is to improve the drawbacks of these conventional methods and provide an easy method for producing silicon carbide powder. It is characterized by adding calcium at a molar ratio of 1:0.005 to 0.06, and heating in a non-oxidizing atmosphere within a range of about 1300°C to 1600°C.

本発明の要点は、酸化ケイ素粉末と炭素粉末の
混合物に酸化カルシウムを添加して比較的低温に
おいて炭化ケイ素を合成する点にあり、本発明の
方法によれば、容易に1〜2μの微粉末が高い収
率で得られる。
The gist of the present invention is to synthesize silicon carbide at a relatively low temperature by adding calcium oxide to a mixture of silicon oxide powder and carbon powder. obtained in high yield.

以下本発明の方法を詳細に説明する。 The method of the present invention will be explained in detail below.

先ず酸化ケイ素粉末と炭素粉末を混合するが混
合は通常のボールミル等で行なわれる。
First, silicon oxide powder and carbon powder are mixed, and the mixing is carried out using an ordinary ball mill or the like.

次いで酸化カルシウムの添加は、粉末として添
加しても良いし、あるいは水溶性のカルシウム塩
として湿式混合しても良い。あるいは又、自然状
態で酸化カルシウムを適量含有するケイ酸塩鉱物
を原料としても良い。
Calcium oxide may then be added as a powder or wet-mixed as a water-soluble calcium salt. Alternatively, a silicate mineral containing an appropriate amount of calcium oxide in its natural state may be used as a raw material.

本発明の方法において添加する酸化カルシウム
の量は、酸化ケイ素1モルに対しわずか0.005モ
ル以上で十分であり、後の実施例の項で詳しく述
べる様に酸化カルシウムの添加により炭化ケイ素
の生成率が大巾に向上する。酸化ケイ素1モルに
対し、酸化カルシウム0.06モル以上の添加の効果
は、酸化カルシウム0.06モル添加の場合と同程度
で特に添加量を増やした効果は認められず、よつ
て本発明の方法においては酸化カルシウムの添加
量を酸化ケイ素に対しモル比で1:0.005〜0.06
の範囲内とした。
The amount of calcium oxide added in the method of the present invention is only 0.005 mol or more per 1 mol of silicon oxide, and as will be described in detail in the Examples section later, the production rate of silicon carbide can be increased by adding calcium oxide. Improve greatly. The effect of adding 0.06 mol or more of calcium oxide to 1 mol of silicon oxide is similar to that of adding 0.06 mol of calcium oxide, and no particular effect of increasing the amount added is observed.Therefore, in the method of the present invention, oxidation The amount of calcium added is 1:0.005 to 0.06 in molar ratio to silicon oxide.
was within the range of

尚、炭素粉末の混合割合は通常公知の方法に行
なわれている範囲内にあり、本発明の方法におい
ては特に規定しない。
The mixing ratio of the carbon powder is within the range normally used in known methods, and is not particularly specified in the method of the present invention.

次にこれら混合物を非酸化性雰囲気において約
1300℃〜1600℃の温度に加熱すると、互いに反応
して炭化ケイ素粉末が生成される。この場合雰囲
気中に多量の酸素が存在すると加熱途中において
炭素粉末が消費され炭化ケイ素の生成率が低下す
るが、本発明の方法に言う非酸化性雰囲気とは、
例えば必ずしも厳密に高真空雰囲気等を必要とす
る訳ではなく、例えば混合物を入れた容器をカー
ボン粉末で覆う等の方法においても本発明の方法
の実施は可能である。
These mixtures are then heated in a non-oxidizing atmosphere to approx.
When heated to a temperature of 1300°C to 1600°C, they react with each other to produce silicon carbide powder. In this case, if a large amount of oxygen exists in the atmosphere, carbon powder will be consumed during heating and the production rate of silicon carbide will decrease, but the non-oxidizing atmosphere referred to in the method of the present invention is
For example, the method of the present invention does not necessarily strictly require a high vacuum atmosphere, and the method of the present invention can also be implemented by, for example, covering a container containing a mixture with carbon powder.

加熱温度について言えば、1300℃以下でも炭化
ケイ素の合成は可能であるが収率が低い。又1600
℃以上では生成物の粒成長が起り微粉末が得られ
にくい。よつて本発明の方法においては加熱温度
を1300℃〜1600℃と規定した。
Regarding the heating temperature, it is possible to synthesize silicon carbide at temperatures below 1300°C, but the yield is low. Also 1600
If the temperature is above ℃, grain growth of the product occurs and it is difficult to obtain a fine powder. Therefore, in the method of the present invention, the heating temperature was specified as 1300°C to 1600°C.

反応生成物は必要に応じ、従来広く行なわれて
いるように残留炭素ならびにシリカを除くため、
気中焙焼ならびに弗酸洗浄を行なう。
The reaction product is treated as necessary to remove residual carbon and silica, as is conventionally widely done.
Perform air roasting and hydrofluoric acid cleaning.

本発明の方法によつて得られる炭化ケイ素はい
づれも1〜2μ以下の微粉末であり、焼結用原料
ならびに研磨剤として有用である。
The silicon carbide obtained by the method of the present invention is a fine powder of 1 to 2 μm or less, and is useful as a raw material for sintering and as an abrasive.

以上明らかなように、酸化ケイ素と炭素粉末の
混合物に酸化カルシウムを添加する本発明の方法
によれば、従来公知の方法に比べ、比較的低温で
しかも高収率で1〜2μの炭化ケイ素粉末を容易
に製造する事が出来る。
As is clear from the above, according to the method of the present invention in which calcium oxide is added to a mixture of silicon oxide and carbon powder, silicon carbide powder of 1 to 2 μm can be produced at a relatively low temperature and in a high yield compared to conventionally known methods. can be easily manufactured.

以下実施例により本発明の方法をさらに詳細に
説明する。
The method of the present invention will be explained in more detail with reference to Examples below.

実施例 1 試薬無水ケイ酸とカーボン粉末(東海カーボン
製カーボンブラツク.シーストV)をモル比で1
対3.5の割合に混合した物に、酸化カルシウム
(CaO試薬1級)を酸化ケイ素に対しモル比で1
対0〜0.08の各割合で添加した試料を作り各試料
をステンレス製ロツドミルで各々18時間乾式混合
した。次いで各試料30gを取り、各々700Kg/cm2
の圧力でプレスした後、カーボンチユーブに入れ
真空炉中、1500℃にて1.5時間焼成した。この
時、初期真空度は100μHgとした。
Example 1 The reagent silicic anhydride and carbon powder (Tokai Carbon Carbon Black. Seast V) were mixed in a molar ratio of 1
Calcium oxide (CaO reagent 1st grade) is mixed with silicon oxide at a molar ratio of 1 to 3.5.
Samples were prepared in which the mixture was added at a ratio of 0 to 0.08, and each sample was dry mixed for 18 hours using a stainless steel rod mill. Next, take 30g of each sample and weigh 700Kg/ cm2 each.
After pressing at a pressure of 1,000 yen, it was placed in a carbon tube and fired at 1500° C. for 1.5 hours in a vacuum furnace. At this time, the initial degree of vacuum was 100 μHg.

冷却後、反応物を容器より取り出し、未反応の
炭素を除去するため気中650℃2時間焙焼しさら
に2:1弗酸中に室温で1時間放置して未反応の
酸化ケイ素ならびにその他の不純物を溶解除去し
た。次いで濾過、水洗を行ない、得られた粉末の
重量より炭化ケイ素の生成率を計算した。酸化カ
ルシウムの添加量と炭化ケイ素生成率の関係を第
1図に示す。
After cooling, the reactant was taken out of the container, roasted in air at 650°C for 2 hours to remove unreacted carbon, and then left in 2:1 hydrofluoric acid at room temperature for 1 hour to remove unreacted silicon oxide and other substances. Impurities were dissolved and removed. Next, filtration and water washing were performed, and the production rate of silicon carbide was calculated from the weight of the obtained powder. FIG. 1 shows the relationship between the amount of calcium oxide added and the silicon carbide production rate.

生成物は軽いサラサラした白〜灰色の粉末で空
気透過法(サブシーブ・サイザー)による平均粒
子径はいずれも1〜2μの範囲内にあつた。又、
X線回折によれば得られた粉末はいずれもβ−
SiCであつた。
The product was a light and smooth white to gray powder, and the average particle size measured by air permeation method (subsieve sizer) was within the range of 1 to 2 μm. or,
According to X-ray diffraction, all the powders obtained were β-
It was SiC.

第1図に示した様に、酸化カルシウムを添加し
た物は多少のバラツキはあるが無添加の物に比べ
いづれも生成率の向上が見られた。酸化カルシウ
ムを酸化ケイ素1モルに対し、0.005モル以上添
加した場合には特にその効果の大きい事が明らか
となつた。又、酸化カルシウムを0.06モル以上添
加する効果は特に認められず、酸化カルシウムの
添加は0.06モル以下で十分である事も明らかとな
つた。
As shown in FIG. 1, although there was some variation in the products to which calcium oxide was added, an improvement in the production rate was observed in all cases compared to the product without additives. It has become clear that the effect is particularly great when 0.005 mol or more of calcium oxide is added to 1 mol of silicon oxide. Furthermore, no particular effect was observed when adding 0.06 mol or more of calcium oxide, and it became clear that adding 0.06 mol or less of calcium oxide was sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1によつて得られた、酸化カル
シウムの添加量と炭化ケイ素の生成率の関係を示
した物であり、CaOの添加量はSiO2に対するモ
ル比で、又SiCの生成率は最初に用いたSiO2に対
する生成したSiCの割合をモル%で示している。
Figure 1 shows the relationship between the amount of calcium oxide added and the production rate of silicon carbide obtained in Example 1, where the amount of CaO added is expressed as a molar ratio to SiO 2 and the amount of SiC produced. The ratio indicates the ratio of generated SiC to the initially used SiO 2 in mol%.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化ケイ素粉末と炭素粉末の混合物に、酸化
ケイ素に対し酸化カルシウムをモル比で1対
0.005〜0.06の割合で添加し、非酸化性雰囲気に
おいて約1300℃〜1600℃の範囲内で加熱すること
を特徴とする炭化ケイ素粉末の製造方法。
1. Add calcium oxide to silicon oxide in a molar ratio of 1:1 to a mixture of silicon oxide powder and carbon powder.
A method for producing silicon carbide powder, which comprises adding silicon carbide powder at a ratio of 0.005 to 0.06 and heating in a non-oxidizing atmosphere within a range of about 1300°C to 1600°C.
JP4776979A 1979-04-16 1979-04-16 Manufacture of silicon carbide powder Granted JPS55140711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4776979A JPS55140711A (en) 1979-04-16 1979-04-16 Manufacture of silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4776979A JPS55140711A (en) 1979-04-16 1979-04-16 Manufacture of silicon carbide powder

Publications (2)

Publication Number Publication Date
JPS55140711A JPS55140711A (en) 1980-11-04
JPS6146403B2 true JPS6146403B2 (en) 1986-10-14

Family

ID=12784576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4776979A Granted JPS55140711A (en) 1979-04-16 1979-04-16 Manufacture of silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS55140711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001270A1 (en) * 1989-07-14 1991-02-07 Institut Strukturnoi Makrokinetiki Akademii Nauk Sssr Method for obtaining silicon carbide powder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148414A (en) * 1984-08-13 1986-03-10 Agency Of Ind Science & Technol Preparation of silicon carbide
EP0309266A3 (en) * 1987-09-23 1989-08-30 Mehmet Adnan Goksel Process for producing carbon-containing agglomerates of siliceous material and silicon carbide therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001270A1 (en) * 1989-07-14 1991-02-07 Institut Strukturnoi Makrokinetiki Akademii Nauk Sssr Method for obtaining silicon carbide powder

Also Published As

Publication number Publication date
JPS55140711A (en) 1980-11-04

Similar Documents

Publication Publication Date Title
US2618565A (en) Manufacture of silicon nitride-bonded articles
US4117096A (en) Process for producing powder of β-type silicon carbide
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
US4612297A (en) Process for preparation of silicon nitride powder of good sintering property
JPS606908B2 (en) Method for producing active silicon carbide powder containing boron component
JPS60176910A (en) Production of aluminum nitride powder
JPS6146403B2 (en)
JPH0216270B2 (en)
AU560369B2 (en) Method of making yttrium silicon oxynitrides
JPS5823327B2 (en) Method for producing β-type silicon carbide powder
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPS5945915A (en) Preparation of beta-type silicon carbide powder
JPS5823346B2 (en) Production method of α-sialon sintered body
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPS62132711A (en) Production of aluminum nitride based powder
JPH01103960A (en) Production of boron nitride sintered compact
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPS6144770A (en) Manufacture of silicon nitride sintered body
JPH01179763A (en) Production of combined sintered body of boron nitride and silicon nitride
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
KR970001524B1 (en) Process for the preparation of silicon carbide powder
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPS61132511A (en) Production of tib2 powder
JPH02233560A (en) High-strength calcined sialon-based compact
JPS6037080B2 (en) Method for manufacturing CR2O3 whiskers