JPH02296707A - Production of aluminum nitride powder - Google Patents

Production of aluminum nitride powder

Info

Publication number
JPH02296707A
JPH02296707A JP11497989A JP11497989A JPH02296707A JP H02296707 A JPH02296707 A JP H02296707A JP 11497989 A JP11497989 A JP 11497989A JP 11497989 A JP11497989 A JP 11497989A JP H02296707 A JPH02296707 A JP H02296707A
Authority
JP
Japan
Prior art keywords
alumina
powder
aluminum nitride
nitride powder
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11497989A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchikawa
浩 内川
Yasuhisa Mihara
康央 三原
Hirotaka Senba
仙波 裕隆
Tsutomu Suzuki
務 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP11497989A priority Critical patent/JPH02296707A/en
Publication of JPH02296707A publication Critical patent/JPH02296707A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain aluminum nitride powder having a sharp distribution of particle size with little coase particle or aggregation by using a mixture of alumina and alumina sol with a specified proportion in the production process of aluminum nitride powder by a nitridation reduction method. CONSTITUTION:Alumina powder, carbon powder and alumina sol are mixed with to satisfy the relation of (alumina in the alumina sol)/(alumina in the alumina sol + alumina powder)X100(wt.%)=40 to 60(wt.%). Then the mixture is made to react in nitrogen-containing atmosphere by heating to reduce alumina.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水を反応系の分散媒として用いた時に、原料
アルミナ粉末とカーボン粉末の分散、混合を良くするこ
とにより、原料として用いたアルミナ粉末と殆ど同等に
粒径分布がシャープで粗粒及び凝集粒の少ない窒化アル
ミニウム粉末を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention improves the dispersion and mixing of raw material alumina powder and carbon powder when water is used as a dispersion medium in a reaction system. The present invention relates to a method for producing aluminum nitride powder, which has a sharp particle size distribution almost equivalent to that of alumina powder and has fewer coarse particles and agglomerated particles.

〔従来の技術〕[Conventional technology]

ICパッケージ及び半導体基板の材料として従来用いら
れてきたアルミナは、熱伝導率が低く、近年の半導体の
高集積化、高速化に伴うチップの放熱量の増加に対応し
きれなくなっており、市場はアルミナよりも熱伝導率が
よ(放熱性に優れた材料を要求している。
Alumina, which has traditionally been used as a material for IC packages and semiconductor substrates, has low thermal conductivity and is no longer able to keep up with the increase in heat dissipation from chips that has accompanied the recent increase in the integration and speed of semiconductors. It has higher thermal conductivity than alumina (requires a material with excellent heat dissipation).

窒化アルミニウムはアルミナに比べ一桁高い熱伝導率と
シリコンに近い熱膨張係数を有し、また絶縁抵抗、絶縁
耐圧、誘電率等の電気特性に加え、機械的特性にも優れ
ており、アルミナに代わるIC基板材料として期待され
ている。
Aluminum nitride has a thermal conductivity that is an order of magnitude higher than that of alumina and a coefficient of thermal expansion that is close to that of silicon.Aluminum nitride has excellent mechanical properties as well as electrical properties such as insulation resistance, dielectric strength, and dielectric constant. It is expected to be an alternative IC substrate material.

窒化アルミニウムの主な製造方法には、■全屈アルミニ
ウムを窒素雰囲気中で加熱して窒化する直接窒化法、■
アルミニウムのハロゲン化物または水素化物を気体状で
NH,と反応させる気相反応法、■アルミナとカーボン
の混合物を窒素雰囲気中で加熱してアルミナを還元窒化
法の三種類がある。■は工程が簡単であるが、原料金属
アルミニウム内部の窒化が難しく、粉末の粒度調節にお
いて焼成後の粉砕工程を伴うため不純物の混入がさけら
れず高純度化が困難である。■で得られる粉末は非晶質
で、このままではセラミックスの焼結用原料としては通
さないため結晶化の工程が必要となる。一方■の還元窒
化法は、原料アルミナとカーボンの純度にある程度依存
するが、原料として高純度品が手に入りやすい現状に於
いては、直接窒化法に比して高純度品を作り易い状況に
あり、高熱伝導性基板の原料となる高純度窒化アルミニ
ウム粉末を得る方法としては、還元窒化法が有力視され
ている。
The main manufacturing methods for aluminum nitride include: ■ Direct nitriding method, in which totally bent aluminum is heated in a nitrogen atmosphere to nitride it, ■
There are three types of methods: a gas phase reaction method in which a halide or hydride of aluminum is reacted with NH in a gaseous state, and (2) a reduction nitridation method in which a mixture of alumina and carbon is heated in a nitrogen atmosphere to reduce alumina. Process (2) is simple, but it is difficult to nitridate the inside of the raw metal aluminum, and because it involves a pulverization step after firing to adjust the particle size of the powder, contamination with impurities cannot be avoided, making it difficult to achieve high purity. The powder obtained in step (2) is amorphous and cannot be used as a raw material for sintering ceramics, so a crystallization step is required. On the other hand, the reductive nitriding method described in (2) depends to some extent on the purity of the raw materials alumina and carbon, but in the current situation where high-purity products are readily available as raw materials, it is easier to produce high-purity products than the direct nitriding method. Therefore, the reduction nitriding method is considered to be a promising method for obtaining high-purity aluminum nitride powder, which is a raw material for highly thermally conductive substrates.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記■の還元窒化法により窒化アルミニウム粉末を製造
する場合、得られた窒化アルミニウム粉末の粒度分布及
び凝集性は、原料アルミナの選定によっである程度改善
することができるが、窒化反応の生じる1400℃以下
の温度でアルミナ粉末同志が初期焼結を起しネックを形
成するため、原料粉末に比較すると凝集粒子(二次粒子
)が多くなり、広い粒度分布をもつものしか得られない
。このような粉末を原料として焼結させた場合には、気
孔の多い低密度の焼結体しか得られず、熱伝導率の向上
は望めない。従って高熱伝導性窒化アルミニウム粉末を
得るには、凝集粒子が少なく、シャープな粒度分布をも
つ粉末が必要となってくる。
When aluminum nitride powder is produced by the reductive nitriding method described in (2) above, the particle size distribution and cohesiveness of the obtained aluminum nitride powder can be improved to some extent by selecting the raw material alumina, but at 1400°C where the nitriding reaction occurs. At temperatures below, alumina powders undergo initial sintering and form a neck, so compared to the raw material powder, there are more agglomerated particles (secondary particles), and only those with a wide particle size distribution can be obtained. When such powder is used as a raw material for sintering, only a low-density sintered body with many pores is obtained, and no improvement in thermal conductivity can be expected. Therefore, in order to obtain aluminum nitride powder with high thermal conductivity, powder with few agglomerated particles and a sharp particle size distribution is required.

原料のアルミナ粉末とカーボン粉末を湿式で混合する場
合には、均一に分散、混合が行われる必要がある。本来
アルミナ粉末は親水性表面を有し、逆にカーボン粉末は
疎水性表面を有し、このような相反する表面特性の二つ
の粉末を同一の分散媒中に均一に分散、混合させること
は、非常に難しい。
When alumina powder and carbon powder as raw materials are wet-mixed, it is necessary to uniformly disperse and mix them. Originally, alumina powder has a hydrophilic surface, while carbon powder has a hydrophobic surface. Uniformly dispersing and mixing these two powders with contradictory surface characteristics in the same dispersion medium is extremely difficult.

混合、分散状態が悪いと焼成した窒化アルミニウム粉末
の特性も凝集粒子の多い広い粒度分布をもつものになっ
てしまう。
If the mixing and dispersion conditions are poor, the fired aluminum nitride powder will have a wide particle size distribution with many agglomerated particles.

分散媒として、アセトン等の有機溶媒を用いた方が分散
性は向上するが、乾燥、造粒等の後工程の簡便性、経済
性を考慮すると、木を使用するのが好ましい。しかし、
水を分散媒として用いた場合には、均一分散が難しく、
適当な分散剤及び湿潤剤を検討する必要がある。
Although the dispersibility is improved when an organic solvent such as acetone is used as the dispersion medium, it is preferable to use wood in consideration of the simplicity and economic efficiency of post-processes such as drying and granulation. but,
When water is used as a dispersion medium, uniform dispersion is difficult;
Suitable dispersants and wetting agents need to be considered.

従来の湿式混合法では、相反する表面特性を有する粉末
同士を一度の操作で分散、混合させようとするため、ど
うしても各粉末の分散が不十分となり、焼成後の粗粒子
及び凝集粒子の生成を制御することができなかった。ま
た微細で均一粒径の窒化アルミニウム粉末を得る手段と
して、アルミニウムアルコキシドと炭素粉末の混合液に
水を加えて加水分解を行わせたり、水溶性アルミニウム
塩と炭素粉末の混合液にアルカリを加えて中和沈澱を行
わせる方法も提案されている。しかし、加水分解又は中
和沈澱のために水またはアルカリを滴下すると局所的な
沈澱を生成し、すぐに凝集し。
Conventional wet mixing methods attempt to disperse and mix powders with contradictory surface characteristics in a single operation, which inevitably results in insufficient dispersion of each powder, resulting in the formation of coarse particles and agglomerated particles after firing. I couldn't control it. In addition, as a means to obtain aluminum nitride powder with a fine and uniform particle size, water is added to a mixture of aluminum alkoxide and carbon powder to perform hydrolysis, or an alkali is added to a mixture of water-soluble aluminum salt and carbon powder. A method of performing neutralization precipitation has also been proposed. However, when water or alkali is added dropwise for hydrolysis or neutralization precipitation, localized precipitation is produced and flocculation occurs immediately.

てしまうという問題点があり、得られる粉末の凝集性の
改善は難しい。
However, it is difficult to improve the cohesiveness of the resulting powder.

そのため、本発明者等は、原料粉末の混合法を吟味し直
し、水を分散媒として用い、さらにこれにアルミナゾル
を添加すると分散性を改良できることがわかった。従っ
て、本発明の目的は、水を分散媒として用いた時、原料
アルミナ粉末とカーボン粉末の分散、混合を良くするこ
とにより、原料の高純度アルミナ粉末と同程度に粗粒子
及び凝集粒子が少なく、粒度分布のシャープな窒化アル
ミニウム粉末を製造する方法を提供することである。
Therefore, the present inventors reexamined the mixing method of the raw material powder and found that dispersibility could be improved by using water as a dispersion medium and further adding alumina sol to this. Therefore, an object of the present invention is to improve the dispersion and mixing of raw alumina powder and carbon powder when water is used as a dispersion medium, thereby reducing coarse particles and aggregated particles to the same extent as the raw material high-purity alumina powder. The object of the present invention is to provide a method for producing aluminum nitride powder with a sharp particle size distribution.

〔問題点を解決するための手段〕[Means for solving problems]

前述のごとく、窒化還元法で得られる窒化アルミニウム
粉末の純度、粒径及び粒度分布はある程度原料アルミナ
粉末のそれに依存する。従って、高純度窒化アルミニウ
ム粉末を得るための必要条件として高純度アルミナを原
料とすることが好ましく、その選定条件としては、中心
粒径1.0μm以下で、シャープな粒度分布を有し、F
e、Si、Ca等の金属不純物量の少ないものがあげら
れる。原料カーボンも高純度で微粉(平均粒径0.5μ
m以下、灰分0.3重量%以下)のものを用いた方がよ
く、アセチレンブラック、ファーネスブラック、チャン
ネルブラック、カーボンブラック等が知られているが高
純度という点ではカーボンブランクが好ましい。
As mentioned above, the purity, particle size and particle size distribution of the aluminum nitride powder obtained by the nitriding reduction method depend to some extent on that of the raw material alumina powder. Therefore, as a necessary condition for obtaining high-purity aluminum nitride powder, it is preferable to use high-purity alumina as a raw material.
Examples include those containing a small amount of metal impurities such as e, Si, and Ca. The raw material carbon is also highly pure and fine powder (average particle size 0.5μ).
Acetylene black, furnace black, channel black, carbon black, etc. are known, but carbon blank is preferable in terms of high purity.

問題は、これら二つの粉末を水中に均一に分散させかつ
充分に混合させることが重要であるが、水に対しての分
散性に相反するものがあり均一分散が難しい。
The problem is that it is important to uniformly disperse these two powders in water and mix them thoroughly, but uniform dispersion is difficult because they have contradictory dispersibility in water.

通常、水を分散媒としてアルミナ粉末とカーボン粉末を
混合する場合、水溶性の高分子界面活性剤を添加するが
、本発明においてはその代わりに、原料アルミナの一部
として金属不純物量の少ないアルミナゾルを用いること
により、このゾル中にアルミナ粉末とカーボン粉末を入
れて混合スラリーを作り適度の水を加えて粘度を調整し
、ボールミルにて混入した。これにより原料アルミナの
一次粒径と殆ど変わらない一次粒径の窒化アルミニウム
粉末が得られる。
Normally, when alumina powder and carbon powder are mixed using water as a dispersion medium, a water-soluble polymeric surfactant is added, but in the present invention, instead of that, alumina sol with a small amount of metal impurities is used as part of the raw material alumina. Alumina powder and carbon powder were added to this sol to make a mixed slurry, an appropriate amount of water was added to adjust the viscosity, and the slurry was mixed in using a ball mill. As a result, aluminum nitride powder having a primary particle size that is almost the same as the primary particle size of the raw material alumina can be obtained.

アルミナゾルとしては例えば8産化学工業社製の商品名
「アルミナゾル−100J、rアルミナゾル200J、
「アルミナゾル〜520」等を挙げることができる。
Examples of alumina sol include the product names "Alumina Sol-100J" and "R Alumina Sol 200J" manufactured by Yasan Kagaku Kogyo Co., Ltd.
Examples include "Alumina Sol-520".

こうして得られたスラリーをスプレードライヤ、または
ロータリーエバポレーター等を用いて乾燥し、場合によ
っては造粒過程を加えることができる。
The slurry thus obtained can be dried using a spray dryer, a rotary evaporator, or the like, and a granulation process can be added depending on the case.

得られた混合物(粉末、造粒物)を窒素、アンモニアま
たはこれらの混合物等の窒素を含む雰囲気中において1
450〜1700℃で2〜6時間加熱処理することによ
り、還元窒化反応を起こさせる。1700℃を超えると
粒成長が進みすぎて粗粒子が多くなり、1450℃未満
だと窒化に長時間を要するので好ましくない。さらに、
窒化反応後残っているカーボンを除去するための酸化雰
囲気中で600〜700℃、1〜3時間加熱処理を行い
窒化アルミニウム粉末を得る。
The obtained mixture (powder, granules) is heated in an atmosphere containing nitrogen such as nitrogen, ammonia, or a mixture thereof.
A reductive nitriding reaction is caused by heat treatment at 450 to 1700°C for 2 to 6 hours. If the temperature exceeds 1,700°C, grain growth will proceed too much, resulting in a large number of coarse particles, and if the temperature is less than 1,450°C, nitriding will take a long time, which is not preferable. moreover,
After the nitriding reaction, heat treatment is performed at 600 to 700° C. for 1 to 3 hours in an oxidizing atmosphere to remove remaining carbon to obtain aluminum nitride powder.

以下、本発明を実施例、従来例によって更に詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to examples and conventional examples.

第1表に示す原料混合割合で純度99.99%、BBT
比表面積9.7d、平均粒径1.5μI11.1μm以
下90%、金属不純物(Fe+Ca、Si)総量110
0pp以下の高純度アルミナ粉末と、灰分0.05%の
カーボンブランクと、金属不純物(Fe、 Ca、 S
t)総ffi480ppm、アルミナ分含有率10.2
8%のアルミナゾル(8産化学工業社製、「アルミナゾ
ル−100J )とをイオン交換水に分散させ、径Lo
imおよび径15mmの高純度アルミナボール各400
 gと共に21のポリエチレン容器に入れ、40rpm
の回転速度で20時時間式混合を行ない、得られたスラ
リーをスプレードライヤーを用いて乾燥、造粒し、次い
で得られた粉末を1個当り約5gのベレツトに成形し、
電気炉中で3ry?/hの窒素を流しながら、1660
℃、4時間加熱し還元窒化反応を行った。反応生成物を
空気中で700℃、1時間加熱して残留カーボンの除去
を行い窒化アルミニウム粉末を得た。
Purity 99.99%, BBT with raw material mixing ratio shown in Table 1
Specific surface area 9.7d, average particle size 1.5μI11.1μm or less 90%, total amount of metal impurities (Fe+Ca, Si) 110
High purity alumina powder of 0pp or less, carbon blank with ash content of 0.05%, and metal impurities (Fe, Ca, S
t) Total ffi 480ppm, alumina content 10.2
Disperse 8% alumina sol (manufactured by Yasan Kagaku Kogyo Co., Ltd., "Alumina Sol-100J") in ion-exchanged water, and
400 im and high purity alumina balls each with a diameter of 15 mm
Put it in a polyethylene container of 21 with g and 40 rpm.
The slurry obtained was dried and granulated using a spray dryer, and then the obtained powder was formed into pellets weighing approximately 5 g each.
3ry in an electric furnace? /h of nitrogen flow, 1660
℃ for 4 hours to perform a reductive nitriding reaction. The reaction product was heated in air at 700° C. for 1 hour to remove residual carbon and obtain aluminum nitride powder.

なお、アルミナゾルを用いない従来例ではフミン酸1.
5g5PVA系バインダー4.0gを使ってアルミナと
カーボンブランクをイオン交換水に分散させて試料を作
った。
In addition, in the conventional example that does not use alumina sol, humic acid 1.
A sample was prepared by dispersing alumina and carbon blank in ion-exchanged water using 4.0 g of 5g5 PVA-based binder.

第1表に得られた窒化アルミニウム粉末のBET比表面
積、平均粒径ならびに元素分析値を示す。
Table 1 shows the BET specific surface area, average particle size, and elemental analysis values of the aluminum nitride powder obtained.

また、得られた窒化アルミニウム粉末のマイクロトラッ
クによる粒度分布曲線を第1図に示しく但し、実施例7
〜9は実施例6及び実施例10の曲線と重なる部分が多
く、図が見づら(なるので図示するのを省略した。)、
第2図にアルミナゾル混合割合と得られた窒化アルミニ
ウム粉末の平均粒径り、。との関係を示す。
In addition, the particle size distribution curve of the obtained aluminum nitride powder by microtrack is shown in FIG. 1. However, Example 7
-9 have many parts that overlap with the curves of Example 6 and Example 10, making the diagram difficult to see (so the illustration is omitted),
Figure 2 shows the alumina sol mixing ratio and the average particle size of the obtained aluminum nitride powder. Indicates the relationship between

第1表の結果および第1図ならびに第2図かられかるよ
うに、アルミナにアルミナゾルを添加すると、アルミナ
のみを用いた従来例よりも、生成した窒化アルミニウム
粉末の比表面積は大きくなり、平均粒径は小さくなる。
As can be seen from the results in Table 1 and Figures 1 and 2, when alumina sol is added to alumina, the specific surface area of the produced aluminum nitride powder becomes larger than that of the conventional example using only alumina, and the average particle size increases. The diameter becomes smaller.

また、アルミナゾルのみを用いた実施例10では窒化ア
ルミニウム粉末の比表面積は太き(、平均粒径は小さい
。一般にアルミナゾル中のアルミナ分の含有率は製品に
よっても異なるが大体10%位のものであるから、実施
例10のようにアルミナゾルのみを用いて窒化アルミニ
ウム粉末の製造する場合に、アルミナ分はアルミナゾル
全量のうち約l/10を占めるに過ぎないことになる。
In addition, in Example 10 where only alumina sol was used, the specific surface area of the aluminum nitride powder was large (and the average particle size was small. Generally, the content of alumina in alumina sol varies depending on the product, but is approximately 10%). Therefore, when producing aluminum nitride powder using only alumina sol as in Example 10, the alumina content only accounts for about 1/10 of the total amount of alumina sol.

従ってアルミナのみから窒化アルミニウム粉末を製造す
る場合と同量の窒化アルミニウム粉末を得たい場合には
、アルミナゾルの外に使用する水の量を考慮すると、後
者の場合の原料スラリーの量は前者の場合の6倍以上に
なり、乾燥・造粒に要する時間は著しく長くなる。しか
もアルミナゾル中のアルミナ分の粒径は0.01〜0.
05μmと極めて小さいから乾燥・造粒工程が容易でな
い。
Therefore, if you want to obtain the same amount of aluminum nitride powder as when producing aluminum nitride powder only from alumina, considering the amount of water used in addition to the alumina sol, the amount of raw material slurry in the latter case is the same as in the former case. The time required for drying and granulation becomes significantly longer. Moreover, the particle size of the alumina component in the alumina sol is 0.01 to 0.
Since it is extremely small at 0.05 μm, drying and granulation processes are not easy.

一方、アルミナとアルミナゾルとの混合割合が式 アルミナゾル中のアルミナ分/(アルミナゾル中のアル
ミナ分子アルミナ)  X100(重量%)により計算
して40重量%以上であれば、アルミナゾルのみを用い
たときの窒化アルミニウム粉末と略同様なりET比表面
積および平均粒径を有する窒化アルミニウム粉末が得ら
れるが、アルミナゾルの混合割合が40〜60重量%で
あれば原料スラリーの量もそれ程多くならず、また、乾
燥・造粒も実施し易くなるので、40〜60重量%とす
るのが好ましい。
On the other hand, if the mixing ratio of alumina and alumina sol is 40% by weight or more calculated using the formula: alumina content in alumina sol/(alumina molecule in alumina sol) Aluminum nitride powder can be obtained which has approximately the same ET specific surface area and average particle size as aluminum powder, but if the mixing ratio of alumina sol is 40 to 60% by weight, the amount of raw material slurry will not increase so much, and drying and Since granulation becomes easier, the content is preferably 40 to 60% by weight.

なお、本発明者は各実施例によって得られた窒化アルミ
ニウムについて、何れもX線回折により窒化アルミニウ
ムの回折ビークのみを確認した。
In addition, the present inventor confirmed only the diffraction peak of aluminum nitride by X-ray diffraction with respect to the aluminum nitride obtained in each example.

また、走査型電子顕微鏡による観察によれば、粗粒子、
凝集粒子(二次粒子)の存在は少なく、実施例で得られ
た窒化アルミニウム粉末は粒径の成程度揃った一次粒子
の集まりであることがねかった。
Furthermore, according to observation using a scanning electron microscope, coarse particles,
The presence of agglomerated particles (secondary particles) was small, and the aluminum nitride powder obtained in the examples was a collection of primary particles with uniform particle size.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アルミナゾルを原料アルミナ粉末に添
加することによって、得られる窒化アルミニウム粉末の
平均粒径を小さ(し、凝集粒も減少することができる。
According to the present invention, by adding alumina sol to raw alumina powder, the average particle size of the resulting aluminum nitride powder can be reduced (and the number of agglomerated particles can also be reduced).

又原料すべてを高価なアルミナゾルにしなくても、原料
アルミナ粉末と同程度の粒度分布をもつ窒化アルミニウ
ム粉末を得られる。また、本発明で得られた窒化アルミ
ニウム粉末は原料アルミナ粉末の凝集性及び粒度分布に
匹敵し、粗粒子、凝集粒子が少な(、粒度分布がシャー
プであり、この粉末を用いて適当な焼結条件のもとで焼
結させることにより、気孔の少ない高熱伝導性の焼結体
が得られる。
Moreover, aluminum nitride powder having a particle size distribution comparable to that of the raw material alumina powder can be obtained without using all raw materials as expensive alumina sol. In addition, the aluminum nitride powder obtained in the present invention has a cohesiveness and particle size distribution comparable to that of the raw material alumina powder, has few coarse particles and agglomerated particles (and has a sharp particle size distribution), and can be used for appropriate sintering. By sintering under these conditions, a highly thermally conductive sintered body with few pores can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例、実施例1〜6および実施例10で得ら
れた窒化アルミニウム粉末のマイクロトラックによる粒
度分布曲線を示し、第2図は従来例および各実施例にお
けるアルミナゾル添加量と得られた窒化アルミニウム粉
末の平均粒径り、。との関係を示す。
Figure 1 shows the particle size distribution curves of aluminum nitride powder obtained in the conventional example, Examples 1 to 6, and Example 10 by microtrack, and Figure 2 shows the amount of alumina sol added and the obtained alumina sol in the conventional example and each example. Average particle size of aluminum nitride powder. Indicates the relationship between

Claims (4)

【特許請求の範囲】[Claims] (1)アルミナ粉末とカーボン粉末の混合物を窒素を含
む雰囲気中で加熱反応させてアルミナを還元する還元窒
化法により窒化アルミニウム粉末を製造する方法におい
て、アルミナ粉末、カーボン粉末及びアルミナゾルの混
合物を使用することを特徴とする窒化アルミニウム粉末
の製造方法。
(1) A mixture of alumina powder, carbon powder, and alumina sol is used in a method for producing aluminum nitride powder by a reductive nitriding method in which a mixture of alumina powder and carbon powder is heated and reacted in an atmosphere containing nitrogen to reduce alumina. A method for producing aluminum nitride powder, characterized by:
(2)アルミナとアルミナゾルとの混合割合が式アルミ
ナゾル中のアルミナ分/(アルミナゾル中のアルミナ分
子アルミナ)×100(重量%)により計算して40重
量%以上である請求項1に記載の窒化アルミニウム粉末
の製造方法。
(2) The aluminum nitride according to claim 1, wherein the mixing ratio of alumina and alumina sol is 40% by weight or more calculated from the formula: alumina content in alumina sol/(alumina molecule in alumina sol) x 100 (weight%) Method of manufacturing powder.
(3)アルミナとアルミナゾルとの混合物のアルミナゾ
ル中のアルミナの割合が式 アルミナゾル中のアルミナ分/(アルミナゾル中のアル
ミナ分+アルミナ)×100(重量%)により計算して
40〜60重量%である請求項1に記載の窒化アルミニ
ウム粉末の製造方法。
(3) The proportion of alumina in the alumina sol of the mixture of alumina and alumina sol is 40 to 60% by weight, calculated by the formula: alumina content in alumina sol/(alumina content in alumina sol + alumina) x 100 (weight%). A method for producing aluminum nitride powder according to claim 1.
(4)窒素を含む雰囲気が窒素、アンモニアまたはこれ
らの混合物である請求項1ないし3の何れかに記載の窒
化アルミニウム粉末の製造方法。
(4) The method for producing aluminum nitride powder according to any one of claims 1 to 3, wherein the nitrogen-containing atmosphere is nitrogen, ammonia, or a mixture thereof.
JP11497989A 1989-05-10 1989-05-10 Production of aluminum nitride powder Pending JPH02296707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11497989A JPH02296707A (en) 1989-05-10 1989-05-10 Production of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11497989A JPH02296707A (en) 1989-05-10 1989-05-10 Production of aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPH02296707A true JPH02296707A (en) 1990-12-07

Family

ID=14651354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11497989A Pending JPH02296707A (en) 1989-05-10 1989-05-10 Production of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPH02296707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134259A1 (en) * 2017-01-18 2018-07-26 Evonik Degussa Gmbh Process for producing aluminum nitride and a special aluminum nitride itself
CN110903092A (en) * 2019-12-13 2020-03-24 苏州纳迪微电子有限公司 High-purity porous AlN ceramic and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134259A1 (en) * 2017-01-18 2018-07-26 Evonik Degussa Gmbh Process for producing aluminum nitride and a special aluminum nitride itself
CN110903092A (en) * 2019-12-13 2020-03-24 苏州纳迪微电子有限公司 High-purity porous AlN ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109790027B (en) Method for producing spherical aluminum nitride powder
US4780299A (en) Method for producing aluminum nitride powder
US5151260A (en) Process for preparing fine powders of aluminum nitride
JP3290686B2 (en) Method for producing aluminum nitride powder
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JPH02296707A (en) Production of aluminum nitride powder
JPS6278103A (en) Production of aluminum nitride powder
CN115367717A (en) Preparation method of low-agglomeration aluminum nitride powder
JP2000195531A (en) Alpha-lithium aluminate, its manufacture and molten carbonate fuel cell electrolyte holding material
JP4111478B2 (en) Method for producing silicon carbide microspheres
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPS61155210A (en) Preparation of easily sinterable aluminum nitride powder
JPH0459609A (en) Production of aluminum nitride powder
JPH0465307A (en) Production of aluminum nitride powder
JPS62100405A (en) Aluminium nitride powder and production thereof
JPS63225506A (en) Production of aluminum nitride powder
JPS62246812A (en) Production of aluminum nitride powder
JPH0354111A (en) Production of sic fine powder
CN117720353A (en) Method for preparing aluminum nitride powder by using soluble aluminum source and carbon source
JPH05294614A (en) Gamma-lithium aluminate and its production
JPH02293308A (en) Preparation of aluminum nitride powder
JPS63206306A (en) Production of aluminum nitride powder
JPH06172040A (en) Production of aluminum nitride sintered compact
JPH03215305A (en) Aluminum nitride powder and its production
JPH04124005A (en) Production of aluminum nitride powder