JPS6291409A - Production of easy-to-sinter boron nitride powder - Google Patents

Production of easy-to-sinter boron nitride powder

Info

Publication number
JPS6291409A
JPS6291409A JP60232116A JP23211685A JPS6291409A JP S6291409 A JPS6291409 A JP S6291409A JP 60232116 A JP60232116 A JP 60232116A JP 23211685 A JP23211685 A JP 23211685A JP S6291409 A JPS6291409 A JP S6291409A
Authority
JP
Japan
Prior art keywords
solvent
contg
compd
boron
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60232116A
Other languages
Japanese (ja)
Inventor
Takahisa Koshida
孝久 越田
Takeshi Ogasawara
小笠原 武司
Hiromichi Oota
太田 広道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd, Kawasaki Steel Corp filed Critical Kawasaki Refractories Co Ltd
Priority to JP60232116A priority Critical patent/JPS6291409A/en
Publication of JPS6291409A publication Critical patent/JPS6291409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled ultrafine boron nitride powder having an excellent sintering property by mixing a oxygen-contg. boron compd. and a nitrogen-contg. org. compd., carrying out nitriding at a specified temp. in a nonoxidizing atmosphere, crushing the product in an alcoholic solvent, and heating and removing the solvent. CONSTITUTION:The oxygen-contg. boron compd. and the nitrogen-contg. org. compd. are mixed and nitriding is carried out at 1,250-1,550 deg.C in a nonoxidizing atmosphere. The reaction product is crushed in an alcoholic solvent or the crushed product is washed with the alcoholic solvent. Then the solvent is heated and removed. Boric acid or boron oxide is exemplified as the oxygen-contg. compd. and urea, melamine, dicyandiamide, cyanuric acid, etc., are exemplified as the nitrogen-contg. org. compd. Both compds. are preferably mixed so that the molar ratio of the N in the nitrogen source to the B in the boron source is adjusted to about 2. Methyl or ethyl alcohol is preferably used as the solvent to be used in crushing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大方品窒化硼素(以下単にBNと記す)粉末
の製造法に関し、特に焼結性に優れた超微細なりN粉末
を容易に製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing boron nitride (hereinafter simply referred to as BN) powder, and particularly for easily producing ultrafine N powder with excellent sinterability. Relating to a method of manufacturing.

〔従来の技術〕[Conventional technology]

BNは溶融金属に対する耐食性、高電気絶縁性、高熱伝
導性、潤滑性等多くの優れた特性を有するため、焼結体
として、金属溶融用のルツボ、放熱基板、高周波電気絶
縁材料等、多方面に応用されている。
BN has many excellent properties such as corrosion resistance against molten metals, high electrical insulation, high thermal conductivity, and lubricity, so it can be used as a sintered body in many fields such as crucibles for metal melting, heat dissipation substrates, and high-frequency electrical insulation materials. It is applied to.

BN焼結体は一般にホットプレス法で製造されているが
、BN自体は極めて難焼結性の物質であるため、焼結用
のBN粉末としては次のような特性が望まれている。す
なわち、BN以外の成分として、遊離の耐化硼素または
BN結晶中にB−N−0系の前駆体として残留している
と考えられている酸素を数%含有していること、および
結晶性の指数であるC軸方向の結晶子の大きさLcが3
00Å以下であることである。
A BN sintered body is generally produced by a hot press method, but since BN itself is a substance that is extremely difficult to sinter, the following characteristics are desired for a BN powder for sintering. That is, as a component other than BN, it contains several percent of free refractory boron or oxygen, which is thought to remain as a B-N-0 system precursor in the BN crystal, and that the crystallinity The crystallite size Lc in the C-axis direction, which is the index of
00 Å or less.

BN粉末の製造法には、従来種々の方法が提案されてお
り、主なものとして、 (D硼砂と尿素の混合物をアンモニア雰囲気中で800
℃以上に加熱する方法(特公昭38−■硼酸と含窒素化
合物(尿素、メラミン、ジシアンジアミド等)を160
0℃以上に加熱する方法(特公昭48−14559) などがある。
Various methods have been proposed for the production of BN powder.
Method of heating above 160°C (Special Publication No. 38-1)
There is a method of heating to 0°C or higher (Japanese Patent Publication No. 48-14559).

しかしながら、(Dの方杖では製品BN粉末中にNa成
分の含有が避けられず、電子材料等の焼結体用としては
不適である。また(Dに関連したものとして、硼砂と尿
素をアンモニア中で800℃以下に加熱した後、反応生
成物を洗?ffl して焼結体用とする方法(特公昭4
5−30457)も公知である。しかしこの方法も(1
)と同様の理由から焼結体用として問題がある。
However, (D) method inevitably contains Na components in the product BN powder, making it unsuitable for use in sintered bodies such as electronic materials. After heating the reaction product to 800°C or less in
5-30457) is also known. However, this method also (1
) There is a problem in using it for sintered bodies for the same reason.

次に上記■の方法は、結晶性に優れたBN粉末の製法に
関するものである点で、本願とは内容を異にする。さら
に、本発明者らの実験によれば、■の方法で加熱温度を
低くすれば結晶子の大きさLcは低く抑えられるものの
、同時に純度も大きく低下することは避けられず、純度
とT、 cを[Nf時に制御することは困難である。
Next, the method (2) above differs from the present application in that it relates to a method for producing BN powder with excellent crystallinity. Furthermore, according to experiments conducted by the present inventors, although the crystallite size Lc can be kept low by lowering the heating temperature using the method (2), it is inevitable that the purity will also decrease significantly at the same time. It is difficult to control c when [Nf.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は、極めて微細であると同時に、適度の純度を
有した易焼結性のBN粉末を安易に製造する方法を鋭意
検討した結果、BN中の不純物成分であるB2O3また
はH3BO3がアルコールと容易にエステル化合物を作
り、そのエステル化合物が低温で蒸発することに着]」
シ、本発明を完成した。
As a result of intensive research into a method for easily producing BN powder that is extremely fine and has appropriate purity and is easy to sinter, the inventor found that B2O3 or H3BO3, which is an impurity component in BN, is mixed with alcohol. Ester compounds are easily formed and the ester compounds evaporate at low temperatures.
Finally, the present invention was completed.

本発明は焼結性に優れた超微細なりN粉末を容易に製造
することができる方法を提供することを目的とする。
An object of the present invention is to provide a method that can easily produce ultrafine N powder with excellent sinterability.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明のBN粉末製造法は、酸素含有硼素化
合物と窒素含有有機化合物とを混合し、非酸化性雰囲気
中で1250℃〜1550℃の温度で窒化反応を行った
後、生成物をアルコール溶媒中で粉砕あるいは粉砕後ア
ルコール溶媒で洗浄し、その後、溶媒を加熱除去するこ
とを特徴的技術手段とするものである。
That is, the BN powder manufacturing method of the present invention mixes an oxygen-containing boron compound and a nitrogen-containing organic compound, performs a nitriding reaction at a temperature of 1250°C to 1550°C in a non-oxidizing atmosphere, and then converts the product into alcohol. The characteristic technical means is to pulverize in a solvent or wash with an alcohol solvent after pulverization, and then remove the solvent by heating.

〔作用〕[Effect]

以ドに本発明の易焼結性BN粉末の製造方法およびその
作用について詳細に説明する。
Below, the method for producing easily sinterable BN powder of the present invention and its operation will be explained in detail.

硼素源である酸素含有硼素化合物としては硼酸あるいは
酸化硼素などを用い、窒素源である窒素含有有機化合物
としては尿素、メラミン、ジシアンジアミド、シアヌル
酸などが選択される。両者の混合割合は硼素源と窒素源
中のNとBのモル比(N/B)が1以上であることが必
要である。窒素源が少ないと窒化率が低下し、未反応の
硼酸が残り収率が低下する。過剰の窒素源は加熱分解し
てガスとして反応系外に出るので問題ないが、窒化率と
経済性から考えると(N/B)−2程度が好ましい。
As the oxygen-containing boron compound serving as the boron source, boric acid or boron oxide is used, and as the nitrogen-containing organic compound serving as the nitrogen source, urea, melamine, dicyandiamide, cyanuric acid, etc. are selected. Regarding the mixing ratio of both, it is necessary that the molar ratio (N/B) of N and B in the boron source and the nitrogen source is 1 or more. If the nitrogen source is insufficient, the nitriding rate will decrease, and unreacted boric acid will remain, resulting in a decrease in yield. Excess nitrogen source is thermally decomposed and exits from the reaction system as a gas, so there is no problem, but from the viewpoint of nitriding rate and economical efficiency, it is preferable to use a nitrogen source of about (N/B)-2.

次にこの混合物を非酸化性雰囲気中で1550℃以下の
温度に加熱し、窒化反応を行う。
Next, this mixture is heated to a temperature of 1550° C. or lower in a non-oxidizing atmosphere to perform a nitriding reaction.

反応容器としては、該混合物と反応しないことが必要で
あり、1550℃まで使用可使なものとして、例えばB
Nの焼結体あるいは黒鉛の容器が好ましい。また反応を
2段階あるいは3段階に分けて行うことも可能で、その
場合は低温域ではステンレス等も使用できる。
The reaction vessel must not react with the mixture, and can be used up to 1550°C, such as B
A sintered body of N or a container made of graphite is preferable. It is also possible to carry out the reaction in two or three stages, in which case stainless steel or the like can be used in the low temperature range.

加熱雰囲気は非酸化性雰囲気であることが必要であり、
好ましくは安価な窒素を用いるとよいが、アンモニア、
アルゴン等でも差し支えない。
The heating atmosphere must be a non-oxidizing atmosphere,
It is preferable to use inexpensive nitrogen, but ammonia,
Argon, etc. may also be used.

加熱温度は1250℃〜1550℃、好ましくは130
0℃〜1500℃、さらに好ましくは1350℃〜14
50℃がよい。加熱温度をこのように規定するのは次の
理由による。すなわち本発明の目的である易焼結性BN
粉末の具備条件の1つに、結晶粒径と対応する結晶子の
大きさLcが300Å以下であることが挙げられるが、
加熱温度が1550℃を越えると結晶子Lcの大きさが
300人以−4二に達し、易焼結性でなくなる。
Heating temperature is 1250°C to 1550°C, preferably 130°C
0°C to 1500°C, more preferably 1350°C to 14
50℃ is good. The reason why the heating temperature is defined in this way is as follows. That is, easily sinterable BN which is the object of the present invention
One of the conditions for the powder is that the crystallite size Lc corresponding to the crystal grain size is 300 Å or less,
When the heating temperature exceeds 1550° C., the size of the crystallites Lc reaches 300 to 42, and sinterability becomes poor.

しかし、単に1550℃以Fの熱処理を行うだけでは次
の問題がある。
However, simply performing heat treatment at 1550° C. or higher causes the following problems.

硼素源を還元窒化する場合、生成りN粉末中には不純物
成分として相当量の酸素が存在する。この酸素には、未
反応の原料から由来する遊離の酸化硼素中の酸素と、完
全にBNに転換する前の中間段階のB−N−0系前駆体
としての酸素が含まれている。後者のBN前駆体中の酸
素は、窒化処理温度の1−昇とともに、主にB2 o3
として結晶外へ離脱していくと考えられる。しかしなが
ら、B2O3の蒸気圧は1550℃で数m m Hgで
あり、1550℃以下では蒸発速度は非常に遅いため、
大部分は生成物中に残留する。第1図に窒化処理温度と
、窒素分析値から求めたBNの純度(N分析値X1.7
72)および結晶子の大きさLcの関係を示したように
、結晶子の大きさを抑えるため1550℃以下で処理し
た場合、生成りN粉末の純度は82〜87重量%で、こ
のままでは焼結用として適したBN粉末とはいえない。
When reducing and nitriding a boron source, a considerable amount of oxygen exists as an impurity component in the resulting N powder. This oxygen includes oxygen in free boron oxide derived from unreacted raw materials and oxygen as a B-N-0 precursor at an intermediate stage before complete conversion to BN. The oxygen in the latter BN precursor becomes mainly B2 o3 with increasing nitriding temperature.
It is thought that it leaves the crystal as . However, the vapor pressure of B2O3 is several mm Hg at 1550°C, and the evaporation rate is very slow below 1550°C.
The majority remains in the product. Figure 1 shows the nitriding temperature and the purity of BN determined from the nitrogen analysis value (N analysis value
72) and the relationship between the crystallite size Lc, when processing at 1550°C or lower to suppress the crystallite size, the purity of the resulting N powder is 82 to 87% by weight, and if it is left as it is, it will not be sintered. It cannot be said that the BN powder is suitable for use as a liquid.

そこで次に結晶子を成長させないで、高純度化する方法
を検討した結果、このBN粉末をアルコールを溶媒とし
て湿式粉砕するか、粉砕後アルコール溶媒で洗浄し、そ
の後スラリーを加熱乾燥する方法が非常に有効であるこ
とを見出した。
Therefore, we next considered a method to achieve high purity without growing crystallites, and found that it was extremely difficult to wet-pulverize the BN powder using alcohol as a solvent, or to wash the BN powder with an alcohol solvent after crushing, and then heat-dry the slurry. found that it is effective.

第2図に粉砕、乾繰後のBNの純度と窒化処理温度との
関係を示した。アルコールを溶媒として粉砕した後のB
Nの純度は、窒化処理後の純度がほとんど一定であるに
も拘らず窒化処理温度とともに上昇し、1300℃で9
2重fit%、1500°Cで97重量%に達する。こ
れは、空化処理物中の遊離の酸化硼素がアルコールと反
応してエステル化合物となり、加熱により蒸発揮散した
ためである。窒化処理温度により粉砕後のBN純度が異
なるのは、不純物中の遊離の酸化硼害の比率が窒化処理
温度の上昇によって増加してくることに起因するもので
ある。第2図から処理温度が1250℃未満では最終的
に得られるB、N粉末の純度が90重量%以下となり焼
結体用の粉末としては適さない。
FIG. 2 shows the relationship between the purity of BN after pulverization and drying and the nitriding temperature. B after grinding using alcohol as a solvent
Although the purity after nitriding is almost constant, the purity of N increases with the nitriding temperature, reaching 9 at 1300°C.
Double fit%, reaching 97% by weight at 1500°C. This is because free boron oxide in the emptied product reacts with alcohol to become an ester compound, which is evaporated and diffused by heating. The reason why the BN purity after pulverization differs depending on the nitriding temperature is that the ratio of free boron oxide damage in impurities increases as the nitriding temperature increases. As can be seen from FIG. 2, if the processing temperature is lower than 1250° C., the purity of the B and N powders finally obtained will be less than 90% by weight, making them unsuitable as powders for sintered bodies.

粉砕の溶媒として用いるアルコールとしては種々のもの
が使用できるが、酸化硼素との反応で生成するエステル
化合物が容易に揮発するエチルアルコール、メチルアル
コール等の一価のアルコールが特に有効である。プロパ
ツール、ブタノールでも可能であるが、アルコール自体
やエステル化合物の沸点が−1−、Aするので加熱除去
して高純度化するのは不利である。例えばメチルアルコ
ールの場合、生成する硼酸トリメチル(C,H,a O
)−3Bは約68°Cの佛点をもち、この温度で蒸発揮
散する。蒸発したエステル、アルコールおよび水の混合
物は回収、分離し再度利用することができる。
Various alcohols can be used as the solvent for pulverization, but monohydric alcohols such as ethyl alcohol and methyl alcohol are particularly effective because the ester compound produced by the reaction with boron oxide easily evaporates. Although it is possible to use propatool or butanol, since the boiling point of the alcohol itself or the ester compound is -1-A, it is disadvantageous to remove it by heating to achieve high purity. For example, in the case of methyl alcohol, trimethyl borate (C, H, a O
)-3B has a Buddha point of about 68°C, and evaporates and transpires at this temperature. The evaporated mixture of ester, alcohol and water can be recovered, separated and used again.

〔発明の効果〕〔Effect of the invention〕

本発明により、焼結性に優れた超微細のBN粉末を容易
に製造することが可能となった。
According to the present invention, it has become possible to easily produce ultrafine BN powder with excellent sinterability.

本発明の方法により得られるBNは、純白の粉末であり
、結晶子の大きさLcは約100〜300人、純度は9
2〜98重量%である。第3図は本発明方法によって製
造されたBN微粉末のTEM像を示す写真である。
BN obtained by the method of the present invention is a pure white powder, the crystallite size Lc is about 100 to 300, and the purity is 9.
It is 2 to 98% by weight. FIG. 3 is a photograph showing a TEM image of fine BN powder produced by the method of the present invention.

また、X線回折の結果、遊離の硼酸または酸化硼素は含
まれておらず1.市販のB、1¥粉末に比べ流動性に優
れている特徴がある。 ・ 本発明の方法によると、特別な添加剤等を使用すること
なしに、非常に容易かつ経済的に焼結性に優れたBN超
微粉を得ることができ、特に原料にナトリウムを含有し
ないのでナトリウムをほとんど含まないBN超微粉が得
られる。
Additionally, as a result of X-ray diffraction, no free boric acid or boron oxide was found.1. It has superior fluidity compared to commercially available B, 1 yen powder. - According to the method of the present invention, ultrafine BN powder with excellent sinterability can be obtained very easily and economically without using any special additives, especially since the raw material does not contain sodium. Ultrafine BN powder containing almost no sodium is obtained.

このBN粉末を焼結用原料として用いると、高活性であ
るためより低温で焼結が終了し、微細で均質な高強度の
焼結体が得られるという優れた効果を有する。
When this BN powder is used as a raw material for sintering, it has the excellent effect that sintering is completed at a lower temperature due to its high activity, and a fine, homogeneous, and high-strength sintered body can be obtained.

〔実施例〕〔Example〕

実施例1 原料として硼酸H3BOBとメラミンC3N5(Nl2
 ) 3とを用い、これをN78モル比で2になるよう
に混合し、その混合物を黒鉛製のルツボに入れ、黒鉛抵
抗加熱炉用でN2ガス雰囲気にて300℃/hrで昇温
し、1300℃で2時間保持した後、冷却して生成物を
取り出した。反応生成物は白色塊状でBN含有量は81
.7重量%であった。   。
Example 1 Boric acid H3BOB and melamine C3N5 (Nl2
) 3 and mixed so that the N78 molar ratio was 2, the mixture was placed in a graphite crucible, and the temperature was raised at 300 ° C / hr in a N2 gas atmosphere in a graphite resistance heating furnace, After being maintained at 1300° C. for 2 hours, it was cooled and the product was taken out. The reaction product is a white lump with a BN content of 81
.. It was 7% by weight. .

次に、この試料をメタノールを溶媒としてアルミナボー
ルミルで30時時間式粉砕を行った後、スラリーをホッ
トプレート上で約70℃に加熱して溶媒を除去した。乾
燥生成物のBN含有量は92.1重量%、結晶子の大き
さLcは100人であった。
Next, this sample was milled for 30 hours in an alumina ball mill using methanol as a solvent, and then the slurry was heated to about 70° C. on a hot plate to remove the solvent. The BN content of the dried product was 92.1% by weight, and the crystallite size Lc was 100%.

実施例2 保持温度を1400℃とした以外は実施例1と同様の操
作を行った。生成物のBN含有量は窒化反応後で82.
1重量%、アルコール処理後(粉砕乾煙後)で95.7
重液%、結晶子の大きさLcは197人であった。
Example 2 The same operation as in Example 1 was performed except that the holding temperature was 1400°C. The BN content of the product is 82.
1% by weight, 95.7 after alcohol treatment (after pulverization and dry smoke)
Heavy liquid % and crystallite size Lc were 197 people.

実施例3 溶媒をエタノールとした以外は実施例1と同様の操作を
行った。アルコール処理後のBN含有量は92.0重量
%であった。
Example 3 The same operation as in Example 1 was performed except that ethanol was used as the solvent. The BN content after alcohol treatment was 92.0% by weight.

比較例 窒化反応の処理温度を1600℃とした以外は、実施例
1と同様の操作を行った。生成物のBN含有量は窒化反
応後で96.1重量%、アルコール処理後で99.0重
績%と高純度にはなったが、結晶子の大きさLcが53
0人であり、焼結性は好ましくなかった。
Comparative Example The same operation as in Example 1 was performed except that the treatment temperature for the nitriding reaction was 1600°C. Although the BN content of the product was 96.1% by weight after the nitriding reaction and 99.0% by weight after the alcohol treatment, the crystallite size Lc was 53%.
0 people, and the sinterability was not favorable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硼酸とメラミンを原料とした場合の窒化温度と
生成物のBNN含有量よび結晶T−Lcの大きさの関係
を示すグラフ、第2図は第1図における生成物を、メタ
ノールを溶媒として湿式粉砕を行い、加熱乾燥した後の
BN含有量と窒化温度との関係を示すグラフ、第3図は
本発明の方υ、によるBN粉末の粒子構造(TEM像)
を示す写真である。
Figure 1 is a graph showing the relationship between nitriding temperature, BNN content of the product, and crystal T-Lc size when boric acid and melamine are used as raw materials, and Figure 2 is a graph showing the relationship between the product in Figure 1 and the size of crystal T-Lc. A graph showing the relationship between BN content and nitriding temperature after wet pulverization as a solvent and heat drying. Figure 3 is a particle structure (TEM image) of BN powder according to the method of the present invention.
This is a photo showing.

Claims (1)

【特許請求の範囲】[Claims] 1 酸素含有硼素化合物と窒素含有有機化合物とを混合
し、温度1250〜1550℃の非酸化性雰囲気中で窒
化反応を行った後、生成物をアルコール溶媒中で粉砕あ
るいは粉砕後アルコール溶媒で洗浄し、その後、溶媒を
加熱除去することを特徴とする易焼結性窒化硼素粉末の
製造方法。
1. Mix an oxygen-containing boron compound and a nitrogen-containing organic compound, perform a nitriding reaction in a non-oxidizing atmosphere at a temperature of 1250 to 1550°C, and then grind the product in an alcohol solvent or wash it with an alcohol solvent after grinding. , and then removing the solvent by heating.
JP60232116A 1985-10-17 1985-10-17 Production of easy-to-sinter boron nitride powder Pending JPS6291409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60232116A JPS6291409A (en) 1985-10-17 1985-10-17 Production of easy-to-sinter boron nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60232116A JPS6291409A (en) 1985-10-17 1985-10-17 Production of easy-to-sinter boron nitride powder

Publications (1)

Publication Number Publication Date
JPS6291409A true JPS6291409A (en) 1987-04-25

Family

ID=16934256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60232116A Pending JPS6291409A (en) 1985-10-17 1985-10-17 Production of easy-to-sinter boron nitride powder

Country Status (1)

Country Link
JP (1) JPS6291409A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845447A3 (en) * 1996-11-28 1998-09-30 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and method of preparing the same
JP2008280243A (en) * 2000-05-01 2008-11-20 Saint-Gobain Ceramics & Plastics Inc Highly delaminated hexagonal boron nitride powder, process for making, and use thereof
JP2012501942A (en) * 2008-09-05 2012-01-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Purification method for elemental boron
CN103864029A (en) * 2014-03-28 2014-06-18 武汉科技大学 Hexagonal boron nitride powder and preparation method of hexagonal boron nitride
CN109320247A (en) * 2018-11-27 2019-02-12 哈尔滨工业大学(威海) A kind of preparation method of the micro-nano composite wave-suction material of BN/C based on melamine
CN111377418A (en) * 2020-03-23 2020-07-07 河北工业大学 Synthesis method of porous hexagonal boron nitride
CN114534767A (en) * 2022-03-21 2022-05-27 福州大学 Platinum-series catalyst with boron nitride-doped silicon dioxide as carrier and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845447A3 (en) * 1996-11-28 1998-09-30 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and method of preparing the same
US6071841A (en) * 1996-11-28 2000-06-06 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and method of preparing the same
JP2008280243A (en) * 2000-05-01 2008-11-20 Saint-Gobain Ceramics & Plastics Inc Highly delaminated hexagonal boron nitride powder, process for making, and use thereof
JP2012501942A (en) * 2008-09-05 2012-01-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Purification method for elemental boron
US8790607B2 (en) 2008-09-05 2014-07-29 H. C. Starck Gmbh Method for purifying elemental boron
CN103864029A (en) * 2014-03-28 2014-06-18 武汉科技大学 Hexagonal boron nitride powder and preparation method of hexagonal boron nitride
CN103864029B (en) * 2014-03-28 2016-01-13 武汉科技大学 A kind of hexagonal boron nitride powder preparation method
CN109320247A (en) * 2018-11-27 2019-02-12 哈尔滨工业大学(威海) A kind of preparation method of the micro-nano composite wave-suction material of BN/C based on melamine
CN111377418A (en) * 2020-03-23 2020-07-07 河北工业大学 Synthesis method of porous hexagonal boron nitride
CN114534767A (en) * 2022-03-21 2022-05-27 福州大学 Platinum-series catalyst with boron nitride-doped silicon dioxide as carrier and preparation method thereof
CN114534767B (en) * 2022-03-21 2023-07-07 福州大学 Platinum-series catalyst with boron nitride doped silicon dioxide as carrier and preparation method thereof

Similar Documents

Publication Publication Date Title
KR890002543B1 (en) Method for preparation of hexagonal boron nitride powder
JPH0812440A (en) Material containing boron nitride and its production
JP7337804B2 (en) Hexagonal boron nitride powder and method for producing hexagonal boron nitride powder
Orthner et al. Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling
WO2022071245A1 (en) Hexagonal boron nitride powder and method for producing sintered body
EP3181274B1 (en) Method for producing titanium carbonitride powder
CN104671245A (en) Preparation method of hafnium carbide nano-powder
CN115093233A (en) Preparation method of high-purity superfine transition metal carbonitride high-entropy ceramic powder suitable for industrial mass production
Pillai et al. Synthesis of yttrium aluminium garnet by the glycerol route
Serivalsatit et al. Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics
CN102143912A (en) Method for purifying elementary boron
US4346068A (en) Process for preparing high-purity α-type silicon nitride
CN106565246B (en) A method of preparing aluminium nitride/yttrium nitride composite powder
JPS6291409A (en) Production of easy-to-sinter boron nitride powder
JPS61256905A (en) Fine hexagonal boron nitride power having high purity and its preparation
Caruso et al. Influence of pH value and solvent utilized in the sol–gel synthesis on properties of derived ZrO2 powders
Guillemet-Fritsch et al. Mechanical properties of nickel manganites-based ceramics used as negative temperature coefficient thermistors (NTC)
Gubarevich et al. Combustion synthesis of high yield Ti3SiC2 from TiC0. 67 with induction heating assistance
Tsay et al. Formation and densification of CaLa2S4 powders by sulfidization of modified metal alkoxides in different atmospheres
JPH0524849B2 (en)
JPS63274603A (en) Method for elevating purity of hexagonal boron nitride to high level
JPH0454612B2 (en)
JP2845983B2 (en) Boron nitride powder
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JP3385059B2 (en) Method for producing high-purity aluminum nitride powder