JPH0459609A - Production of aluminum nitride powder - Google Patents

Production of aluminum nitride powder

Info

Publication number
JPH0459609A
JPH0459609A JP17105190A JP17105190A JPH0459609A JP H0459609 A JPH0459609 A JP H0459609A JP 17105190 A JP17105190 A JP 17105190A JP 17105190 A JP17105190 A JP 17105190A JP H0459609 A JPH0459609 A JP H0459609A
Authority
JP
Japan
Prior art keywords
aluminum
aluminum nitride
nitride powder
compound
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17105190A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yoda
浩好 余田
Noboru Hashimoto
登 橋本
Koji Sawada
康志 沢田
Takashi Bando
板東 高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17105190A priority Critical patent/JPH0459609A/en
Publication of JPH0459609A publication Critical patent/JPH0459609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To readily obtain aluminum nitride powder having a fine particle diameter and sharp particle size distribution by mixing an Al-containing compound which is an alpha-alumina precursor with a reducing substance and burning the resultant mixture in a nitrogen compound-containing nonoxidizing atmosphere in specific two stages. CONSTITUTION:An aluminum-containing compound such as gamma-alumina, aluminum hydroxide, basic aluminum chloride or basic aluminum lactate having properties of transforming into alpha-alumina is prepared. The resultant aluminum-containing compound is subsequently mixed with a substance (e.g. carbon or methyl cellulose) having reducing properties at a burning temperature. The obtained mixed powder is then primarily burned in a nitrogen compound-containing nonoxidizing atmosphere (e.g. nitrogen gas) to provide burned powder containing crystals of the alpha-alumina existing in the powder. The burned powder is further secondarily burned at a higher temperature than the primary burning temperature in the similar atmosphere to afford the objective aluminum nitride powder.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、例えば電気絶縁用セラミックス基板を製造す
るために使用される窒化アルミニウム粉末の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for producing aluminum nitride powder used for producing, for example, electrically insulating ceramic substrates.

[従来の技術〕 半導体素子の高集積化や大電力化が進み、これに伴い放
熱性の良い電気絶縁材料が要求されるようになった。こ
れシこ対応出来るものとして、高熱伝導性を有する各種
のセラミックス基板が提案されている。その中で窒化ア
ルミニウムから構成されたセラミックス基板が熱伝導性
、熱膨張性、電気絶縁性等の点で優れることから、その
実用化が進められている。
[Prior Art] As semiconductor devices become more highly integrated and have more power, electrical insulating materials with good heat dissipation properties are required. Various ceramic substrates having high thermal conductivity have been proposed to meet this requirement. Among these, ceramic substrates made of aluminum nitride are being put into practical use because they are excellent in terms of thermal conductivity, thermal expansion, electrical insulation, etc.

その際、原料である窒化アルミニウム粉末は難焼結性で
あるために、高熱伝導性の窒化アルミニウム基板を得る
ためには焼結に高温を要するという問題があった。低温
度での焼成で高熱伝導性の窒化アルミニウム基板を得る
ためには、粒子径が小さく且つ粒度分布がシャープな窒
化アルミニウム粉末を原料として用いることがを効であ
り、このような窒化アルミニウム粉末が原料として求め
られている。
At that time, since aluminum nitride powder, which is a raw material, is difficult to sinter, there was a problem in that a high temperature was required for sintering in order to obtain an aluminum nitride substrate with high thermal conductivity. In order to obtain aluminum nitride substrates with high thermal conductivity by firing at low temperatures, it is effective to use aluminum nitride powder with a small particle size and sharp particle size distribution as a raw material. It is sought after as a raw material.

従来、窒化アルミニウム粉末は、金属アルミニウムを窒
素もしくはアンモニアガス気流中で焼成する直接窒化法
やアルミナとカーボン粉末との混合物を、窒素雰囲気中
で焼成する炭素還元法等により製造されている。
Conventionally, aluminum nitride powder has been produced by a direct nitriding method in which metal aluminum is fired in a nitrogen or ammonia gas stream, a carbon reduction method in which a mixture of alumina and carbon powder is fired in a nitrogen atmosphere, and the like.

金属アルミニウムの直接窒化法による焼成では粒子径が
小さく且つ粒度分布がシャープな窒化アルミニウム粉末
を得ることが困難であり、粒径が大きく、粒度分布がブ
ロードな窒化アルミニウム粉末を焼結して窒化アルミニ
ウム基板を製造しようとすると、焼結に高温を要するの
で経済的でないという問題があった。これを改善しよう
として、得られた窒化アルミニウム粉末を粉砕した場合
、粉砕工程中で不純物が混入し、その結果焼結して得ら
れる窒化アルミニウム基板の熱伝導性が低下してしまう
という問題があった。
It is difficult to obtain aluminum nitride powder with a small particle size and a sharp particle size distribution by sintering metal aluminum using the direct nitriding method. When trying to manufacture a substrate, there was a problem that it was not economical because sintering required high temperatures. In an attempt to improve this, when the obtained aluminum nitride powder is pulverized, there is a problem that impurities are mixed in during the pulverization process, resulting in a decrease in the thermal conductivity of the aluminum nitride substrate obtained by sintering. Ta.

一方、アルミナの炭素還元法においては粒子径が小さく
且つ粒度分布がシャープな窒化アルミニウムの粉末を得
ようとすると、原料のアルミナが粒子径の小さい、粒度
分布のシャープなものである必要があるが、このような
アルミナ粉末を製造するには非常に煩雑な工程を必要と
する問題があった。
On the other hand, in the alumina carbon reduction method, in order to obtain aluminum nitride powder with a small particle size and sharp particle size distribution, the raw material alumina needs to be small in particle size and sharp in particle size distribution. However, there was a problem in that producing such alumina powder required a very complicated process.

[発明が解決しようとする課題1 本発明は上記欠点を解決するためになされたもので、粒
子径が小さく且つ粒度分布がシャープな窒化アルミニウ
ムの粉末を容易に得ることの出来る製造方法を提供する
ことにある。
[Problem to be Solved by the Invention 1] The present invention has been made to solve the above-mentioned drawbacks, and provides a manufacturing method that can easily obtain aluminum nitride powder with a small particle size and a sharp particle size distribution. There is a particular thing.

[課題を解決するための手段] 本発明は、α−アルミナに転移する性質を有するアルミ
ニウム含有化合物と焼成温度で還元性を有する物質とを
含む原料粉末を窒素化合物を含む非酸化性雰囲気中で第
1次焼成して、粉末中にαアルミナの結晶を内在せしめ
た焼成粉を得、しかる後にこの焼成粉を第1次焼成点度
より高い温度で、窒素化合物を含む非酸化性雰囲気中で
第2次焼成することを特徴とする窒化アルミニウム粉末
の製造方法である。
[Means for Solving the Problems] The present invention provides raw material powder containing an aluminum-containing compound having the property of transforming into α-alumina and a substance having reducing properties at a firing temperature in a non-oxidizing atmosphere containing a nitrogen compound. The first firing is performed to obtain a fired powder containing α-alumina crystals, and the fired powder is then heated in a non-oxidizing atmosphere containing nitrogen compounds at a temperature higher than the first firing point. This is a method for producing aluminum nitride powder, which is characterized by performing secondary firing.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いるα−アルミナに転移する性質を有するア
ルミニウム含有化合物は焼成によりαアルミナに転移す
るもので、このアルミニウム含有化合物としてはγ、χ
、δ、θ、にまたはρ型のアルミナや水酸化アルミニウ
ムあるいは好ましくは水溶性のアルミニウム化合物が有
用である。
The aluminum-containing compound used in the present invention, which has the property of transforming into α-alumina, transforms into α-alumina by firing, and the aluminum-containing compounds include γ, χ
, δ, θ, or ρ type alumina, aluminum hydroxide, or preferably water-soluble aluminum compounds are useful.

上記の水溶性アルミニウム化合物としてはアルミニウム
多核錯体である塩基性塩化アルミニウム、塩基性乳酸ア
ルミニウム、塩基性硫酸アルミニウムや塩基性硝酸アル
ミニウム等がある。これらの水溶性アルミニウム化合物
を水/8液の状態で、焼成温度で還元性を有する′!!
7J質と混合すれば、より均一に混合が出来、その結果
α−アルミナに転移させた場合α−アルミナ結晶がより
均一に分散している状態を得ることができる。
Examples of the water-soluble aluminum compounds include aluminum polynuclear complexes such as basic aluminum chloride, basic aluminum lactate, basic aluminum sulfate, and basic aluminum nitrate. These water-soluble aluminum compounds have reducing properties at the firing temperature in a water/8 liquid state! !
If it is mixed with 7J quality, it can be mixed more uniformly, and as a result, when it is transformed into α-alumina, it is possible to obtain a state in which α-alumina crystals are more uniformly dispersed.

本発明では、上記アルミニウム含有化合物と焼成温度で
還元性を有する物質とを混合して原料粉末を得る。この
焼成温度で還元性を有する物質としては、各種炭素化合
物やカーボン等があげられるが、これらの中で水溶性炭
素化合物は水7容液として用いることにより、アルミニ
ウム含有化合物との混合がより均一に出来る利点を持つ
ので有用である。この焼成温度で還元性を有する水溶性
炭素化合物としては、特に限定するものではないが、例
えばメチルセルロース、ポリエチレンオキサイド、ポリ
ビニールアルコール、グルコース等の糖類、またはリグ
ニン等があげられる。
In the present invention, a raw material powder is obtained by mixing the aluminum-containing compound and a substance that has reducibility at the firing temperature. Substances that have reducing properties at this firing temperature include various carbon compounds and carbon, but among these, water-soluble carbon compounds can be mixed more uniformly with aluminum-containing compounds by using them as a 7-volume solution of water. It is useful because it has the advantage of being able to Examples of the water-soluble carbon compound having reducibility at this firing temperature include, but are not limited to, methylcellulose, polyethylene oxide, polyvinyl alcohol, sugars such as glucose, and lignin.

また、焼成温度で還元性を有する物質が尿素やグアニジ
ン等の分子内に炭素及び窒素を含有する化合物、または
炭素含有化合物と塩化アンモニウム等の窒素含有化合物
の混合物であれば、より高純度の窒化アルミニウム粉末
とするのに効果がある。
In addition, if the substance that has reducibility at the firing temperature is a compound containing carbon and nitrogen in its molecules, such as urea or guanidine, or a mixture of a carbon-containing compound and a nitrogen-containing compound such as ammonium chloride, higher purity nitriding can be achieved. Effective for making aluminum powder.

上記のアルミニウム含有化合物と焼成温度で還元性を有
する物質との混合物を必要に応して乾燥する。この乾燥
温度は特に限定するものではないが、150”C〜20
0 ’Cが好ましい。
The mixture of the above-mentioned aluminum-containing compound and a substance having reducibility at the firing temperature is dried as necessary. This drying temperature is not particularly limited, but is 150"C to 20"C.
0'C is preferred.

上記の混合物を粉末化するに際し、この粉末化を機械的
衝撃により行えばより均一な混合が達成出来る。機械的
衝撃を与える方法は特に限定するものではないが、振動
ミル粉砕法あるいは透湿ボールミル粉砕方法が好適であ
る。
When pulverizing the above mixture, more uniform mixing can be achieved if the pulverization is performed by mechanical impact. The method of applying mechanical impact is not particularly limited, but vibration milling or moisture permeable ball milling is suitable.

次に、上記の混合粉末を窒素元素を含む非酸化性雰囲気
中で第1次焼成して、α−アルミナの微結晶が均一に内
在する焼成粉を得る。ここで窒素元素を含む非酸化性雰
囲気とは窒素ガス、アンモニアガスまた;よこれらのい
ずれかを含む非酸化性ガスの雰囲気であればよく、窒素
ガス、アンモニアガスまたはこれらのいずれかを含むア
ルゴン等の不活性ガスや一酸化炭素ガスも使用出来る。
Next, the above mixed powder is first fired in a non-oxidizing atmosphere containing nitrogen element to obtain a fired powder in which α-alumina microcrystals are uniformly contained. Here, the non-oxidizing atmosphere containing nitrogen element may be an atmosphere of non-oxidizing gas containing nitrogen gas, ammonia gas, or any of these, and may include nitrogen gas, ammonia gas, or argon containing any of these. Inert gases such as and carbon monoxide gas can also be used.

ここで形成されたα−アルミナの結晶は最終的に得よう
とする窒化アルミニウム粉末の核となる作用をするので
、粉末中Gこ微結晶として、均一に内在せしめることは
粒度分布がシャープな窒化アルミニウム粉末を得るのに
有効である。
The α-alumina crystals formed here act as the nucleus of the aluminum nitride powder that is to be obtained in the end, so the nitride crystals with a sharp particle size distribution can be uniformly incorporated as microcrystals in the powder. Effective for obtaining aluminum powder.

通常α−アルミナへの転移には1200℃以上の焼成温
度が必要であるが、本発明によればアルミニウム化合物
が均一に分散しているため、1000℃以下という低温
の焼成で、α−アルミナの微結晶を内在させ得る。この
第1次焼成の温度は700℃〜1200 ’Cが好まし
く、さらに好ましくは700℃〜1000℃である。7
00℃未満ではα〜アルミナへの転移が起こり難く、1
200℃を越えると窒化反応が起きα−アルミナの結晶
の成長が阻害され、その結果粒径が大きい窒化アルミニ
ウム粉末が生成するため、得られる窒化アルミニウム粉
末の粒度分布がブロードになるという問題が起きる。
Normally, a firing temperature of 1200°C or higher is required for the transformation to α-alumina, but according to the present invention, since the aluminum compound is uniformly dispersed, α-alumina can be converted to α-alumina by firing at a low temperature of 1000°C or lower. May contain microcrystals. The temperature of this first firing is preferably 700°C to 1200°C, more preferably 700°C to 1000°C. 7
Below 00℃, the transition to α~alumina is difficult to occur, and 1
When the temperature exceeds 200°C, a nitriding reaction occurs, inhibiting the growth of α-alumina crystals, and as a result, aluminum nitride powder with a large particle size is produced, resulting in the problem that the particle size distribution of the obtained aluminum nitride powder becomes broad. .

第1次焼成を施す焼成装置については特に限定するもの
ではないが、滞留時間が短い装置の場合は焼成温度を1
000℃〜1200℃と高く設定し、滞留時間の長い装
置については800℃〜1o o o ’cと低く設定
するのが望ましい。
There are no particular restrictions on the firing equipment that performs the primary firing, but if the residence time is short, the firing temperature should be set to 1.
It is desirable to set the temperature as high as 000° C. to 1200° C., and as low as 800° C. to 100° C. for devices with long residence times.

次に、α−アルミナの微結晶を内在せしめた焼成粉を窒
素元素を含む非酸化性雰囲気中で第1次焼成温度より高
い温度で、好ましくは1500℃〜1700℃の温度で
第2次焼成して、窒化アルミニウム粉末を得る。この場
合の窒素元素を含む非酸化性雰囲気中とは、第1次焼成
の場合と同しである。
Next, the fired powder containing α-alumina microcrystals is subjected to a second firing in a non-oxidizing atmosphere containing nitrogen at a temperature higher than the first firing temperature, preferably at a temperature of 1500°C to 1700°C. to obtain aluminum nitride powder. In this case, the non-oxidizing atmosphere containing nitrogen element is the same as in the first firing.

上記の第2次焼成の後、窒化アルミニウム粉末に残留炭
素がある場合は、600 ’C〜800 ”Cの酸化性
雰囲気中で熱処理して、残留炭素を除去出来る。
If there is residual carbon in the aluminum nitride powder after the secondary firing, the residual carbon can be removed by heat treatment in an oxidizing atmosphere at 600'C to 800'C.

なお、本発明の製造方法においては上述の各工程以外に
必要に応し、通常のセラミックス粉末の製造で用いられ
る各種の工程を適宜加えることも出来る。
In addition, in the manufacturing method of the present invention, in addition to the above-mentioned steps, various steps used in the manufacturing of ordinary ceramic powders can be added as necessary.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

[実施例] 実施例1〜実施例3 炭素とアルミニウムの比C/AIV、(元素配合モル比
)が4.0になるように第1表に示したアルミニウム含
存化合物とカーボンとを混合した。混合した原料に機械
的衝撃を与えるために、ナイロン製のポットと、ナイロ
ンコーティングされたボールを用い2〜24時間、振動
ミル粉砕を行った。
[Example] Examples 1 to 3 The aluminum-containing compounds shown in Table 1 and carbon were mixed so that the carbon to aluminum ratio C/AIV (element blend molar ratio) was 4.0. . Vibratory milling was performed using a nylon pot and nylon-coated balls for 2 to 24 hours to apply mechanical shock to the mixed raw materials.

得られた粉末を窒素ガス気流中800℃で4時間ハンチ
炉で第1次焼成を行った。
The obtained powder was first fired in a haunch furnace at 800°C in a nitrogen gas stream for 4 hours.

得られた粉末を窒素ガス気流中1600“Cで4時間ハ
ンチ炉で第2次焼成して窒化アルミニウム粉末を得た。
The obtained powder was fired for a second time in a haunch furnace at 1600"C in a nitrogen gas stream for 4 hours to obtain aluminum nitride powder.

さらに、得られた窒化アルミニウム粉末を空気中、65
0℃で1時間加熱酸化処理を行い、残留カーボンを除去
した。
Furthermore, the obtained aluminum nitride powder was added to the air at 65%
A heating oxidation treatment was performed at 0° C. for 1 hour to remove residual carbon.

得られた窒化アルミニウム粉末の平均粒径、純度の測定
結果を第1表に示す。また第1図〜第31にそれぞれ実
施例1〜実施例3で得られた窒化アルミニウム粉の粒度
分布のグラフを示す。
Table 1 shows the measurement results of the average particle size and purity of the obtained aluminum nitride powder. Further, FIGS. 1 to 31 show graphs of the particle size distribution of the aluminum nitride powders obtained in Examples 1 to 3, respectively.

第1図、第2図、第3図共に縦軸は占を率(単位二%)
を横軸は粒径(単位:μm)を示す。以下の図における
縦軸及び横軸も同様である。
In Figures 1, 2, and 3, the vertical axes are percentages (unit: 2%)
The horizontal axis indicates the particle size (unit: μm). The same applies to the vertical and horizontal axes in the following figures.

比較例1 炭素とアルミニウムの比C/Af (元素配合モル比)
が4.0になるように水酸化アルミニウムとカーボンと
を混合した。混合した原料に機械的衝撃を与えるために
、ナイロン製のポットと、ナイロンコーティングされた
ボールヲ用い2〜24時間、振動ミル粉砕を行った。得
られた粉末を窒素ガス気流中1600℃で4時間ハツチ
炉で焼成して窒化アルミニウム粉末を得た。
Comparative example 1 Carbon to aluminum ratio C/Af (element blending molar ratio)
Aluminum hydroxide and carbon were mixed so that the carbon was 4.0. Vibratory milling was performed using a nylon pot and nylon coated balls for 2 to 24 hours to impart mechanical shock to the mixed raw materials. The obtained powder was fired in a hatch furnace at 1600° C. for 4 hours in a nitrogen gas stream to obtain aluminum nitride powder.

さらに、得られた窒化アルミニウム粉末を空気中、65
0 ’Cで1時間加熱酸化処理を行い、残留カーボンを
除去した。
Furthermore, the obtained aluminum nitride powder was added to the air at 65%
A heating oxidation treatment was performed at 0'C for 1 hour to remove residual carbon.

得られた窒化アルミニウム粉末の平均粒径、純度の測定
結果を第1表に示し、粒度分布のグラフを第4図に示す
The results of measuring the average particle diameter and purity of the obtained aluminum nitride powder are shown in Table 1, and a graph of the particle size distribution is shown in FIG.

なお、実施例1及び比較例1で用いた水酸化アルミニウ
ムの粒度分布のグラフを第5図に示す。
Incidentally, a graph of the particle size distribution of aluminum hydroxide used in Example 1 and Comparative Example 1 is shown in FIG.

実施例4〜実施例8 炭素とアルミニウムの比C/AN(元素配合モル比)が
3.0になるように、第2表に示した水溶性アルミニウ
ム化合物と水溶性炭素化合物あるいはカーボンとを配合
した水78aを調製した。
Examples 4 to 8 Water-soluble aluminum compounds and water-soluble carbon compounds or carbon shown in Table 2 were blended so that the carbon to aluminum ratio C/AN (element blend molar ratio) was 3.0. Water 78a was prepared.

水溶性アルミニウム化合物としては多本化学(株)の塩
基性塩化アルミニウム(アルミナ換算でのアルミニウム
含有量が50重景%)及び塩基性乳酸アルミニウム(ア
ルミナ換算でのアルミニウム含有量が35重量%)を用
いた。
As water-soluble aluminum compounds, basic aluminum chloride (aluminum content in terms of alumina is 50% by weight) and basic aluminum lactate (aluminum content in terms of alumina is 35% by weight) manufactured by Tamoto Kagaku Co., Ltd. Using.

水溶性炭素化合物としてはグルコース、メチルセルロー
スを用いた。
Glucose and methylcellulose were used as water-soluble carbon compounds.

この水溶液をスプレードライヤーで乾燥した後、アルミ
ナ製の磁器ポットとアルミナ製のボールを用い、2時間
、振動ミル粉砕を行った。得られた粉末を窒素ガス気流
中800℃で4時間ハツチ炉で第1次焼成を行った。
After drying this aqueous solution with a spray dryer, it was subjected to vibration mill pulverization for 2 hours using an alumina porcelain pot and an alumina ball. The obtained powder was first fired in a hatch furnace at 800° C. for 4 hours in a nitrogen gas stream.

得られた粉末を窒素ガス気流中1600℃で4時間ハツ
チ炉で第2次焼成を行い窒化アルミニウム粉末を得た。
The obtained powder was subjected to secondary firing in a hatch furnace at 1600° C. for 4 hours in a nitrogen gas stream to obtain aluminum nitride powder.

さらに、得られた窒化アルミニウム粉末を空気中、65
0℃T:1時間加熱酸化処理を行い、残留カーボンを除
去した。
Furthermore, the obtained aluminum nitride powder was added to the air at 65%
0°C T: Heat oxidation treatment was performed for 1 hour to remove residual carbon.

得られた窒化アルミニウム粉末の平均粒径、純度の測定
結果を第2表ムこ示す。また第6図〜第10図にそれぞ
れ実施例4〜実施例8で得られた窒化アルミニウム粉末
の粒度分布のグラフを示す。
Table 2 shows the measurement results of the average particle size and purity of the obtained aluminum nitride powder. Further, FIGS. 6 to 10 show graphs of the particle size distribution of the aluminum nitride powders obtained in Examples 4 to 8, respectively.

比較例2 炭素とアルミニウムの比C/Af (元素配合モル比)
が3.0になるように、実施例4で用いたものと同し塩
基性塩化アルミニウムとグルコースとを配合した水溶液
を調製した。
Comparative example 2 Carbon to aluminum ratio C/Af (element blending molar ratio)
An aqueous solution containing the same basic aluminum chloride and glucose as that used in Example 4 was prepared so that the ratio was 3.0.

この水溶液をスプレードライヤーで乾燥した後、アルミ
ナ製の磁器ポットとアルミナ製のボールを用い、2時間
、振動ミル粉砕を行った。得られた粉末を窒素ガス気流
中1600 ’Cで4時間パッチ炉で焼成を行い窒化ア
ルミニウム粉末を得た。
After drying this aqueous solution with a spray dryer, it was subjected to vibration mill pulverization for 2 hours using an alumina porcelain pot and an alumina ball. The obtained powder was fired in a patch furnace at 1600'C in a nitrogen gas stream for 4 hours to obtain aluminum nitride powder.

得られた窒化アルミニウム粉末の平均粒径、純度の測定
結果を第2表に示し、粒度分布のグラフを第11図に示
す。
The results of measuring the average particle size and purity of the obtained aluminum nitride powder are shown in Table 2, and a graph of the particle size distribution is shown in FIG.

1発明の効果] 本発明によれば、粒子径が小さく且つ粒度分布がソヤー
プな窒化アルミニウムの粉末を容易に製造できる。
1. Effects of the Invention] According to the present invention, aluminum nitride powder having a small particle size and a soyral particle size distribution can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれ実施例1〜実施例3の窒化ア
ルミニウム粉末の粒度分布を示すグラフで、第4囲は比
較例Iの窒化アルミニウム粉末の粒度分布を示すグラフ
で、第5図は実施例1及び比較例1で用いた水酸化アル
ミニウムの粒度分布を示すグラフで、第6図〜第1O図
はそれぞれ実施例4〜実施例8の窒化アルミニウム粉末
の粒度分布を示すグラフで、第11図は比較例2の窒化
アルミニウム粉末の粒度分布を示すグラフである。
Figures 1 to 3 are graphs showing the particle size distribution of the aluminum nitride powders of Examples 1 to 3, respectively, the fourth box is a graph showing the particle size distribution of the aluminum nitride powder of Comparative Example I, and Figure 5 is a graph showing the particle size distribution of the aluminum nitride powder of Comparative Example I. are graphs showing the particle size distribution of aluminum hydroxide used in Example 1 and Comparative Example 1, and FIGS. 6 to 1O are graphs showing the particle size distribution of aluminum nitride powder in Examples 4 to 8, respectively. FIG. 11 is a graph showing the particle size distribution of aluminum nitride powder of Comparative Example 2.

Claims (14)

【特許請求の範囲】[Claims] (1)α−アルミナに転移する性質を有するアルミニウ
ム含有化合物と焼成温度で還元性を有する物質とを含む
原料粉末を窒素化合物を含む非酸化性雰囲気中で第1次
焼成して、粉末中にα−アルミナの結晶を内在せしめた
焼成粉を得、しかる後にこの焼成粉を第1次焼成温度よ
り高い温度で、窒素化合物を含む非酸化性雰囲気中で第
2次焼成することを特徴とする窒化アルミニウム粉末の
製造方法。
(1) A raw material powder containing an aluminum-containing compound that has the property of transforming into α-alumina and a substance that has reducing properties at the firing temperature is first fired in a non-oxidizing atmosphere containing a nitrogen compound, and then The method is characterized in that a fired powder containing α-alumina crystals is obtained, and then this fired powder is subjected to a second firing in a non-oxidizing atmosphere containing a nitrogen compound at a temperature higher than the first firing temperature. Method for producing aluminum nitride powder.
(2)アルミニウム含有化合物がγ、χ、δ、θ、κま
たはρ型のいずれかのアルミナである特許請求の範囲第
1項記載の窒化アルミニウム粉末の製造方法。
(2) The method for producing aluminum nitride powder according to claim 1, wherein the aluminum-containing compound is any one of γ, χ, δ, θ, κ, or ρ type alumina.
(3)アルミニウム含有化合物が水酸化アルミニウムで
ある特許請求の範囲第1項記載の窒化アルミニウム粉末
の製造方法
(3) The method for producing aluminum nitride powder according to claim 1, wherein the aluminum-containing compound is aluminum hydroxide.
(4)アルミニウム含有化合物が、水溶性であることを
特徴とする特許請求の範囲第1項記載の窒化アルミニウ
ム粉末の製造方法。
(4) The method for producing aluminum nitride powder according to claim 1, wherein the aluminum-containing compound is water-soluble.
(5)上記の水溶性アルミニウム含有化合物として塩基
性塩化アルミニウム、塩基性乳酸アルミニウム、塩基性
硫酸アルミニウム、塩基性硝酸アルミニウムのうちの少
なくとも1種を含む特許請求の範囲第4項記載の窒化ア
ルミニウム粉末の製造方法。
(5) The aluminum nitride powder according to claim 4, which contains at least one of basic aluminum chloride, basic aluminum lactate, basic aluminum sulfate, and basic aluminum nitrate as the water-soluble aluminum-containing compound. manufacturing method.
(6)上記の水溶性アルミニウム含有化合物を水溶液の
状態で、焼成温度で還元性を有する物質と混合すること
を特徴とする特許請求の範囲第4項または第5項記載の
窒化アルミニウム粉末の製造方法。
(6) Production of aluminum nitride powder according to claim 4 or 5, characterized in that the above-mentioned water-soluble aluminum-containing compound is mixed in the form of an aqueous solution with a substance that has reducing properties at the firing temperature. Method.
(7)上記の焼成温度で還元性を有する物質がカーボン
である特許請求の範囲第1項ないし第6項いずれか記載
の窒化アルミニウム粉末の製造方法。
(7) The method for producing aluminum nitride powder according to any one of claims 1 to 6, wherein the substance having reducibility at the above firing temperature is carbon.
(8)上記の焼成温度で還元性を有する物質が水溶性炭
素化合物である特許請求の範囲第1項ないし第6項いず
れか記載の窒化アルミニウム粉末の製造方法。
(8) The method for producing aluminum nitride powder according to any one of claims 1 to 6, wherein the substance having reducibility at the above firing temperature is a water-soluble carbon compound.
(9)上記の水溶性炭素化合物がメチルセルロース、ポ
リエチレンオキサイド、ポリビニールアルコール、糖類
またはリグニンのいずれかである特許請求の範囲第8項
記載の窒化アルミニウム粉末の製造方法。
(9) The method for producing aluminum nitride powder according to claim 8, wherein the water-soluble carbon compound is any one of methylcellulose, polyethylene oxide, polyvinyl alcohol, saccharide, or lignin.
(10)上記の水溶性炭素化合物を水溶液の状態でアル
ミニウム含有化合物と混合することを特徴とする特許請
求の範囲第8項または第9項記載の窒化アルミニウム粉
末の製造方法。
(10) The method for producing aluminum nitride powder according to claim 8 or 9, characterized in that the above-mentioned water-soluble carbon compound is mixed with an aluminum-containing compound in the form of an aqueous solution.
(11)上記の焼成温度で還元性を有する物質が分子内
に炭素及び窒素を含有する化合物、または炭素含有化合
物と窒素含有化合物の混合物であることを特徴とする特
許請求の範囲第1項ないし第6項いずれか記載の窒化ア
ルミニウム粉末の製造方法。
(11) Claims 1 to 3, characterized in that the substance that has reducibility at the above firing temperature is a compound containing carbon and nitrogen in the molecule, or a mixture of a carbon-containing compound and a nitrogen-containing compound. 6. A method for producing aluminum nitride powder according to any one of Item 6.
(12)上記のアルミニウム含有化合物と焼成温度で還
元性を有する物質とを含む原料の粉末化を機械的衝撃に
より行うことを特徴とする特許請求の範囲第1項ないし
第11項いずれか記載の窒化アルミニウム粉末の製造方
法。
(12) The method according to any one of claims 1 to 11, characterized in that the raw material containing the aluminum-containing compound and a substance having reducibility at the firing temperature is pulverized by mechanical impact. Method for producing aluminum nitride powder.
(13)上記のアルミニウム含有化合物と焼成温度で還
元性を有する物質とを含む原料粉末を第1次焼成して粉
末中にα−アルミナを内在させる時の焼成温度が120
0℃以下であることを特徴とする特許請求の範囲第1項
ないし第12項いずれか記載の窒化アルミニウム粉末の
製造方法。
(13) When the raw material powder containing the above-mentioned aluminum-containing compound and a substance that has reducibility at the firing temperature is first fired to incorporate α-alumina into the powder, the firing temperature is 120°C.
13. The method for producing aluminum nitride powder according to any one of claims 1 to 12, characterized in that the temperature is 0°C or lower.
(14)窒素元素を含む非酸化性雰囲気が窒素ガス、ア
ンモニアガスまたはこれらのいずれかを含むアルゴンガ
スもしくは一酸化炭素ガスの雰囲気である特許請求の範
囲第1項ないし第13項いずれか記載の窒化アルミニウ
ム粉末の製造方法。
(14) The non-oxidizing atmosphere containing nitrogen element is an atmosphere of nitrogen gas, ammonia gas, or argon gas or carbon monoxide gas containing any of these. Method for producing aluminum nitride powder.
JP17105190A 1990-06-28 1990-06-28 Production of aluminum nitride powder Pending JPH0459609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17105190A JPH0459609A (en) 1990-06-28 1990-06-28 Production of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17105190A JPH0459609A (en) 1990-06-28 1990-06-28 Production of aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPH0459609A true JPH0459609A (en) 1992-02-26

Family

ID=15916172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17105190A Pending JPH0459609A (en) 1990-06-28 1990-06-28 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPH0459609A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077551A1 (en) * 2010-12-06 2012-06-14 株式会社トクヤマ Aluminum nitride powder and process for manufacturing same
CN103079996A (en) * 2010-09-28 2013-05-01 株式会社德山 Method for manufacturing spherical aluminum nitride powder
JP2021123508A (en) * 2020-02-03 2021-08-30 株式会社トクヤマ Method and apparatus for manufacturing aluminum nitride powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103079996A (en) * 2010-09-28 2013-05-01 株式会社德山 Method for manufacturing spherical aluminum nitride powder
WO2012077551A1 (en) * 2010-12-06 2012-06-14 株式会社トクヤマ Aluminum nitride powder and process for manufacturing same
US20130244036A1 (en) * 2010-12-06 2013-09-19 Tokuyama Corporation Aluminum nitride powder and method of producing the same
US9056774B2 (en) 2010-12-06 2015-06-16 Tokuyama Corporation Aluminum nitride powder and method of producing the same
JP5875525B2 (en) * 2010-12-06 2016-03-02 株式会社トクヤマ Method for producing aluminum nitride powder
JP2021123508A (en) * 2020-02-03 2021-08-30 株式会社トクヤマ Method and apparatus for manufacturing aluminum nitride powder

Similar Documents

Publication Publication Date Title
KR20190017539A (en) Method of Preparing the Spherical Shape Aluminum Nitride Powder
US5246683A (en) Process for producing small particles of aluminum nitride and particles so-produced
JPS61151006A (en) Production of aluminum nitride powder
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
JPH0459609A (en) Production of aluminum nitride powder
JPS6291409A (en) Production of easy-to-sinter boron nitride powder
JPS6355108A (en) Aluminum nitride powder and production thereof
JPH0465307A (en) Production of aluminum nitride powder
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPS62167208A (en) Production of aluminum nitride powder
JPH02120214A (en) Production of aluminum nitride powder
JPS63210003A (en) Production of aluminum nitride powder
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS5918106A (en) Preparation of silicon aluminum oxynitride type powdery raw material
JPH0466803B2 (en)
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JPH01133911A (en) Production of aluminum nitride powder
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JPH04154610A (en) Aluminum nitride powder and method for producing the same
JP2597825B2 (en) Light-shielding aluminum nitride powder, method for producing the same, and sintered body thereof
JPH01298012A (en) Production of aluminum nitride
JPS61155209A (en) Preparation of easily sinterable aluminum nitride powder
JPS63297207A (en) Production of aluminum nitride powder
JPH02296707A (en) Production of aluminum nitride powder