JP2731333B2 - Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same - Google Patents

Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same

Info

Publication number
JP2731333B2
JP2731333B2 JP5064203A JP6420393A JP2731333B2 JP 2731333 B2 JP2731333 B2 JP 2731333B2 JP 5064203 A JP5064203 A JP 5064203A JP 6420393 A JP6420393 A JP 6420393A JP 2731333 B2 JP2731333 B2 JP 2731333B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
sintered body
oxygen
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5064203A
Other languages
Japanese (ja)
Other versions
JPH06271357A (en
Inventor
昌明 桝田
章 高橋
武敏 堤
光義 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP5064203A priority Critical patent/JP2731333B2/en
Publication of JPH06271357A publication Critical patent/JPH06271357A/en
Application granted granted Critical
Publication of JP2731333B2 publication Critical patent/JP2731333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、窒化珪素焼結体に関
し、更に詳細には、肉厚で高強度・高密度の窒化珪素焼
結体及びその製造方法、これに用いる窒化珪素粉末に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body, and more particularly, to a thick, high-strength, high-density silicon nitride sintered body, a method for producing the same, and a silicon nitride powder used for the same.

【0002】[0002]

【従来の技術】従来、窒化珪素焼結体は、高温での高強
度、化学的安定性等の理由から注目されている材料であ
り、ディーゼル、ガスタービン等の熱機関用構造材料へ
の適用が種々研究されている。一般に、窒化珪素は難焼
結体であるため、得られる焼結体に強度を付与すべく、
窒化珪素粉末に、MgO、Y23等の焼結助剤を添加し
て成形し焼成することにより、窒化珪素焼結体を製造し
ている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have been attracting attention because of their high strength at high temperatures, chemical stability, etc., and have been applied to structural materials for heat engines such as diesel and gas turbines. Have been studied in various ways. In general, since silicon nitride is a hard-to-sinter body, in order to impart strength to the obtained sintered body,
A silicon nitride powder, MgO, by firing molded by the addition of Y 2 0 sintering aid such as 3, are manufacturing silicon nitride sintered body.

【0003】このような窒化珪素の製造方法において、
焼成の際に生ずる液相の発生温度が高い場合には、焼結
体の焼成過程において、液相の生成、α−Si34から
β−Si34への相変態、β−Si34の結晶成長及び
緻密化を制御しなければ、高密度高強度焼結体が得られ
ないことが知られている。このような状況において、薄
肉製品については、焼成温度、昇温速度、降温速度及び
焼成雰囲気等を高度に制御することにより、高密度高強
度の焼結体が得られている。
In such a method for producing silicon nitride,
When the generation temperature of the liquid phase generated during firing is high, a liquid phase is generated, a phase transformation from α-Si 3 N 4 to β-Si 3 N 4 occurs, and β-Si to be controlled crystal growth and densification of 3 N 4, it is known that not be obtained a high-density high-strength sintered body. In such a situation, for a thin product, a sintered body having a high density and a high strength is obtained by controlling the firing temperature, the heating rate, the cooling rate, the firing atmosphere, and the like to a high degree.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、厚肉製
品については、成形体表面と内部とにおける雰囲気、温
度等の相違により、液相生成速度や相変態速度が異なる
ため、従来の薄肉製品に適用されている材料調製技術や
焼成制御技術を用いても、肉厚20mm以上の焼結体を
高密度で得ることはできないという課題があった。本発
明は、このような従来技術の有する課題に鑑みてなされ
たものであり、その目的とするところは、高密度・高強
度な肉厚の窒化珪素焼結体及びその製造方法、これに用
いる窒化珪素粉末及びその製造方法を提供することにあ
る。
However, for thick-walled products, the liquid phase generation speed and the phase transformation speed are different due to differences in atmosphere, temperature, and the like between the surface and the inside of the molded product. There is a problem that a sintered body having a thickness of 20 mm or more cannot be obtained at a high density even by using the material preparation technology and the firing control technology that have been used. The present invention has been made in view of such problems of the related art, and an object thereof is to provide a high-density, high-strength, thick silicon nitride sintered body, a method of manufacturing the same, and a method of manufacturing the same. An object of the present invention is to provide a silicon nitride powder and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究した結果、液相生成や窒化珪素の相
変態に関与するSiO2 の挙動を、窒化珪素粉末の表面
近傍の酸素量を調整して制御することにより、上記目的
が達成できることを見出し本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found that the behavior of SiO 2 involved in liquid phase generation and phase transformation of silicon nitride can be measured in the vicinity of the surface of silicon nitride powder. The inventors have found that the above object can be achieved by adjusting and controlling the amount of oxygen, and have completed the present invention.

【0006】従って、本発明の窒化珪素焼結体は、粒界
相が、Al成分を含有せず、希土類元素の珪酸化物、珪
酸窒化物及び二酸化珪素より成る群から選ばれた1又は
2種以上の組成物を含有する窒化珪素焼結体であって、
該焼結体の内部中心近傍と表面近傍とにおけるモル比で
算出した酸素成分換算量が、次式 0.1≦(SiO2/Re23)c−(SiO2/Re23)s≦0.5 (式中のReは希土類元素、(SiO2/Re23)cは
内部中心近傍の酸素成分換算量、(SiO2/Re
23)sは表面近傍の酸素成分換算量を示す。)で表さ
れる関係を満足することを特徴とする。
Accordingly, the silicon nitride sintered body according to the present invention has one or two kinds of grains selected from the group consisting of a rare earth element silicate, silicate nitride and silicon dioxide, wherein the grain boundary phase does not contain an Al component. A silicon nitride sintered body containing the above composition,
The oxygen component conversion amount calculated by the molar ratio between the vicinity of the inner center and the vicinity of the surface of the sintered body is represented by the following equation: 0.1 ≦ (SiO 2 / Re 2 O 3 ) c− (SiO 2 / Re 2 O 3 ) s ≦ 0.5 (where Re is a rare earth element, (SiO 2 / Re 2 O 3 ) c is the oxygen component conversion amount near the inner center, (SiO 2 / Re
2 O 3 ) s indicates an oxygen component conversion amount near the surface. ) Is satisfied.

【0007】また、本発明の窒化珪素焼結体の製造方法
は、窒化珪素焼結体を製造するに当たり、窒化珪素粉末
の酸素量を0.5〜3.0重量%に調整し、且つこの粉
末を、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2/mg)を示す。)で表される表面有
効酸素量を満足するように調整し、得られた窒化珪素粉
末をAl成分を含有しない焼結助剤と混合し、成形し、
焼成することを特徴とする。
Further, according to the method for producing a silicon nitride sintered body of the present invention, in producing a silicon nitride sintered body, the oxygen content of the silicon nitride powder is adjusted to 0.5 to 3.0% by weight. The surface of the powder is represented by the following formula: Os / Ss = 30 to 100 (where Os is the amount of oxygen (wt%) on the powder surface and Ss is the specific surface area (m 2 / mg) of the powder). Adjusted to satisfy the oxygen content, mixed the obtained silicon nitride powder with a sintering aid containing no Al component , molded,
It is characterized by firing.

【0008】[0008]

【0009】更にまた、本発明の窒化珪素粉末の製造方
法は、含有酸素量が0.5〜3.0重量%に調整され、
且つ、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2 /mg)を示す。)で表される表面有
効酸素量を満足するように調整されて成る窒化珪素粉末
の製造方法であって、窒化珪素粉末に30〜80重量%
の水分を添加・混合して泥漿を得、この泥漿の温度を3
0〜80℃に保ちつつ1〜5時間混合攪拌することを特
徴とする。
Further, according to the method for producing silicon nitride powder of the present invention, the oxygen content is adjusted to 0.5 to 3.0% by weight,
In addition, the following formula Os / Ss = 30 to 100 (Os in the formula indicates the amount of oxygen (wt%) on the surface of the powder, and Ss indicates the specific surface area (m 2 / mg) of the powder). A method for producing a silicon nitride powder adjusted to satisfy the amount, wherein the silicon nitride powder has a content of 30 to 80% by weight.
Water is added and mixed to obtain a slurry, and the temperature of the slurry is set to 3
It is characterized by mixing and stirring for 1 to 5 hours while maintaining the temperature at 0 to 80 ° C.

【0010】また、本発明の窒化珪素粉末の製造方法
は、含有酸素量が0.5〜3.0重量%に調整され、且
つ、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2 /mg)を示す。)で表される表面有
効酸素量を満足するように調整されて成る窒化珪素粉末
の製造方法であって、温度70〜99℃、湿度90〜9
9%に制御した容器内に、窒化珪素粉末を充填し、この
状態で10〜500時間曝露することを特徴とする。
Further, according to the method for producing silicon nitride powder of the present invention, the oxygen content is adjusted to 0.5 to 3.0% by weight, and Os / Ss = 30 to 100 (where Os is The amount of oxygen (wt%) on the surface of the powder, and Ss indicates the specific surface area (m 2 / mg) of the powder.) There is a temperature of 70-99 ° C and a humidity of 90-9
A container controlled to 9% is filled with silicon nitride powder and exposed in this state for 10 to 500 hours.

【0011】また、本発明の窒化珪素粉末の製造方法
は、含有酸素量が0.5〜3.0重量%に調整され、且
つ、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2 /mg)を示す。)で表される表面有
効酸素量を満足するように調整されて成る窒化珪素粉末
の製造方法であって、300〜800℃に温度制御した
炉内に、窒化珪素粉末を充填し、1〜20時間流動させ
ることを特徴とする。
Further, according to the method for producing silicon nitride powder of the present invention, the oxygen content is adjusted to 0.5 to 3.0% by weight, and the following formula Os / Ss = 30 to 100 (where Os is The amount of oxygen (wt%) on the surface of the powder, and Ss indicates the specific surface area (m 2 / mg) of the powder.) In addition, a furnace controlled at a temperature of 300 to 800 ° C. is filled with a silicon nitride powder and flowed for 1 to 20 hours.

【0012】[0012]

【作用】本発明の窒化珪素焼結体では、粒界相に存在す
るSiO2 と焼結助剤との比が、焼結体の表面近傍と内
部中心近傍において余り変動しない。従って、SiO2
と焼結助剤(実際には、焼結助剤に起因する化合物)と
は、焼結体の表面近傍から内部中心近傍まで均一的に分
散して存在していることになる。このことは、焼結体を
構成するβ−Si34粒子の粒径が均一で、且つ気孔が
小さく、焼成欠陥が少ないことを意味すると考えられ
る。よって、本発明の焼結体は、表面近傍と内部中心近
傍で強度の差が小さく、肉厚製品、特に肉厚20mm以
上の製品に適用することができる。
In the silicon nitride sintered body of the present invention, the ratio between SiO 2 and the sintering aid present in the grain boundary phase does not change much near the surface of the sintered body and near the center of the inside. Therefore, SiO 2
And the sintering aid (actually, a compound derived from the sintering aid) are uniformly dispersed from the vicinity of the surface of the sintered body to the vicinity of the inner center thereof. This is considered to mean that the β-Si 3 N 4 particles constituting the sintered body have a uniform particle size, small pores, and few firing defects. Therefore, the sintered body of the present invention has a small difference in strength between the vicinity of the surface and the vicinity of the inner center, and can be applied to thick products, particularly products having a thickness of 20 mm or more.

【0013】また、本発明において、窒化珪素粉末の含
有酸素量、特に表面近傍(例えば、表面から数nmまで
の領域)の酸素量を制御することにより、焼結体の粒界
相が焼結体の表面から内部まで均一的な構成になる理由
としては、以下の理由が考えられる。
In the present invention, the grain boundary phase of the sintered body is controlled by controlling the oxygen content of the silicon nitride powder, particularly the oxygen content near the surface (for example, a region from the surface to several nm). The following reasons can be considered as the reason why the structure is uniform from the surface to the inside of the body.

【0014】即ち、窒化珪素焼結体の焼結過程において
は、まず、焼結助剤(金属酸化物)が作用して液相(ガ
ラス相)を生成する。次に、この液相にα−Si34
溶解し、β−Si34として析出する。そして、この溶
解−析出反応が焼結体内部で均一に起こるためには、広
い領域における均一な液相生成が不可欠となる。
That is, in the sintering process of the silicon nitride sintered body, first, a sintering aid (metal oxide) acts to generate a liquid phase (glass phase). Next, α-Si 3 N 4 is dissolved in this liquid phase, and is precipitated as β-Si 3 N 4 . In order for this dissolution-precipitation reaction to occur uniformly inside the sintered body, it is essential to generate a uniform liquid phase over a wide area.

【0015】ところで、上記液相の生成には焼結助剤の
みならず、Si34粉末の表面に存在するSiO2 も影
響を及ぼす。例えば、MgOやCaO等の融点が低い焼
結助剤を含むSi34 の焼結では、焼結助剤(金属酸
化物)とSiO2とがかなり低い温度で反応して液相を
生成する。
The formation of the liquid phase is affected not only by the sintering aid but also by the SiO 2 present on the surface of the Si 3 N 4 powder. For example, in sintering of Si 3 N 4 containing a sintering aid having a low melting point such as MgO or CaO, a sintering aid (metal oxide) and SiO 2 react at a considerably low temperature to form a liquid phase. I do.

【0016】これに対し、希土類元素酸化物を主成分と
する助剤においては、この希土類元素酸化物とSiO2
との複合酸化物の共晶温度がSiO2の融点より高いた
め、Si34粉末の表面に存在するSiO2 量が該助剤
の液相生成に大きな影響を及ぼすことになる。従って、
広い領域における均一な液相生成を実現するには、適度
なSiO2 被膜を有するSi34粒子の存在が重要とな
ると考えられる。
On the other hand, in an auxiliary mainly composed of a rare earth element oxide, the rare earth element oxide and SiO 2
Eutectic temperature of the composite oxide is higher than the melting point of SiO 2, SiO 2 amount present on the surface of the Si 3 N 4 powder is a large effect in the liquid phase product of該助agent with. Therefore,
It is considered that the existence of Si 3 N 4 particles having an appropriate SiO 2 coating is important in achieving uniform liquid phase generation in a wide area.

【0017】次に、本発明の窒化珪素焼結体について説
明する。本発の焼結体は、その粒界相がAl成分を含
有せず、希土類元素の珪酸化物、珪酸窒化物及び二酸化
珪素又はこれらの組成物等を含有する。これら珪酸化物
及び珪酸窒化物等は焼結助剤に起因するものであるが、
この焼結助剤としては、希土類元素酸化物が例示でき
る。また、希土類元素としては、Y、Lu、Er、Y
b、Tm、Sc、及びNd等を例示できる。
Next, the silicon nitride sintered body of the present invention will be described. This onset Ming of the sintered body, including the grain boundary phase is Al component
And contains a rare earth element silicate, silicate nitride, silicon dioxide or a composition thereof. These silicates and silicate nitrides are caused by sintering aids,
Examples of the sintering aid include rare earth element oxides. In addition, as rare earth elements, Y, Lu, Er, Y
b, Tm, Sc, and Nd can be exemplified.

【0018】更に、焼結助剤としては、上記のような酸
化物のみならず、珪化物や炭化物であってもよい。珪化
物としては、Mo、W、Nb及びTa等の珪化物を挙げ
ることができる。また、炭化物としては、Si、Mo、
W、Nb及びTa等の炭化物を挙げることができる。な
お、これら焼結助剤は、1種のみならず所要に応じて2
種以上を組合わせて用いてもよい。
Further, as the sintering aid, not only the above oxides but also silicides and carbides may be used. Examples of the silicide include silicides such as Mo, W, Nb, and Ta. Further, as the carbide, Si, Mo,
And carbides such as W, Nb and Ta. In addition, these sintering aids are not limited to one kind, and may be used as needed.
Species or more may be used in combination.

【0019】そして、本発明の焼結体は、焼結体の内部
中心近傍における酸素成分換算値と、焼結体の表面近傍
における酸素成分換算値とが、次式 (SiO2/Re23)c−(SiO2/Re23)s≦
0.5 (式中のReは希土類元素、(SiO2/Re23)cは
内部中心近傍の酸素成分換算量、(SiO2/Re
23)sは表面近傍の酸素成分換算量を示す。)で表さ
れる関係を満足する。ここで、「酸素成分換算値」は、
窒化珪素焼結体に含まれる酸素分の分析値を、SiO2
と焼結助剤(代表的にはRe23 、但し、Reは希土
類元素を示す。)に起因するものとしてモル比で算出し
た値である。
In the sintered body of the present invention, the converted value of the oxygen component in the vicinity of the center of the inside of the sintered body and the converted value of the oxygen component in the vicinity of the surface of the sintered body are represented by the following formula (SiO 2 / Re 2 O). 3) c- (SiO 2 / Re 2 O 3) s ≦
0.5 (Re in the formula is a rare earth element, (SiO 2 / Re 2 O 3 ) c is an oxygen component conversion amount near the inner center, and (SiO 2 / Re
2 O 3 ) s indicates an oxygen component conversion amount near the surface. ) Is satisfied. Here, the “oxygen component conversion value” is
Silicon nitride sintered body analysis value of the oxygen content contained in, SiO 2
And a sintering aid (typically, Re 2 O 3 , where Re indicates a rare earth element).

【0020】次に、本発明の焼結体の製造方法について
説明する。本発明の製造方法においては、まず、窒化珪
素粉末(実質的にα−Si34)を、その含有酸素量が
0.5〜3.0重量%となり、且つ次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2 /mg)を示す。)で表される表面有
効酸素量を有するように調整する。上式の範囲を逸脱す
ると、以下に示す理由から好ましくない。
Next, a method for producing a sintered body according to the present invention will be described. In the production method of the present invention, first, silicon nitride powder (substantially α-Si 3 N 4 ) has an oxygen content of 0.5 to 3.0% by weight and the following formula Os / Ss = 30 -100 (Os in the formula represents the amount of oxygen (% by weight) on the powder surface, and Ss represents the specific surface area of the powder (m 2 / mg)). Deviating from the range of the above formula is not preferable for the following reasons.

【0021】即ち、Os/Ssが30未満の場合には、S
34 粉末としては、Osが少ないか又はSsが大きい
状態であり、これはSi34粉末の表面積当たりのOs
が少ない状態を示し、広い範囲での均一な液相生成が行
えず、焼結助剤の存在するSi34粉末(粒子)の近傍
のみにおいてSi34粒子の溶解・析出反応が進行する
ことになる。
That is, when Os / Ss is less than 30, S
As i 3 N 4 powder, Os is small or Ss is large, which means that Os per surface area of Si 3 N 4 powder is large.
, A uniform liquid phase cannot be formed in a wide range, and the dissolution / precipitation reaction of the Si 3 N 4 particles proceeds only in the vicinity of the Si 3 N 4 powder (particles) where the sintering aid exists. Will do.

【0022】一方、Os/Ssが100を超えると、Os
が多いか又はSsが小さく、Si34粒子の表面積当た
りの酸素量が多すぎることになる。このため、液相生成
が必要以上に進行し、上記溶解・析出反応により、成形
体の収縮が局部的に進行することになる。このような現
象が肉厚成形体の焼成過程で発生すると、温度の高い表
面近傍で収縮が進み、内部の収縮を妨げる。更に、β−
Si34が液相から均一に析出しないため、少ないβ−
Si34が核となり異常粒成長が発生する。そして、こ
のことは、異常粒成長したSi34粒子近傍おける気孔
発生の原因となるからである。
On the other hand, when Os / Ss exceeds 100, Os / Ss
Is high or Ss is small, and the amount of oxygen per surface area of the Si 3 N 4 particles is too large. For this reason, the generation of the liquid phase proceeds more than necessary, and the shrinkage of the molded body locally proceeds by the dissolution / precipitation reaction. If such a phenomenon occurs in the process of firing the thick molded body, the shrinkage proceeds in the vicinity of the surface having a high temperature, which hinders the shrinkage inside. Furthermore, β-
Since Si 3 N 4 does not precipitate uniformly from the liquid phase, a small β-
Abnormal grain growth occurs with Si 3 N 4 as a nucleus. This is because this causes the generation of pores in the vicinity of the abnormally grown Si 3 N 4 particles.

【0023】また、酸素量及び表面有効酸量が、それ
ぞれ1.0〜2.5重量%、50〜70となるように制
御するのが更に好ましい。酸素量及び表面有効酸素量の
調整は、窒化珪素粉末の湿度、温度等を適宜制御するこ
とにより行うことができる。具体的には、湿式調整法と
して、窒化珪素粉末に水を添加・混合して水分量30〜
80重量%の泥漿を調製し、この泥漿の温度を30〜8
0℃に保持し、1〜5時間混合粉砕する方法が例示でき
る。この方法に用いる混合粉砕機としては、温度調整機
構付き混合粉砕機、例えばアトライターミルが好まし
い。
Further, oxygen content and surface effective oxygen amount, respectively, 1.0 to 2.5% by weight, more preferably controlled to be 50 to 70. The adjustment of the oxygen amount and the surface effective oxygen amount can be performed by appropriately controlling the humidity, temperature, and the like of the silicon nitride powder. Specifically, as a wet adjustment method, water is added to and mixed with silicon nitride powder to obtain a water content of 30 to
An 80% by weight slurry is prepared and the temperature of the slurry is 30 to 8
A method in which the mixture is kept at 0 ° C. and mixed and pulverized for 1 to 5 hours can be exemplified. As the mixing and crushing machine used in this method, a mixing and crushing machine with a temperature adjusting mechanism, for example, an attritor mill is preferable.

【0024】また、湿度を制御する方法としては、窒化
珪素粉末を、容器内温度70〜99℃、湿度90〜99
%に制御した容器に充填し、10〜500時間曝露する
ことにより行うことができる。この曝露に際し、窒化珪
素粉末を流動させてもよい。更に、加熱処理法として
は、窒化珪素粉末を、300〜800℃に制御された加
熱炉内で1〜20時間流動させる方法が例示できる。
As a method of controlling the humidity, silicon nitride powder is heated at a temperature of 70 to 99 ° C. in a container and a humidity of 90 to 99 ° C.
%, And then exposing for 10 to 500 hours. During this exposure, the silicon nitride powder may be caused to flow. Further, as a heat treatment method, a method of flowing silicon nitride powder in a heating furnace controlled at 300 to 800 ° C. for 1 to 20 hours can be exemplified.

【0025】そして、上述のように酸素量及び表面有効
酸素量を調整した窒化珪素粉末を、Al成分を含有しな
い焼結助剤と混合し、常法により成形・焼成して窒化珪
素焼結体を得ることができる。
Then, the silicon nitride powder whose oxygen content and surface effective oxygen content have been adjusted as described above is used without containing an Al component.
Mixed with a sintering aid, and molded and fired by a conventional method to obtain a silicon nitride sintered body.

【0026】[0026]

【実施例】以下、本発明を実施例及び比較例により説明
するが、本発明はこれら実施例に限定されるものではな
い。 (実施例1〜15、比較例1〜4)表1に示すように、
窒化珪素粉末に所定の水分を添加し、所定温度に加温し
た。次いで、5mmφのSi34製玉石を加え、アトラ
イターミルで所定時間混合粉砕した。得られた泥漿に所
定の焼結助剤を添加し、更に3時間混合した。そして、
得られた混合物をスプレードライ法で造粒して成形用粉
末を得た。また、この際、造粒粉末の比表面積(BET
比表面積)、酸素量及び表面有効酸素量を測定した。
EXAMPLES The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. (Examples 1 to 15, Comparative Examples 1 to 4) As shown in Table 1,
Predetermined moisture was added to the silicon nitride powder and heated to a predetermined temperature. Next, a cobblestone made of Si 3 N 4 having a diameter of 5 mm was added and mixed and pulverized for a predetermined time by an attritor mill. A predetermined sintering aid was added to the obtained slurry and mixed for 3 hours. And
The obtained mixture was granulated by a spray drying method to obtain a molding powder. At this time, the specific surface area (BET
Specific surface area), the amount of oxygen and the amount of available oxygen on the surface were measured.

【0027】ここで、酸素量及び表面有効酸素量は、以
下の手順で分析・測定した。まず、窒化珪素粉末を11
0℃で2時間乾燥した後、デシケータ中で室温まで徐冷
し、得られた分析試料の1gを評取し、密閉可能なポリ
四フッ化エチレン製容器(例えば、三愛科学製HU−1
00型加圧分解容器のテフロン製内筒)に入れた。次い
で、フッ酸溶液(フッ酸:水=1:9(重量比))50
mlを加え、密閉した後、70℃で1時間攪拌した。室
温まで水冷し、直ちに0.65μmのメンブランフィル
タで濾過した。得られた濾別残渣を水5mlで洗浄し、
更にこの洗浄を数回繰り返した。洗浄済みの残渣を乾燥
器に入れ、110℃で2時間乾燥した。
Here, the oxygen content and the surface effective oxygen content were analyzed and measured according to the following procedure. First, silicon nitride powder was added to 11
After drying at 0 ° C. for 2 hours, the mixture was gradually cooled to room temperature in a desiccator, 1 g of the obtained analysis sample was evaluated, and a sealable container made of polytetrafluoroethylene (for example, HU-1 manufactured by San-ai Kagaku)
(Teflon inner cylinder of a 00 type pressure decomposition container). Then, a hydrofluoric acid solution (hydrofluoric acid: water = 1: 9 (weight ratio)) 50
Then, the mixture was sealed, and stirred at 70 ° C. for 1 hour. After cooling with water to room temperature, the mixture was immediately filtered through a 0.65 μm membrane filter. The obtained residue by filtration is washed with 5 ml of water,
This washing was repeated several times. The washed residue was placed in a dryer and dried at 110 ° C. for 2 hours.

【0028】次に、フッ酸溶液で処理する前の分析試料
及び上記乾燥した濾別残渣の一部について、酸素分析装
置、例えば、掘場製作所製ECM−2800窒素・酸素
分析装置を用いて酸素分を定量した。上記フッ酸処理前
の分析試料からの酸素定量値が酸素量(全酸素量)であ
り、乾燥残渣からの定量値が内部酸素量である。表面有
効酸素量(Os)は、全酸素量と内部酸素量との差とし
て求めた。
Next, the analysis sample before the treatment with the hydrofluoric acid solution and a part of the dried residue by filtration are subjected to oxygen analysis using an oxygen analyzer, for example, an ECM-2800 nitrogen / oxygen analyzer manufactured by Dig Seisakusho. The minute was quantified. The quantitative value of oxygen from the analysis sample before the hydrofluoric acid treatment is the oxygen amount (total oxygen amount), and the quantitative value from the dried residue is the internal oxygen amount. The surface effective oxygen amount (Os) was determined as the difference between the total oxygen amount and the internal oxygen amount.

【0029】次いで、上述のようにして得られた成形用
粉末を、金型プレス及びCIP成形し、直径80mm×
厚さ8mm、又は直径80mm×厚さ25mmの円盤状
成形体を作製した。この成形体を、9kg/cm2のN2
雰囲気中1900℃で3時間焼成して窒化珪素焼結体を
得た。得られた焼結体の(厚みの)中心部分から、厚さ
4mm×3mm×40mmの試験片を切出し、この試験
片を用い、室温及び1400℃でJIS R 1601
に準拠して4点曲げ強度試験を行い、得られた結果を表
2に示した。なお、各試験片の相対密度を併記する。
Next, the molding powder obtained as described above was subjected to die pressing and CIP molding to obtain a diameter of 80 mm ×
A disc-shaped molded body having a thickness of 8 mm or a diameter of 80 mm x a thickness of 25 mm was produced. This molded body was treated with 9 kg / cm 2 of N 2
It was fired in an atmosphere at 1900 ° C. for 3 hours to obtain a silicon nitride sintered body. A test piece having a thickness of 4 mm × 3 mm × 40 mm was cut out from the center (of the thickness) of the obtained sintered body, and this test piece was used at room temperature and 1400 ° C. according to JIS R 1601.
A four-point bending strength test was performed in accordance with the standards described in Table 2, and the obtained results are shown in Table 2. In addition, the relative density of each test piece is also described.

【0030】(実施例16〜21、比較例5〜8))表
3に示すように、窒化珪素粉末を所定の温度及び湿度に
制御した高温恒湿乾燥機に充填し、所定時間曝露し、次
いで、焼結助剤を添加し玉石を用いて混合した以外は、
実施例1〜15と同様の操作を行った。得られた結果を
表4に示した。 (実施例22〜29、比較例9〜12)表5に示すよう
に、窒化珪素粉末を所定温度に保持したロータリーキル
ン内で所定時間流動させ、次いで、焼結助剤を添加し玉
石を用いて混合した以外は、実施例1〜15と同様の操
作を行い、得られた結果を表6に示した。
(Examples 16 to 21, Comparative Examples 5 to 8) As shown in Table 3, silicon nitride powder was charged into a high-temperature and constant-humidity dryer controlled at a predetermined temperature and humidity, and exposed for a predetermined time. Next, except that a sintering aid was added and mixed using a cobblestone,
The same operation as in Examples 1 to 15 was performed. Table 4 shows the obtained results. (Examples 22 to 29, Comparative Examples 9 to 12) As shown in Table 5, the silicon nitride powder was caused to flow in a rotary kiln maintained at a predetermined temperature for a predetermined time, and then a sintering aid was added thereto and a cobblestone was used. The same operations as in Examples 1 to 15 were performed except for mixing, and the obtained results are shown in Table 6.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】表1〜表3から明らかなように、酸素量及
び表面有効酸素量を調整した本発明の範囲に属する実施
例1〜28では、優れた強度特性が得られた。従って、
本実施例によれば、肉厚20mm程度の窒化珪素焼結体
製品に優れた強度特性を付与することができる。
As is evident from Tables 1 to 3, excellent strength characteristics were obtained in Examples 1 to 28 in which the amount of oxygen and the effective surface oxygen were adjusted and which were within the scope of the present invention. Therefore,
According to this embodiment, excellent strength characteristics can be imparted to a silicon nitride sintered body product having a thickness of about 20 mm.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
液相生成や窒化珪素の相変態に関与するSiO2 の挙動
を、窒化珪素粉末の表面近傍の酸素量を調整して制御す
ることとしたため、高密度・高強度な肉厚の窒化珪素焼
結体及びその製造方法、これに用いる窒化珪素粉末及び
その製造方法を提供することができる。
As described above, according to the present invention,
Since the behavior of SiO 2 involved in the liquid phase generation and the phase transformation of silicon nitride is controlled by adjusting the amount of oxygen near the surface of the silicon nitride powder, high-density, high-strength silicon nitride sintering is performed. The present invention can provide a body, a method for producing the same, a silicon nitride powder used for the same, and a method for producing the same.

フロントページの続き (56)参考文献 特開 平1−313308(JP,A) 特開 平3−290369(JP,A) 特開 昭63−218584(JP,A) 特開 平5−170542(JP,A)Continuation of front page (56) References JP-A-1-313308 (JP, A) JP-A-3-290369 (JP, A) JP-A-63-218584 (JP, A) JP-A-5-170542 (JP) , A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒界相が、Al成分を含有せず、希土類
元素の珪酸化物、珪酸窒化物及び二酸化珪素より成る群
から選ばれた1又は2種以上の組成物を含有する窒化珪
素焼結体であって、該焼結体の内部中心近傍と表面近傍
とにおけるモル比で算出した酸素成分換算量が、次式 0.1≦(SiO2/Re23)c−(SiO2/Re23)s≦0.5 (式中のReは希土類元素、(SiO2/Re23)cは
内部中心近傍の酸素成分換算量、(SiO2/Re
23)sは表面近傍の酸素成分換算量を示す。)で表さ
れる関係を満足することを特徴とする窒化珪素焼結体。
1. A silicon nitride firing method in which the grain boundary phase does not contain an Al component and contains one or more compositions selected from the group consisting of rare earth element silicates, silicate nitrides and silicon dioxide. In the sintered body, the oxygen component conversion amount calculated by the molar ratio between the vicinity of the inner center of the sintered body and the vicinity of the surface is represented by the following equation: 0.1 ≦ (SiO 2 / Re 2 O 3 ) c− (SiO 2 / Re 2 O 3 ) s ≦ 0.5 (where Re is a rare earth element, (SiO 2 / Re 2 O 3 ) c is the oxygen component conversion amount near the inner center, (SiO 2 / Re
2 O 3 ) s indicates an oxygen component conversion amount near the surface. A silicon nitride sintered body, which satisfies the relationship represented by (1).
【請求項2】 希土類元素が、Y、Lu、Er、Yb、
Tm、Sc及びNdより成る群から選ばれた1又は2種
以上の元素であることを特徴とする請求項1記載の焼結
体。
2. The method according to claim 1, wherein the rare earth element is Y, Lu, Er, Yb,
The sintered body according to claim 1, wherein the sintered body is one or more elements selected from the group consisting of Tm, Sc, and Nd.
【請求項3】 更に、粒界相が、Mo、W、Nb及びT
aより成る群から選ばれた1又は2種以上の元素の珪化
物及び/又はSi、Mo、W、Nb及びTaより成る群
から選ばれた1又は2種以上の元素の炭化物を含むこと
を特徴とする請求項1又は2記載の焼結体。
3. The method according to claim 2, wherein the grain boundary phase comprises Mo, W, Nb and T.
a) a silicide of one or more elements selected from the group consisting of a and / or a carbide of one or more elements selected from the group consisting of Si, Mo, W, Nb and Ta. The sintered body according to claim 1 or 2, wherein
【請求項4】 焼結体の厚さが、20mm以上であるこ
とを特徴とする請求項1〜3のいずれか1つの項に記載
の焼結体。
4. The sintered body according to claim 1, wherein the thickness of the sintered body is 20 mm or more.
【請求項5】 窒化珪素焼結体を製造するに当たり、窒
化珪素粉末の酸素量を0.5〜3.0重量%に調整し、
且つこの粉末を、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2/mg)を示す。)で表される表面有
効酸素量を満足するように調整し、得られた窒化珪素粉
末をAl成分を含有しない焼結助剤と混合し、成形し、
焼成することを特徴とする窒化珪素焼結体の製造方法。
5. When producing a silicon nitride sintered body, the oxygen content of the silicon nitride powder is adjusted to 0.5 to 3.0% by weight,
The powder is represented by the following formula: Os / Ss = 30 to 100 (Os in the formula represents the amount of oxygen (wt%) on the surface of the powder, and Ss represents the specific surface area (m 2 / mg) of the powder). Adjusted to satisfy the surface effective oxygen amount, the obtained silicon nitride powder was mixed with a sintering aid containing no Al component , and molded,
A method for producing a silicon nitride sintered body, characterized by firing.
【請求項6】 窒化珪素粉末の酸素量を1.0〜2.5
重量%、表面有効酸量を50〜70に調整することを
特徴とする請求項5記載の製造方法。
6. The silicon nitride powder has an oxygen content of 1.0 to 2.5.
The process according to claim 5, wherein the wt% to adjust the surface effective oxygen amount 50-70.
【請求項7】 含有酸素量が0.5〜3.0重量%に調
整され、且つ、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2/mg)を示す。)で表される表面有
効酸素量を満足するように調整されて成る窒化珪素粉末
の製造方法であって、窒化珪素粉末に30〜80重量%
の水分を添加・混合して泥漿を得、この泥漿の温度を3
0〜80℃に保ちつつ1〜5時間混合粉砕することを特
徴とする窒化珪素粉末の製造方法。
7. The oxygen content is adjusted to 0.5 to 3.0% by weight, and the following formula: Os / Ss = 30 to 100 (where Os is the oxygen content (% by weight) on the powder surface, Ss Is a specific surface area (m 2 / mg) of the powder.) A method for producing a silicon nitride powder which is adjusted so as to satisfy a surface effective oxygen amount represented by the following formula: %
Water is added and mixed to obtain a slurry, and the temperature of the slurry is set to 3
A method for producing silicon nitride powder, comprising mixing and grinding for 1 to 5 hours while maintaining the temperature at 0 to 80 ° C.
【請求項8】 含有酸素量が0.5〜3.0重量%に調
整され、且つ、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2/mg)を示す。)で表される表面有
効酸素量を満足するように調整されて成る窒化珪素粉末
の製造方法であって、温度70〜99℃、湿度90〜9
9%に制御した容器内に、窒化珪素粉末を充填し、この
状態で10〜500時間曝露することを特徴とする窒化
珪素粉末の製造方法。
8. The oxygen content is adjusted to 0.5 to 3.0% by weight, and the following formula: Os / Ss = 30 to 100 (where Os is the oxygen amount (% by weight) on the powder surface, Ss Is a specific surface area (m 2 / mg) of the powder.) A method for producing silicon nitride powder, which is adjusted to satisfy the surface effective oxygen amount represented by the following formula: ~ 9
A method for producing silicon nitride powder, characterized in that a container controlled to 9% is filled with silicon nitride powder and exposed in this state for 10 to 500 hours.
【請求項9】 窒化珪素粉末を流動させることを特徴と
する請求項記載の窒化珪素粉末の製造方法。
9. The method for producing silicon nitride powder according to claim 8, wherein the silicon nitride powder is caused to flow.
【請求項10】 含有酸素量が0.5〜3.0重量%に
調整され、且つ、次式 Os/Ss=30〜100 (式中のOsは粉末表面の酸素量(重量%)、Ssは粉末
の比表面積(m2/mg)を示す。)で表される表面有
効酸素量を満足するように調整されて成る窒化珪素粉末
の製造方法であって、300〜800℃に温度制御した
炉内に、窒化珪素粉末を充填し、1〜20時間流動させ
ることを特徴とする窒化珪素粉末の製造方法。
10. The oxygen content is adjusted to 0.5 to 3.0% by weight, and the following formula: Os / Ss = 30 to 100 (where Os is the oxygen content (% by weight) on the powder surface, Ss Is a specific surface area (m 2 / mg) of the powder.) This is a method for producing a silicon nitride powder adjusted to satisfy the surface effective oxygen amount represented by the following formula, and the temperature is controlled at 300 to 800 ° C. A method for producing silicon nitride powder, characterized by filling a furnace with silicon nitride powder and flowing it for 1 to 20 hours.
JP5064203A 1993-03-23 1993-03-23 Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same Expired - Lifetime JP2731333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5064203A JP2731333B2 (en) 1993-03-23 1993-03-23 Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5064203A JP2731333B2 (en) 1993-03-23 1993-03-23 Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06271357A JPH06271357A (en) 1994-09-27
JP2731333B2 true JP2731333B2 (en) 1998-03-25

Family

ID=13251282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5064203A Expired - Lifetime JP2731333B2 (en) 1993-03-23 1993-03-23 Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2731333B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527937B2 (en) 2008-03-26 2014-06-25 京セラ株式会社 Silicon nitride sintered body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218584A (en) * 1987-03-05 1988-09-12 株式会社東芝 Ceramic sintered body
JPH01313308A (en) * 1988-06-09 1989-12-18 Denki Kagaku Kogyo Kk Easily sinterable alpha silicon nitride powder
JPH0733290B2 (en) * 1990-02-09 1995-04-12 日本碍子株式会社 Silicon nitride sintered body and manufacturing method thereof
JPH05170542A (en) * 1991-12-26 1993-07-09 Kyocera Corp Silicon nitride-silicon carbide composite sintered product

Also Published As

Publication number Publication date
JPH06271357A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS64349B2 (en)
JPS59107908A (en) Manufacture of silicon nitride powder with superior sinterability
JP2670221B2 (en) Silicon nitride sintered body and method for producing the same
JPS63274611A (en) Manufacture of ceramic powder based on beta'-sialon
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
US5234643A (en) Silicon nitride ceramics containing crystallized grain boundary phases
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
US5665661A (en) Crystallization of grain boundery phases in silicon carbide ceramics
JP2786595B2 (en) Method for producing silicon nitride powder, silicon nitride sintered body and method for producing the same
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPH082907A (en) Powdery silicon nitride
JPS61242905A (en) Production of alpha-silicon nitride powder
JPH03174364A (en) Silicon nitride-based sintered body
JPS5918106A (en) Preparation of silicon aluminum oxynitride type powdery raw material
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPH06100358A (en) Production of mullite sintered compact
JPH05330919A (en) Silicon nitride-based sintered compact and its production
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JPH0699192B2 (en) Manufacturing method of high toughness silicon nitride sintered body
JPH0459609A (en) Production of aluminum nitride powder
JPH01278409A (en) Beta-type sic powder containing 2halpha-type sic and production of sintered substance using thereof
JPH06100376A (en) Sintered beta-sialon and its production
JPS63210004A (en) Production of aluminum nitride powder
JPH04285070A (en) Silicon nitride sintered body and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 16