JP3533532B2 - Large particle size aluminum nitride powder and method for producing the same - Google Patents

Large particle size aluminum nitride powder and method for producing the same

Info

Publication number
JP3533532B2
JP3533532B2 JP02471794A JP2471794A JP3533532B2 JP 3533532 B2 JP3533532 B2 JP 3533532B2 JP 02471794 A JP02471794 A JP 02471794A JP 2471794 A JP2471794 A JP 2471794A JP 3533532 B2 JP3533532 B2 JP 3533532B2
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
particle size
nitride powder
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02471794A
Other languages
Japanese (ja)
Other versions
JPH07215707A (en
Inventor
高潮 頼
裕二 永井
利隆 桜井
雅利 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP02471794A priority Critical patent/JP3533532B2/en
Publication of JPH07215707A publication Critical patent/JPH07215707A/en
Application granted granted Critical
Publication of JP3533532B2 publication Critical patent/JP3533532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放熱用充填材料などと
して使用される窒化アルミニウム粉末およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride powder used as a heat radiation filling material and a method for producing the same.

【0002】[0002]

【従来技術とその問題点】近年半導体デバイス、ICな
どの高集積化が進むに従って、回路からの発熱量も増大
しており、放熱乃至熱除去を如何にして効率良く行なう
かが重要な技術的課題となっている。現在半導体デバイ
ス、ICなどは、高分子材料により封止され、保護され
ている。しかしながら、この様な高分子材料は、それ自
体の熱伝導率が極めて低いので、熱伝導性を改善するた
めには、高熱伝導性の無機材料を放熱用の充填材料とし
て複合化を行なう必要がある。
2. Description of the Related Art In recent years, as the degree of integration of semiconductor devices, ICs, and the like has advanced, the amount of heat generated from circuits has also increased, and it is important to efficiently dissipate heat or remove heat. It has become a challenge. Currently, semiconductor devices, ICs, etc. are encapsulated and protected by polymer materials. However, since such a polymer material itself has extremely low thermal conductivity, in order to improve the thermal conductivity, it is necessary to use an inorganic material having high thermal conductivity as a filling material for heat dissipation to form a composite. is there.

【0003】窒化アルミニウムは、高熱伝導性と電気絶
縁性とを備えているので、半導体の基板材料として実用
化されつつあり、また放熱部品材料、放熱用充填材料な
どとしても注目されている。
Aluminum nitride, which has high thermal conductivity and electrical insulation, is being put to practical use as a substrate material for semiconductors, and is also attracting attention as a heat radiation component material, a heat radiation filling material, and the like.

【0004】しかしながら、現在市販されている窒化ア
ルミニウム粉末の殆どは、燒結体製造用の原料粉末であ
り、その平均粒子径は3μm以下と小さいので、凝集し
やすく、充填材料としては適していない。
However, most of the aluminum nitride powders currently on the market are raw material powders for producing a sintered body, and their average particle diameter is as small as 3 μm or less, so that they easily aggregate and are not suitable as a filling material.

【0005】窒化アルミニウム粉末の工業的製造のため
の主な方法には、以下のようなものがある。
The main methods for industrial production of aluminum nitride powder are as follows.

【0006】(1)アルミナ質化合物の炭素粉末による
還元窒化方法;この方法は、反応速度が遅いので、通常
平均粒子径2μm未満程度の燒結体製造用の原料微粉末
が得られるにすぎない。
(1) Reductive nitriding method using carbon powder of alumina compound; This method has a slow reaction rate, and therefore, usually only fine powder of raw material for producing a sintered body having an average particle size of less than 2 μm can be obtained.

【0007】(2)金属アルミニウム粉末の直接窒化方
法;この方法は、一般に生成物の粒子径制御が困難であ
り、製造条件によっては、微粉末或いはウイスカーが生
成しやすい。
(2) Direct nitriding method of metallic aluminum powder: In this method, it is generally difficult to control the particle size of the product, and fine powder or whiskers are easily produced depending on the production conditions.

【0008】従って、上記の様な従来方法をそのまま使
用する場合には、大粒径の窒化アルミニウム粉末を得る
ことは困難である。
Therefore, when the conventional method as described above is used as it is, it is difficult to obtain a large grain size aluminum nitride powder.

【0009】上記(1)の方法を改良して大粒径の窒化
アルミニウムを製造する試みも提案されている。例え
ば、特開平3−23206号公報は、アルミナの炭化反
応と炭化アルミニウムの還元窒化反応とを組み合わせる
ことにより、大粒径の窒化アルミニウム粉末を製造する
方法を開示している。しかしながら、この方法により製
造された窒化アルミニウム粉末の粒径は未だ十分に大き
いものとはいえず、且つ粉末の凝集を十分に防止し得な
いものと推考される。また、この方法では、製造工程で
かなりの高温(1400〜1800℃程度)且つ長時間
(5時間以上)の条件下での2回の熱処理と複雑なガス
制御とが必要であるため、製造コストが高く、量産性に
欠けるという問題点もある。
Attempts have been made to improve the method (1) to produce large-grain aluminum nitride. For example, Japanese Patent Laid-Open No. 3-23206 discloses a method of producing a large-sized aluminum nitride powder by combining a carbonization reaction of alumina and a reduction nitriding reaction of aluminum carbide. However, the particle size of the aluminum nitride powder produced by this method is not yet sufficiently large, and it is presumed that the agglomeration of the powder cannot be sufficiently prevented. In addition, this method requires two heat treatments and a complicated gas control under conditions of a considerably high temperature (about 1400 to 1800 ° C.) and a long time (5 hours or more) in the manufacturing process. However, there is also a problem in that mass production is lacking.

【0010】[0010]

【発明が解決しようとする課題】従って、本発明の主な
目的は、簡易な操作条件下に粒径の大きな窒化アルミニ
ウム粒子を製造し得る新たな方法を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a new method capable of producing aluminum nitride particles having a large particle size under simple operating conditions.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記のよう
な従来技術の問題点に鑑みて、鋭意研究を重ねた結果、
金属アルミニウム粉末を直接窒化して窒化アルミニウム
粉末を製造するに当たり、窒化反応発熱を利用して、窒
化反応と燒結とを同時に起こさせて窒化アルミニウム粗
粉を合成した後、解砕し、分級する場合には、平均粒径
の大きな単粒子からなる窒化アルミニウム粉末が得られ
ることを見出した。
The present inventor has conducted extensive studies in view of the problems of the prior art as described above, and as a result,
In the case of directly nitriding metallic aluminum powder to produce aluminum nitride powder, by utilizing nitriding reaction heat generation to simultaneously cause nitriding reaction and sintering to synthesize aluminum nitride coarse powder, and then crushing and classifying Have found that an aluminum nitride powder composed of single particles having a large average particle size can be obtained.

【0012】即ち、本発明は、下記の大粒径の窒化アル
ミニウム粉末とその製造方法を提供する。
That is, the present invention provides the following large-sized aluminum nitride powder and a method for producing the same.

【0013】1.レーザー回折法により測定した平均粒
径(D50)が4μm以上で、且つD50から算出した比表
面積(S1 )とBET法により測定した比表面積(S
2 )との比=S1 /S2 が0.3以上であることを特徴
とする大粒径の窒化アルミニウム粉末。
1. The average particle size (D 50 ) measured by the laser diffraction method is 4 μm or more, and the specific surface area (S 1 ) calculated from D 50 and the specific surface area (S
The ratio of 2 ) to S 1 / S 2 is 0.3 or more, and a large grain size aluminum nitride powder.

【0014】2.レーザー回折法により測定した平均粒
径(D50)が10〜50μmの範囲にある上記項1に記
載の大粒径の窒化アルミニウム粉末。
2. The large particle size aluminum nitride powder according to the above 1, wherein the average particle size (D 50 ) measured by a laser diffraction method is in the range of 10 to 50 μm.

【0015】3.金属アルミニウム粉末30〜80重量
部と窒化アルミニウム粉末70〜20重量部との合計1
00重量部からなる混合粉末をプレス造粒した混合造粒
体を窒素を含む非酸化性雰囲気中800〜1200℃で
焼成した後、解砕および分級すること特徴とする上記項
1に記載の大粒径の窒化アルミニウム粉末の製造方法。
3. A total of 30 to 80 parts by weight of metallic aluminum powder and 70 to 20 parts by weight of aluminum nitride powder 1
The mixed granules obtained by press granulating the mixed powder consisting of 00 parts by weight are fired at 800 to 1200 ° C. in a non-oxidizing atmosphere containing nitrogen, and then crushed and classified. Method for producing aluminum nitride powder having a grain size.

【0016】一般に、大粒径の窒化アルミニウム粉末を
合成するためには、窒化反応生成物を粒成長させる、即
ち窒化反応生成物を燒結させなければならない。この様
な粒成長或いは燒結のためには、約2000℃という高
温条件が必要である。アルミナを使用する還元窒化反応
では、吸熱反応であるため、この高温条件を達成するに
は、外部からの高価な加熱設備が必要である。その結
果、窒化アルミニウム粉末の製造コストが高くなり、量
産化が困難となる。しかるに、金属アルミニウムの直接
窒化反応では、外部からの熱補給は一切必要ではなく、
それ自身の反応熱のみで反応温度は約2000℃に到達
する。
In general, in order to synthesize a large particle size aluminum nitride powder, the nitriding reaction product must be grain-grown, that is, the nitriding reaction product must be sintered. For such grain growth or sintering, a high temperature condition of about 2000 ° C. is required. Since the reductive nitriding reaction using alumina is an endothermic reaction, expensive heating equipment from the outside is required to achieve this high temperature condition. As a result, the manufacturing cost of the aluminum nitride powder increases, and mass production becomes difficult. However, in the direct nitriding reaction of metallic aluminum, no external heat supply is necessary,
The reaction temperature reaches about 2000 ° C. only by its own heat of reaction.

【0017】金属アルミニウム粉末の発熱反応を利用す
る本発明方法においては、発熱量、即ち反応温度は、金
属アルミニウム粉末と窒化アルミニウム粉末とからなる
原料混合粉末中の金属アルミニウム粉末の配合比率を調
整することにより、容易に制御し得る。
In the method of the present invention utilizing the exothermic reaction of metal aluminum powder, the amount of heat generation, that is, the reaction temperature, controls the mixing ratio of the metal aluminum powder in the raw material mixed powder consisting of the metal aluminum powder and the aluminum nitride powder. Therefore, it can be easily controlled.

【0018】金属アルミニウム粉末としては、高純度
(99.5%以上)の微粉末(例えば平均粒径60μm
以下程度のアトマイズドアルミニウム粉末)が好まし
い。
The metal aluminum powder is a fine powder of high purity (99.5% or more) (for example, an average particle size of 60 μm).
The following level of atomized aluminum powder) is preferable.

【0019】窒化アルミニウム粉末としては、やはり高
純度(99.5%以上)の微粉末(例えば平均粒径10
μm以下程度の粉末)が好ましい。なお、窒化アルミニ
ウム粉末としては、必要に応じてアルカリ土類金属(カ
ルシウム、ストロンチウム、バリウムなど)、希土類金
属元素(イットリウム、ランタン、セリウムなど)また
はその化合物(イットリアなど)を少量添加したものを
も使用することができる。この様な第3成分の添加によ
り、燒結の促進による粒子の更なる粗大化が行われ、酸
素のトラップ効果による粉末の熱伝導率の改善などが達
成される。本発明においては、この様な第3成分を含有
するものをも、窒化アルミニウムというものとする。
The aluminum nitride powder is also fine powder of high purity (99.5% or more) (for example, an average particle size of 10).
A powder of about μm or less) is preferable. In addition, as the aluminum nitride powder, it is possible to add a small amount of an alkaline earth metal (calcium, strontium, barium, etc.), a rare earth metal element (yttrium, lanthanum, cerium, etc.) or a compound thereof (yttria, etc.) if necessary. Can be used. By adding such a third component, the particles are further coarsened by promoting the sintering, and the thermal conductivity of the powder is improved by the oxygen trapping effect. In the present invention, a material containing such a third component is also referred to as aluminum nitride.

【0020】本発明において、使用する原料混合物は、
金属アルミニウム粉末30〜80重量部(より好ましく
は40〜70重量部)と窒化アルミニウム粉末70〜2
0重量部(より好ましくは60〜30重量部)との合計
100重量部を原料として使用する。金属アルミニウム
の配合割合が少なすぎる場合には、反応発熱量が不十分
となり、大粒子の形成率が低くなるのに対し、金属アル
ミニウムの配合割合が多すぎる場合には、金属アルミニ
ウム粒子相互の融着が激しくなって、かえって窒化反応
が妨げられ、窒化率が低下する。
In the present invention, the raw material mixture used is
30-80 parts by weight of metal aluminum powder (more preferably 40-70 parts by weight) and aluminum nitride powder 70-2
A total of 100 parts by weight of 0 parts by weight (more preferably 60 to 30 parts by weight) is used as a raw material. If the blending ratio of metallic aluminum is too low, the reaction exothermic amount becomes insufficient, and the formation rate of large particles becomes low, while if the blending ratio of metallic aluminum is too high, the fusion of the metallic aluminum particles with each other occurs. The garment becomes more vigorous, rather the nitriding reaction is hindered and the nitriding rate decreases.

【0021】直接窒化反応は、反応速度が早く、反応物
の高温での滞在時間が極めて短い(数分乃至十数分程
度)ので、窒化アルミニウムへの不純物酸素の固溶が少
なく、熱伝導率に悪影響を及ぼすアルミニウム酸窒化物
(AlON)の形成が抑制されるが、生成物の粒成長に
十分な時間が得られない。従って、本発明では、定常的
に反応を進行させ、燒結を促進するために、金属アルミ
ニウム粉末と窒化アルミニウム粉末とからなる原料混合
物粉末を成形し、造粒しておく必要がある。この際、上
記のアルカリ土類金属、希土類金属元素およびその化合
物を少量(7%程度まで)添加しておくことにより、反
応燒結速度をさらに促進することができる。造粒体の形
状、寸法、かさ密度などは、特に限定されないが、厚さ
0.5〜5mm程度で、理論密度の30〜70%程度の
かさ密度を有するペレット状とすることが好ましい。造
粒は、特に限定されず、公知の任意の方法により行うこ
とができる。造粒に際しては、不純物の混入を避けるた
めに、バインダーは使用しないことが好ましい。本発明
で使用する原料アルミニウム粉末は、柔らかい材料であ
って、バインダーとしての機能をも発揮するので、別個
にバインダーを添加する必要はない。
In the direct nitriding reaction, the reaction rate is fast and the residence time of the reactant at high temperature is extremely short (about several minutes to several tens of minutes), so that the solid solution of impurity oxygen in aluminum nitride is small and the thermal conductivity is high. The formation of aluminum oxynitride (AlON), which adversely affects the formation of AlN, is suppressed, but sufficient time cannot be obtained for grain growth of the product. Therefore, in the present invention, in order to allow the reaction to proceed steadily and promote the sintering, it is necessary to shape and granulate the raw material mixture powder consisting of the metal aluminum powder and the aluminum nitride powder. At this time, the reaction sintering rate can be further accelerated by adding a small amount (up to about 7%) of the above-mentioned alkaline earth metal, rare earth metal element and compound thereof. The shape, size, bulk density and the like of the granulated body are not particularly limited, but it is preferable to make pellets having a thickness of about 0.5 to 5 mm and a bulk density of about 30 to 70% of the theoretical density. Granulation is not particularly limited and can be performed by any known method. At the time of granulation, it is preferable not to use a binder in order to avoid mixing of impurities. Since the raw material aluminum powder used in the present invention is a soft material and also exhibits a function as a binder, it is not necessary to add a binder separately.

【0022】次いで、上記で得られた造粒体を例えばる
つぼなどの容器にに充填し、窒素を含む不活性雰囲気中
において800〜1200℃程度の温度で焼成する。焼
成時間は、充填量などにより異なるが、通常10分乃至
3時間程度である。
Next, the granules obtained above are filled in a container such as a crucible and fired at a temperature of about 800 to 1200 ° C. in an inert atmosphere containing nitrogen. The firing time varies depending on the filling amount and the like, but is usually about 10 minutes to 3 hours.

【0023】上記のようにして得られた窒化アルミニウ
ム燒結体は、解砕され、粉末とされる。解砕方法は特に
限定されず、振動ミル、ボールミル、ジェットミルなど
を使用して行うことができる。
The aluminum nitride sintered body obtained as described above is crushed into powder. The crushing method is not particularly limited, and a vibration mill, a ball mill, a jet mill or the like can be used.

【0024】上記のようにして解砕された窒化アルミニ
ウム粉体は、ついで必要ならば、分級される。分級に際
しては、未解砕の凝集粉をスクリーン分級などにより除
去した後、4μm以下の微粉をターボ分級などの乾式分
級により、或いは沈降などの湿式分級により、除去すれ
ばよい。本発明における窒化アルミニウム粉末の粒径
は、10〜50μm程度の範囲にあることがより好まし
い。また、本発明における窒化アルミニウム粉末は、レ
ーザー回折法で測定した平均粒径(D50)が4μm以上
で、且つD50から算出した比表面積(S1 )とBET法
により測定した比表面積(S2 )との比=S1 /S2
0.3以上であることを必須とする。
The aluminum nitride powder crushed as described above is then classified, if necessary. For classification, the uncrushed agglomerated powder may be removed by screen classification or the like, and then fine powder of 4 μm or less may be removed by dry classification such as turbo classification or wet classification such as sedimentation. The particle size of the aluminum nitride powder in the present invention is more preferably in the range of about 10 to 50 μm. Further, the aluminum nitride powder in the present invention has an average particle size (D 50 ) of 4 μm or more measured by a laser diffraction method, and a specific surface area (S 1 ) calculated from D 50 and a specific surface area (S It is essential that the ratio with 2 ) = S 1 / S 2 is 0.3 or more.

【0025】放熱用充填材料としては、一般に大粒径で
且つ凝集性の低い単粒子粉末が求められる。窒化アルミ
ニウム粉末の平均粒径(D50)が4μm未満である場合
には、凝集しやすい。凝集粒子が形成される場合には、
樹脂が凝集粒子内の空隙に入り難いので、成形体の密
度、強度、熱伝導率などの特性が劣る。また、凝集粒子
は、比表面積が大きく、化学的活性が高いので、放熱用
充填材料としての化学的安定性にも劣る。一方、窒化ア
ルミニウムの単粒子と凝集粒子とは、粒度分布測定では
区別し難いし、比表面積Sのみで単粒子であるか否かを
判断することもできない。また、SEM写真のみでは、
判断し難い。
As the heat radiation filling material, a single particle powder having a large particle size and a low cohesiveness is generally required. When the average particle diameter (D 50 ) of the aluminum nitride powder is less than 4 μm, the powder easily aggregates. If aggregated particles are formed,
Since it is difficult for the resin to enter the voids in the agglomerated particles, the properties such as the density, strength and thermal conductivity of the molded product are poor. In addition, since the aggregated particles have a large specific surface area and high chemical activity, they are also inferior in chemical stability as a heat radiation filling material. On the other hand, it is difficult to distinguish between the aluminum nitride single particles and the agglomerated particles by the particle size distribution measurement, and it is not possible to judge whether or not they are single particles only by the specific surface area S. Also, with only SEM photographs,
Hard to judge.

【0026】しかるに、本発明者の研究によれば、上記
の比S1 /S2 により、窒化アルミニウム粉末の粒子の
大きさに関係なく、すべての粒子の単粒子状態を評価す
ることが可能であることが見出された。則ち、比S1
2が大きい程、粒子が単粒子状態に近くなること、お
よびこの比が0.3以上、特に0.4以上である場合に
は、放熱用充填材料として優れた特性を発揮することが
見出された。これに対し、既存の窒化アルミニウム粉末
においてみられる様に、比S1 /S2 が0.3未満であ
る場合には、凝集粒子が多く含まれるので、流動性、充
填性などに劣り、充填樹脂成形体の密度および熱伝導率
などを低下させる。
However, according to the study by the present inventor, it is possible to evaluate the single particle state of all particles by the above ratio S 1 / S 2 regardless of the particle size of the aluminum nitride powder. It was found to be. That is, the ratio S 1 /
It was found that the larger S 2 is, the closer the particles are to a single particle state, and that when this ratio is 0.3 or more, particularly 0.4 or more, excellent properties are exhibited as a heat radiation filling material. Was issued. On the other hand, when the ratio S 1 / S 2 is less than 0.3 as seen in the existing aluminum nitride powder, a large amount of agglomerated particles are contained, so that the flowability and the filling property are poor, and the filling is poor. The density and thermal conductivity of the resin molding are reduced.

【0027】本発明による窒化アルミニウム粉末は、必
要ならば、酸化アルミニウム皮膜の形成、燐酸系皮膜の
形成或いはシリコン系有機カップリング剤の塗布などに
よる表面処理に供することができる。この様な表面処理
により、窒化アルミニウム粉末の耐水性を高温高湿条件
下においても、安定的に維持することができるという効
果が達成される。
If necessary, the aluminum nitride powder according to the present invention can be subjected to a surface treatment by forming an aluminum oxide film, forming a phosphoric acid type film, or applying a silicon type organic coupling agent. Such a surface treatment achieves the effect that the water resistance of the aluminum nitride powder can be stably maintained even under high temperature and high humidity conditions.

【0028】[0028]

【発明の効果】本発明によれば、平均粒径および球形度
(S1/S2)が大きく、流動性および充填性に優れた窒
化アルミニウム粉末を低価格で量産することができる。
According to the present invention, it is possible to mass-produce an aluminum nitride powder having a large average particle size and sphericity (S 1 / S 2 ) and excellent fluidity and filling properties at a low price.

【0029】また、本発明による大粒径の窒化アルミニ
ウム粉末を放熱用充填材料として使用する場合には、よ
り高密度で、より高熱伝導率の放熱部品を容易に得るこ
とができる。
When the large-diameter aluminum nitride powder according to the present invention is used as a heat radiation filling material, a heat radiation component having higher density and higher thermal conductivity can be easily obtained.

【0030】また、本発明による大粒径の窒化アルミニ
ウム粉末は、高熱伝導率を有するので、シーズヒーター
などの絶縁材料としても、有利に使用される。
Further, the large-diameter aluminum nitride powder according to the present invention has a high thermal conductivity, and therefore, it can be advantageously used as an insulating material for sheath heaters and the like.

【0031】[0031]

【実施例】以下に実施例および比較例を示し、本発明の
特徴とするところをより一層明確にする。本発明がこの
様な実施例および比較例により、限定されるものではな
いことはいうまでもない。
EXAMPLES Examples and comparative examples will be shown below to further clarify the features of the present invention. It goes without saying that the present invention is not limited by such Examples and Comparative Examples.

【0032】なお、以下における物性値の測定は、下記
のような方法により行った。
The physical properties below were measured by the following methods.

【0033】(1)平均粒径(D50;μm)は、常法に
従って超音波分散した後、レーザー回折装置(堀場製作
所製「A−500型」)を使用して、レーザー回折法に
より求めた。即ち、粒度分布曲線の全粒子数の50%に
相当する粒子の粒子径をD50とする。
(1) The average particle size (D 50 ; μm) is determined by a laser diffraction method using a laser diffractometer (“A-500 type” manufactured by Horiba Ltd.) after ultrasonic dispersion according to a conventional method. It was That is, the particle diameter of particles corresponding to 50% of the total number of particles in the particle size distribution curve is defined as D 50 .

【0034】(2)比表面積(S1 ;m2/g)は、下
記の式から求めた。
(2) The specific surface area (S 1 ; m 2 / g) was calculated from the following formula.

【0035】S1=6/(D50×3.26) 但し、6は定数で、3.26(g/cm3)は窒化アル
ミニウムの真密度である。
S 1 = 6 / (D 50 × 3.26) where 6 is a constant and 3.26 (g / cm 3 ) is the true density of aluminum nitride.

【0036】(3)比表面積(S2 ;m2/g)は、B
ET比表面積測定装置(湯浅アイオニクス(株)製)を
使用して、一点法、窒素排気流量700ml/分の条件
で測定した。 (4)成形体密度(g/cm3)は、密度計(長計量器
製作所製「JL−180型」)を使用して、アルキメデ
ス法により求めた。
(3) The specific surface area (S 2 ; m 2 / g) is B
Using an ET specific surface area measuring device (manufactured by Yuasa Ionics Co., Ltd.), measurement was carried out under the conditions of one-point method and nitrogen exhaust flow rate of 700 ml / min. (4) The density of the molded body (g / cm 3 ) was determined by the Archimedes method using a densitometer (“JL-180 type” manufactured by Nagaseiki Seisakusho Co., Ltd.).

【0037】(5)成形体の熱伝導率(W/mK)は、
熱伝導率測定装置(リガク(株)製「PCM−FA85
10B型」)を使用して、レーザーフラッシュ法により
求めた。
(5) The thermal conductivity (W / mK) of the molded product is
Thermal conductivity measuring device (manufactured by Rigaku Corporation "PCM-FA85"
10B type ") was used to determine by the laser flash method.

【0038】実施例1 平均粒径26.2μmのアトマイズドアルミニウム粉末
60重量部に平均粒径6.5μmの窒化アルミニウム4
0重量部を加えて混合した後、厚さ約1mmのペレット
状に造粒した。次いで、造粒体を黒鉛るつぼに充填し、
窒素雰囲気下に1000℃で1時間焼成した。
Example 1 60 parts by weight of atomized aluminum powder having an average particle size of 26.2 μm was added to 4 parts of aluminum nitride having an average particle size of 6.5 μm.
After adding 0 parts by weight and mixing, the mixture was granulated into pellets having a thickness of about 1 mm. Then, the granulated body is filled in a graphite crucible,
It was fired at 1000 ° C. for 1 hour in a nitrogen atmosphere.

【0039】得られた反応生成物を振動ミルにより20
分間解砕した後、ターボ分級した。得られた粉末をX線
回折に供した結果、これはAlN単相からなっているこ
とが確認された。得られたAlN粉末の粒子構造を示す
SEM写真を図1として示し、その特性を表1に示す。
The reaction product obtained was stirred by a vibrating mill for 20 minutes.
After crushing for minutes, turbo classification was performed. As a result of subjecting the obtained powder to X-ray diffraction, it was confirmed that it consisted of an AlN single phase. A SEM photograph showing the particle structure of the obtained AlN powder is shown in FIG. 1, and its characteristics are shown in Table 1.

【0040】次いで、分級後に得られた粉末80重量部
とイミド変性エポキシ樹脂粉末(商標“Bestlex
LS”、住友化学工業(株)製)20重量部とをボー
ルミルで十分に撹拌混合した。得られた混合試料0.3
gを加熱成形プレス機により、180℃で25分間加熱
し、直径10mm×高さ2mmの成形体を得た後、さら
に200℃で2時間加熱処理して、硬化させた。得られ
た成形硬化体の密度と熱伝導率とを表1に併せて示す。
Then, 80 parts by weight of the powder obtained after classification and an imide-modified epoxy resin powder (trade name "Bestlex"
LS "and 20 parts by weight of Sumitomo Chemical Co., Ltd. were thoroughly mixed by stirring with a ball mill. The obtained mixed sample 0.3
g was heated at 180 ° C. for 25 minutes by a heat molding press machine to obtain a molded body having a diameter of 10 mm × height of 2 mm, and then further heat treated at 200 ° C. for 2 hours to cure. Table 1 also shows the density and thermal conductivity of the obtained molded and cured product.

【0041】なお、使用したイミド変性エポキシ樹脂の
密度は1.23g/cm3であり、熱伝導率は0.23
W/mKであった。
The density of the imide-modified epoxy resin used was 1.23 g / cm 3 , and the thermal conductivity was 0.23.
It was W / mK.

【0042】実施例2 平均粒径25.8μmのアトマイズドアルミニウム粉末
40重量部に平均粒径6.8μmの窒化アルミニウム6
0重量部を加えて混合した後、実施例1と同様にして造
粒、焼成、解砕、分級して得られた窒化アルミニウム粉
末の粉体特性を表1に示す。
Example 2 40 parts by weight of atomized aluminum powder having an average particle size of 25.8 μm was added to aluminum nitride 6 having an average particle size of 6.8 μm.
Table 1 shows the powder characteristics of the aluminum nitride powder obtained by adding 0 parts by weight and mixing, and then granulating, firing, crushing and classifying in the same manner as in Example 1.

【0043】分級後に得られた粉末を実施例1と同様に
して樹脂に混合し、成形体を得た。成形硬化体の密度と
熱伝導率とを表1に併せて示す。
The powder obtained after the classification was mixed with the resin in the same manner as in Example 1 to obtain a molded body. Table 1 also shows the density and thermal conductivity of the molded and cured product.

【0044】実施例3 平均粒径26.0μmのアトマイズドアルミニウム粉末
60重量部に平均粒径6.6μmの窒化アルミニウム4
0重量部と平均粒径約1μmのイットリア粉末2重量部
を加えて混合した後、実施例1と同様にして造粒、焼
成、解砕、分級して得られた窒化アルミニウム粉末の粉
体特性を表1に示す。
Example 3 60 parts by weight of atomized aluminum powder having an average particle size of 26.0 μm was added to 4 parts of aluminum nitride having an average particle size of 6.6 μm.
Powder characteristics of aluminum nitride powder obtained by adding 0 parts by weight and 2 parts by weight of yttria powder having an average particle size of about 1 μm, mixing, and then granulating, firing, crushing and classifying in the same manner as in Example 1. Is shown in Table 1.

【0045】分級後に得られた粉末を実施例1と同様に
して樹脂に混合し、成形体を得た。成形硬化体の密度と
熱伝導率とを表1に併せて示す。
The powder obtained after the classification was mixed with the resin in the same manner as in Example 1 to obtain a molded body. Table 1 also shows the density and thermal conductivity of the molded and cured product.

【0046】比較例1 平均粒径25.3μmのアトマイズドアルミニウム粉末
40重量部に平均粒径6.4μmの窒化アルミニウム6
0重量部を加えた混合粉末を黒鉛るつぼに充填し、窒素
雰囲気下に1000℃で1時間焼成した。
Comparative Example 1 40 parts by weight of atomized aluminum powder having an average particle size of 25.3 μm was added to aluminum nitride 6 having an average particle size of 6.4 μm.
A graphite crucible was filled with a mixed powder to which 0 part by weight was added, and the mixture was baked at 1000 ° C. for 1 hour in a nitrogen atmosphere.

【0047】得られた反応生成物を振動ミルにより20
分間解砕した後、ターボ分級した後、実施例1と同様に
して樹脂に混合し、成形体を得た。成形硬化体の密度と
熱伝導率とを表1に併せて示す。
The reaction product obtained was subjected to a vibration mill to 20
After crushing for minutes, turbo classification was performed, and the mixture was mixed with the resin in the same manner as in Example 1 to obtain a molded body. Table 1 also shows the density and thermal conductivity of the molded and cured product.

【0048】比較例2〜3 平均粒径25.5μmのアトマイズドアルミニウム粉末
25重量部に平均粒径6.4μmの窒化アルミニウム7
5重量部を加えた混合粉末を黒鉛るつぼに充填し、窒素
雰囲気下に1000℃で1時間焼成した。
Comparative Examples 2 to 3 25 parts by weight of atomized aluminum powder having an average particle size of 25.5 μm was added to aluminum nitride 7 having an average particle size of 6.4 μm.
A mixed powder containing 5 parts by weight was filled in a graphite crucible and fired at 1000 ° C. for 1 hour in a nitrogen atmosphere.

【0049】得られた反応生成物を振動ミルにおいてそ
れぞれ20分間(比較例2)および120分間(比較例
3)解砕し、窒化アルミニウム粉末を得た。これらの粉
末の粉体特性を表1に示す。
The obtained reaction product was crushed in a vibration mill for 20 minutes (Comparative Example 2) and 120 minutes (Comparative Example 3) to obtain an aluminum nitride powder. The powder characteristics of these powders are shown in Table 1.

【0050】また、上記で得られた2種の粉末をそれぞ
れ実施例1と同様にして樹脂に練り込み、成形体を得
た。成形硬化体の密度と熱伝導率とを表1に併せて示
す。
Further, each of the two kinds of powders obtained above was kneaded into a resin in the same manner as in Example 1 to obtain a molded body. Table 1 also shows the density and thermal conductivity of the molded and cured product.

【0051】[0051]

【表1】 表1に示す結果から、予め原料混合物の造粒を行わない
場合(比較例1〜3)には、得られた窒化アルミニウム
の平均粒径が4μm以上であっても(比較例1〜2)、
1/S2の値が0.3未満となり、樹脂成形体の密度が
低く、且つ熱伝導率も低いことが明らかである。さら
に、S1/S2の値が0.3以上であっても、得られる窒
化アルミニウムの平均粒径が3μm未満である場合(比
較例3)には、樹脂成形体の相対密度が低く、熱伝導率
も低い。
[Table 1] From the results shown in Table 1, when the raw material mixture was not granulated in advance (Comparative Examples 1 to 3), even if the average particle diameter of the obtained aluminum nitride was 4 μm or more (Comparative Examples 1 and 2). ,
The value of S 1 / S 2 is less than 0.3, and it is clear that the resin molded body has low density and low thermal conductivity. Further, even if the value of S 1 / S 2 is 0.3 or more, the relative density of the resin molded article is low when the average particle diameter of the obtained aluminum nitride is less than 3 μm (Comparative Example 3), The thermal conductivity is also low.

【0052】なお、比較例1〜3で使用した粉末の平均
粒径は、凝集粒子径である。
The average particle diameter of the powder used in Comparative Examples 1 to 3 is the aggregate particle diameter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により得られたAlN粉末の粒子構造を
示すSEM写真である。
FIG. 1 is an SEM photograph showing a particle structure of an AlN powder obtained according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上西 雅利 大阪府大阪市中央区久太郎町三丁目6番 8号 東洋アルミニウム株式会社内 (56)参考文献 特開 平5−270809(JP,A) 特開 平3−23206(JP,A) 特開 平5−279002(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 21/072 CA(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatoshi Uenishi 3-6-8, Kutaro-cho, Chuo-ku, Osaka-shi, Osaka Toyo Aluminum Co., Ltd. (56) Reference JP-A-5-270809 (JP, A) JP-A-3-23206 (JP, A) JP-A-5-279002 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C01B 21/072 CA (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属アルミニウム粉末30〜80重量部と
窒化アルミニウム粉末70〜20重量部との合計100
重量部からなる混合粉末をプレス造粒した混合造粒体を
窒素を含む非酸化性雰囲気中800〜1200℃で焼成
した後、解砕および分級することを特徴とする大粒径の
窒化アルミニウム粉末の製造方法。
1. A total of 100: 30 to 80 parts by weight of metallic aluminum powder and 70 to 20 parts by weight of aluminum nitride powder.
A large particle size aluminum nitride powder characterized by being crushed and classified after firing a mixed granulated product obtained by press granulating a mixed powder consisting of parts by weight in a non-oxidizing atmosphere containing nitrogen at 800 to 1200 ° C. Manufacturing method.
【請求項2】レーザー回折法により測定した平均粒径
(D 50 )が4μm以上で、且つD 50 から算出した比表面
積(S 1 )とBET法により測定した比表面積(S 2 )と
の比=S 1 /S 2 が0.3以上であることを特徴とする大
粒径の窒化アルミニウム粉末を得るための請求項1記載
の製造方法
2. An average particle size measured by a laser diffraction method.
(D 50 ) is 4 μm or more, and the specific surface calculated from D 50
Product (S 1 ) and specific surface area (S 2 ) measured by BET method
Ratio = S 1 / S 2 is 0.3 or more
A method for obtaining an aluminum nitride powder having a particle size according to claim 1.
Manufacturing method .
【請求項3】レーザー回折法により測定した平均粒径
(D 50 )が10〜50μmの範囲にある請求項2記載の
製造方法
3. An average particle diameter measured by a laser diffraction method.
The (D 50 ) is in the range of 10 to 50 μm.
Manufacturing method .
JP02471794A 1994-01-26 1994-01-26 Large particle size aluminum nitride powder and method for producing the same Expired - Lifetime JP3533532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02471794A JP3533532B2 (en) 1994-01-26 1994-01-26 Large particle size aluminum nitride powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02471794A JP3533532B2 (en) 1994-01-26 1994-01-26 Large particle size aluminum nitride powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07215707A JPH07215707A (en) 1995-08-15
JP3533532B2 true JP3533532B2 (en) 2004-05-31

Family

ID=12145923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02471794A Expired - Lifetime JP3533532B2 (en) 1994-01-26 1994-01-26 Large particle size aluminum nitride powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3533532B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100303122B1 (en) * 1996-12-26 2002-04-17 와다 아끼히로 Process for producing aluminum nitride
KR20080004802A (en) * 2006-07-06 2008-01-10 삼성코닝 주식회사 Optical plate for surface light source and backlight unit having the same
JP5645559B2 (en) * 2010-09-03 2014-12-24 株式会社トクヤマ Spherical aluminum nitride powder
JP5726279B2 (en) * 2013-12-06 2015-05-27 株式会社トクヤマ Aluminum nitride powder
KR102431063B1 (en) 2017-05-22 2022-08-09 도요 알루미늄 가부시키가이샤 Aluminum nitride-based powder and its manufacturing method
JP7142464B2 (en) * 2018-05-17 2022-09-27 東洋アルミニウム株式会社 Aluminum nitride powder and high thermal conductive material containing the same
JP6589021B1 (en) * 2018-08-06 2019-10-09 株式会社Maruwa Spherical aluminum nitride powder and method for producing spherical aluminum nitride powder
CN112543743B (en) * 2018-08-06 2022-03-29 丸和公司 Spherical aluminum nitride powder and method for producing same
JP7082563B2 (en) * 2018-12-04 2022-06-08 信越化学工業株式会社 Cured product of thermally conductive silicone composition
JP7266890B2 (en) * 2020-10-21 2023-05-01 株式会社燃焼合成 AlN filler and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07215707A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
JP7455047B2 (en) Boron nitride aggregated particles, method for producing boron nitride aggregated particles, resin composition containing boron nitride aggregated particles, and molded article
EP3502052B1 (en) Method for preparing spherical aluminum nitride powder
JP6516509B2 (en) Hexagonal boron nitride powder and method for producing the same
JP6979034B2 (en) Hexagonal boron nitride powder and its manufacturing method
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
JP2005162555A (en) Spherical aluminum nitride and its manufacturing method
JP3458196B2 (en) High thermal conductive resin composition
JPH11269302A (en) Filler for improving thermal conductivity of resin product and its production
JPH05270809A (en) Aluminum nitride powder and its production
JP7142464B2 (en) Aluminum nitride powder and high thermal conductive material containing the same
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH10203806A (en) Production of boron nitride powder
JP3936990B2 (en) High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same
JPS62260772A (en) High purity silicon carbide sintered body and manufacture
JP5987322B2 (en) Method for producing metal oxide-containing boron nitride
JP2023147855A (en) boron nitride powder
JP7295016B2 (en) Aluminum nitride powder and method for producing the same
JP2004224618A (en) Manufacturing process of spherical aluminum nitride filler
JP4832048B2 (en) Aluminum nitride powder and method for producing the same
JPS63225506A (en) Production of aluminum nitride powder
JPH07165408A (en) Production of electrically conductive silicon carbide fine powder and sintered compact
JPH02102109A (en) Aluminum nitride powder and production thereof
JP2002316812A (en) Method for producing silicon carbide fine powder
JP2621192B2 (en) Manufacturing method of aluminum nitride sintered body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

EXPY Cancellation because of completion of term