JPS5823346B2 - Production method of α-sialon sintered body - Google Patents

Production method of α-sialon sintered body

Info

Publication number
JPS5823346B2
JPS5823346B2 JP55078729A JP7872980A JPS5823346B2 JP S5823346 B2 JPS5823346 B2 JP S5823346B2 JP 55078729 A JP55078729 A JP 55078729A JP 7872980 A JP7872980 A JP 7872980A JP S5823346 B2 JPS5823346 B2 JP S5823346B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
sialon
heating
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078729A
Other languages
Japanese (ja)
Other versions
JPS573769A (en
Inventor
三友護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP55078729A priority Critical patent/JPS5823346B2/en
Publication of JPS573769A publication Critical patent/JPS573769A/en
Publication of JPS5823346B2 publication Critical patent/JPS5823346B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高密度のα−サイアロン焼結体の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-density α-sialon sintered body.

5iAl ON系の化合物または固溶体は。5iAl ON-based compound or solid solution.

一般にサイアロンと呼ばれる。Generally called Sialon.

サイアロンは強度が大きく、熱膨張係数が小さいため、
従来の耐熱合金に代る高温耐熱材料としてガスタービン
部品。
Sialon has high strength and low coefficient of thermal expansion, so
Gas turbine parts as a high-temperature heat-resistant material that replaces conventional heat-resistant alloys.

熱交換器等への利用が期待される。It is expected to be used in heat exchangers, etc.

また、耐酸化性、耐蝕性に優れており、耐火、断熱の材
料とし;ても優れている。
It also has excellent oxidation resistance and corrosion resistance, and is also excellent as a fireproof and heat insulating material.

最近、新しいサイアロンとしてα−8t s N4構造
を持つα−サイアロンが見出された。
Recently, α-sialon having an α-8t s N4 structure was discovered as a new sialon.

これはα−8i3 N4構造のSi位置にAl、N位置
にAl N位置にOが置換し、固溶していると同時ツ 1に、他の金属が格子間に固溶しているもので、一般式
Mx(S i、Al)x2(0,N)t6(ただし。
This is because Al is substituted in the Si position of the α-8i3N4 structure, Al is substituted in the N position, and O is substituted in the N position, and at the same time, other metals are dissolved in the interstitial space. , general formula Mx(S i, Al)x2(0,N)t6 (however.

MはLi、Mg、Ca、Yまたは希土類元素若しくはそ
の混合物を、Xは0<X〈2を表わす)で示される。
M represents Li, Mg, Ca, Y, a rare earth element, or a mixture thereof, and X represents 0<X<2).

この新しいα−サイアロンは従来のサノイアロンの用途
の外、格子間に各種の金属が固溶している特徴から電気
特性が優れる性質を有しており、新しい電極材料への利
用も期待される。
In addition to its use as conventional SanoAlion, this new α-sialon has excellent electrical properties due to the solid solution of various metals between the lattices, and is expected to be used as a new electrode material.

さきに1本発明者は高密度のα−サイアロン焼結体の製
造法として、加圧下で焼成するホットプレス法を開発し
た。
Firstly, the present inventor developed a hot press method of firing under pressure as a method for producing a high-density α-sialon sintered body.

このホットプレス法は高密度の焼結体を容易に得ること
ができるが、製品が高価になる上、単純な形状の物しか
製造できない問題点がある。
Although this hot pressing method can easily produce a high-density sintered body, there are problems in that the product is expensive and can only be manufactured in a simple shape.

本発明はこの問題点を解決せんとするもので。The present invention aims to solve this problem.

フ加圧を必要とせず、常圧の窒素気流中で加熱するだけ
で、任意の形状を持つ高密度の焼結体を製造する方法を
提供するζこある。
The present invention provides a method for manufacturing a high-density sintered body having an arbitrary shape by simply heating it in a nitrogen stream at normal pressure without requiring pressurization.

本発明者は前記目的を達成すべく鋭意研究の結果、原料
成形体を、窒化けい素を含む粉末でおお5い、窒素気流
中で加熱焼成するときは、常圧で気孔率15%以下の高
密度焼結体が製潰し得られることを究明し得た。
As a result of intensive research to achieve the above object, the present inventor has found that when the raw material molded body is coated with powder containing silicon nitride and heated and fired in a nitrogen stream, the porosity is 15% or less at normal pressure. It was found that a high-density sintered body can be produced by crushing.

この究明事実ζこ基づいて本発明を完成した。The present invention was completed based on this research fact.

α−サイアロンの原料としては、窒化けい素。The raw material for α-Sialon is silicon nitride.

窒化アルミニウムと、Li 、Ca、Mg、Yまたは希
土類元素の酸化物もしくは熱分解ζこより前記金属の酸
化物を生成する塩類例えば、炭酸塩、しゆう酸塩、塩基
性炭酸塩、水酸塩等の1種または2種以上の混合物とが
使用される。
Aluminum nitride and oxides of Li, Ca, Mg, Y, or rare earth elements, or salts that produce oxides of the metals through thermal decomposition, such as carbonates, oxalates, basic carbonates, hydroxides, etc. One or a mixture of two or more of these are used.

原料粉末の混合比は下記の化学式の通りとする。The mixing ratio of the raw material powders is as shown in the chemical formula below.

1 価金属の酸化物を使用する場合 S i3N4+a(3AlN+M20)−+M2a(S
i3.A13a)(Oa、N3a+4)(ただし、0<
aく1) 2 価金属の酸化物を使用する場合 513N4 +b(3AlN+MO)→ Mb(Si3.A13b)(Ob、N3b+4)(ただ
し、O<bく2 ) 3 価金属の酸化物を使用する場合 Si3N4+c(9AlN十M2O5)→M2C(Si
3yA19c)(OscyNoc++)(ただし、o<
cく1) 原料粉末を混合した後所定の形状に成形する。
When using oxides of monovalent metals, Si3N4+a(3AlN+M20)-+M2a(S
i3. A13a) (Oa, N3a+4) (However, 0<
a1) When using an oxide of a divalent metal 513N4 +b (3AlN+MO) → Mb (Si3.A13b) (Ob, N3b+4) (O<b×2) When using an oxide of a trivalent metal Si3N4+c(9AlN+M2O5) → M2C(Si
3yA19c) (OscyNoc++) (however, o<
c1) After mixing the raw material powders, mold them into a predetermined shape.

成形方法としては、金型成形、泥しよう鋳込み、静水圧
成形、射出成形が挙げられる。
Molding methods include die molding, slurry casting, isostatic pressing, and injection molding.

しかしこれに限定されるものではない。However, it is not limited to this.

原料の窒化けい素および生成したα−サイアロンは、高
温では熱分解し焼結を妨げる。
The raw material silicon nitride and the produced α-sialon are thermally decomposed at high temperatures and hinder sintering.

本発明の方法においては、前記成形体を、窒化けい素粉
末の単味または窒化けい素と窒化アルミニウムまたはα
−サイアロンに固溶するLi、Ca、Mg。
In the method of the present invention, the molded body is made of silicon nitride powder alone or silicon nitride and aluminum nitride or α
- Li, Ca, and Mg dissolved in Sialon.

Y、または希土類元素の酸化物もしくは熱分解で酸化物
を生成するそれらの金属塩類を含ませた混合物でおおっ
て焼結することにより、生成したα−サイアロンの焼結
が妨げられることなく、常圧で高密度のものが得られる
By sintering the α-sialon by coating it with a mixture containing Y or an oxide of a rare earth element or a metal salt thereof that produces an oxide through thermal decomposition, the sintering of the α-SiAlON produced is not hindered and can be carried out at any time. High density can be obtained by pressure.

また前記粉末にAA’2o3.S 1o2を混合しても
良い結果を得る。
In addition, AA'2o3. Good results are also obtained by mixing S 1o2.

なお混合物中における窒化けい素の量は5重量%以上と
する。
Note that the amount of silicon nitride in the mixture is 5% by weight or more.

この焼結の雰囲気は窒素雰囲気中で行う。This sintering is performed in a nitrogen atmosphere.

焼結温度は1600〜1900°C1好ましくは170
0〜1850℃である。
The sintering temperature is 1600-1900°C, preferably 170°C.
The temperature is 0 to 1850°C.

1600℃より低い温度では焼結反応が進行せず、19
00℃を超えると窒化けい素およびα−サイアロンの熱
分解を防ぐことができない。
At temperatures lower than 1600°C, the sintering reaction does not proceed, and 19
If the temperature exceeds 00°C, thermal decomposition of silicon nitride and α-sialon cannot be prevented.

焼結時間は15分〜3時間、好ましく)ま30分〜1時
間である。
The sintering time is 15 minutes to 3 hours, preferably 30 minutes to 1 hour.

本発明の方法によると、焼結ζこ際し加圧を必要としな
い。
According to the method of the present invention, no pressure is required during sintering.

そのため装置も簡単となり、しかも任意の形状で、且つ
高密度のα−サイアロン焼結体が容易に得られる優れた
効果を有する。
Therefore, the apparatus is simple, and it has an excellent effect that a high-density α-SiAlON sintered body can be easily obtained in any shape.

実施例 l 窒化けい素(平均粒径0.5μm、不純物Fe0125
% AlO,18% 01,2% %は重量%ラック を示す。
Example l Silicon nitride (average particle size 0.5 μm, impurity Fe0125
% AlO, 18% 01,2% % indicates weight % rack.

以下同様)、窒化アルミニウム(平均粒径2μm、不純
物Si0.2% 01.8%)およびツ 酸化イツ) IJウム(純度99.9%)を1モル比5
0:27:3の割合で混合した。
(same below), aluminum nitride (average particle size 2 μm, impurity Si 0.2% 01.8%), and IJium (purity 99.9%) at a molar ratio of 5
They were mixed at a ratio of 0:27:3.

その混合物的2Iを直径L2tnmの金型を使用し、
20 o1v/fflの圧力で1次成形した。
Using a mold with a diameter of L2tnm, the mixture 2I is
Primary molding was performed at a pressure of 20 olv/ffl.

次いで、静水圧プレスで1.5b/fflの圧力で2次
成形して、密度1.8597ctrlの円柱状成形体を
得た。
Next, secondary molding was performed using a hydrostatic press at a pressure of 1.5 b/ffl to obtain a cylindrical molded product having a density of 1.8597 ctrl.

その成形体を内118mm、長さ25羽のBN焼結体製
ルツボに入れ、窒化けい素粉末でおおった。
The compact was placed in a crucible made of BN sintered body with an inner diameter of 118 mm and a length of 25 wings, and was covered with silicon nitride powder.

そのルツボを黒鉛製ルツボに入れ、窒素気流中で高周波
誘導により加熱し、1750℃に1時間保った。
The crucible was placed in a graphite crucible, heated by high frequency induction in a nitrogen stream, and kept at 1750°C for 1 hour.

焼結体はα−3i3N4構造を持ち、その組成はYo、
41 (S ilo、2. A 111.B ) (O
o、a 。
The sintered body has an α-3i3N4 structure, and its composition is Yo,
41 (Silo, 2.A 111.B) (O
o, a.

N154)であった。N154).

加熱による重量減少は2.3重量%であり、焼結体の密
度は3.1 s E /crit、気孔率は85%であ
った。
The weight loss due to heating was 2.3% by weight, the density of the sintered body was 3.1 s E /crit, and the porosity was 85%.

実施例 2〜6 各種の組成の原料混合物を実施例1と同様にして成形物
を成形し0条件を変えてα−サイアロンの焼結体を製造
した。
Examples 2 to 6 Raw material mixtures of various compositions were molded into molded products in the same manner as in Example 1, and sintered bodies of α-SiAlON were produced under different conditions.

その結果は次の通りであった。The results were as follows.

Claims (1)

【特許請求の範囲】 1 窒化けい素、窒化アルミニウムとh Lt 。 Ca、Mg、Yまたは希土類元素の酸化物もしくは加熱
により酸化物を生成する前記金属の塩の1種または2種
以上とを、一般式Mx (S i 、 A# )12シ
(0,N)16.(ただし、MfjL i 、Ca 、
Mg。 Yまた)ま希土類元素もしくはその混合物を表わし。 XはO<xく2を表わす)で示されるα−サイアロンを
生成する割合で混合した粉末の成形体を。 窒化けい素を含んだ粉末でおおい、窒素気流中で:加熱
して焼結体とすることを特徴とするα−サイアロン焼結
体の製造法。 2 窒化けい素を含んだ粉末が、窒化けい素単味または
窒化けい素と窒化アルミニウムまたはLi。 Ca、Mg、Yまたは希土類元素の酸化物もしく。 は加熱により酸化物を生成する前U己金属の塩の一種ま
たは2種以上との混合物である特許請求の範囲第1項記
載の製造法。 3 焼結体を作る加熱温度が1気圧の窒素中で1600
〜1900°Cである特許請求の範囲第1項記載の製造
法。
[Claims] 1. Silicon nitride, aluminum nitride and h Lt. One or more of the oxides of Ca, Mg, Y or rare earth elements or the salts of the metals that produce oxides upon heating are combined with the general formula Mx (S i , A#)12S(0,N) 16. (However, MfjL i , Ca ,
Mg. Y also represents a rare earth element or a mixture thereof. A molded body of powders mixed in a proportion to produce α-sialon expressed as (X represents O<x×2). A method for producing an α-sialon sintered body, which comprises covering the powder with silicon nitride-containing powder and heating it in a nitrogen stream to form a sintered body. 2. The powder containing silicon nitride is silicon nitride alone or silicon nitride and aluminum nitride or Li. Oxides of Ca, Mg, Y or rare earth elements. 2. The production method according to claim 1, wherein is a mixture with one or more salts of a pre-metal which forms an oxide upon heating. 3 The heating temperature for making a sintered body is 1600 ℃ in nitrogen at 1 atm.
The manufacturing method according to claim 1, wherein the temperature is 1900°C.
JP55078729A 1980-06-11 1980-06-11 Production method of α-sialon sintered body Expired JPS5823346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55078729A JPS5823346B2 (en) 1980-06-11 1980-06-11 Production method of α-sialon sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55078729A JPS5823346B2 (en) 1980-06-11 1980-06-11 Production method of α-sialon sintered body

Publications (2)

Publication Number Publication Date
JPS573769A JPS573769A (en) 1982-01-09
JPS5823346B2 true JPS5823346B2 (en) 1983-05-14

Family

ID=13669967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55078729A Expired JPS5823346B2 (en) 1980-06-11 1980-06-11 Production method of α-sialon sintered body

Country Status (1)

Country Link
JP (1) JPS5823346B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0087888B1 (en) * 1982-02-26 1986-06-11 LUCAS INDUSTRIES public limited company Method of forming ceramic materials and ceramic products, and ceramic materials and ceramic products formed thereby
JPS62167209A (en) * 1986-01-17 1987-07-23 Natl Inst For Res In Inorg Mater Alpha-sialon powder and its production
JPS62223009A (en) * 1986-03-20 1987-10-01 Ube Ind Ltd Production of alpha-sialon powder
JPH0625039B2 (en) * 1988-07-08 1994-04-06 日本タングステン株式会社 Silicon nitride sintered body and method for manufacturing the same
US5032553A (en) * 1989-12-18 1991-07-16 Gte Products Corporation High density high strength alpha sialon based article and process for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314717A (en) * 1975-07-24 1978-02-09 Lucas Industries Ltd Ceramic products and manufacture
JPS5352519A (en) * 1976-10-26 1978-05-13 Tokyo Shibaura Electric Co Manufacture of siimmoon compound sintered bodies
JPS5363413A (en) * 1976-11-17 1978-06-06 Toshiba Ceramics Co Process for making sintered reaction products containing beta dash *saiaron* *solid solution of silicon nitride and0alumina* as main component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314717A (en) * 1975-07-24 1978-02-09 Lucas Industries Ltd Ceramic products and manufacture
JPS5352519A (en) * 1976-10-26 1978-05-13 Tokyo Shibaura Electric Co Manufacture of siimmoon compound sintered bodies
JPS5363413A (en) * 1976-11-17 1978-06-06 Toshiba Ceramics Co Process for making sintered reaction products containing beta dash *saiaron* *solid solution of silicon nitride and0alumina* as main component

Also Published As

Publication number Publication date
JPS573769A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
JPS5823346B2 (en) Production method of α-sialon sintered body
JPS5895659A (en) Highly anticorrosive silicon nitride sintered body and manufacture
JPS6210954B2 (en)
JPS5835950B2 (en) Production method of α-sialon sintered body
JPS5849509B2 (en) Manufacturing method of silicon nitride sintered body
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JPH0355402B2 (en)
SU449022A1 (en) Refractory material
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPS62875B2 (en)
JPS58125667A (en) Composite carborundum sintered shape and its manufacture
JPS5891074A (en) Manufacture of silicon nitride sintered body
JPS59174572A (en) Manufacture of minute cordierite-silicon nitride sintered body
SU422705A1 (en) REFRACTORY MATERIAL (^ &#39;• ftun n&#39;Ouid
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JPH02233560A (en) High-strength calcined sialon-based compact
JPS6146403B2 (en)
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH0585827A (en) Sintered silicon nitride-mixed oxide and its production
JPS6086075A (en) Manufacture of alpha-sialon sintered body
JPS61155209A (en) Preparation of easily sinterable aluminum nitride powder
JPS6125676B2 (en)
JPS5929546B2 (en) Manufacturing method of heat-resistant ceramics