JP3936990B2 - High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same - Google Patents

High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same Download PDF

Info

Publication number
JP3936990B2
JP3936990B2 JP12215796A JP12215796A JP3936990B2 JP 3936990 B2 JP3936990 B2 JP 3936990B2 JP 12215796 A JP12215796 A JP 12215796A JP 12215796 A JP12215796 A JP 12215796A JP 3936990 B2 JP3936990 B2 JP 3936990B2
Authority
JP
Japan
Prior art keywords
powder
thermal conductivity
aluminum nitride
aln
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12215796A
Other languages
Japanese (ja)
Other versions
JPH09286606A (en
Inventor
信芳 塚口
光一郎 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Hightech Co Ltd
Dowa Metaltech Co Ltd
Original Assignee
Dowa Hightech Co Ltd
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Hightech Co Ltd, Dowa Metaltech Co Ltd filed Critical Dowa Hightech Co Ltd
Priority to JP12215796A priority Critical patent/JP3936990B2/en
Publication of JPH09286606A publication Critical patent/JPH09286606A/en
Application granted granted Critical
Publication of JP3936990B2 publication Critical patent/JP3936990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、熱伝導性の良好な窒化アルミニウム粉末とその作製方法ならびに該窒化アルミニウム粉末と樹脂とを混合して成る絶縁性と熱伝導性に優れた樹脂複合物に関する。
【0002】
【従来の技術】
回路基板上に半導体素子から成る電子回路や電極配線を表面実装した後、これらを保護するために、例えば紫外線硬化絶縁樹脂でカバーされて電子部品群がパッケージされており、このような電子部品の高密度化や多機能化が進むにつれて、これら電子部品からの放熱を進めるために、SiO2 粉末やAl23 粉末などと樹脂とを混合することによって絶縁性と熱伝導性とを有する樹脂複合物が用いられている。また、これらの粉末は難燃性を高める効果もある。
【0003】
【発明が解決しようとする課題】
しかしながら、さらに最近の電子機器の小型化、軽量化、高密度化および高信頼化が要求され、表面実装においてパワー回路や高出力部品の増加に伴い、放熱すべき熱量に対してSiO2 粉末やAl23 粉末を用いた樹脂複合物では不十分であって、熱伝導率が十分に高い樹脂複合物が望まれるという課題があった。
【0004】
したがって本発明の目的は、従来のSiO2 やAl23 を使用した樹脂複合物に代わって、電子部品用の樹脂放熱シートや放熱部品に使用できる絶縁性が良く、かつ熱伝導性に優れた樹脂複合物を提供することにある。
【0005】
【課題を解決するための手段】
本発明者は上記目的を達成すべく、IC回路保護用フィラーなどの熱伝導性フィラーとして、SiO2 やAl23 粉末にとって代わるべきものとして、窒化アルミニウム(AlN)に着目して研究を進めた。
【0006】
従来のAlNの製造法により製造されたままのAlN粉末は微粉末であるため本来有している高い熱伝導性は得られないが、熱伝導率が高く、少なくとも100W/m・K 以上の熱伝導率をもつAlN焼結体の状態から粉砕して粉末を得る際に、粒度分布を調整すれば比較的焼結体の熱伝導率に近い熱伝導率をもっ粉末が得られ樹脂との複合化が可能なことを見いだし、本発明に到達した。
【0007】
すなわち本発明は第1に、AlN粉末を焼結助剤とともにN 2 ガス雰囲気中で焼結してなる熱伝導率が100W/m・K以上の窒化アルミニウム焼結体を粉砕して得られる窒化アルミニウム粉末であって、前記焼結助剤として添加されたY23の粉末中の含量が0.1〜10重量%であり、該粉末の嵩密度が0 . 5〜1 . 8g/cm 3 、タップ密度が1.0〜2.2g/cm3、BET法による比表面積が0.5〜5m2/gおよび平均粒径が1〜10μmであることを特徴とする窒化アルミニウム粉末;第2に、AlN粉末を焼結助剤とともにN 2 ガス雰囲気中で焼結してなる熱伝導率が100W/m・K以上の窒化アルミニウム焼結体を粉砕する際、いずれも非水系での機械的粉砕工程と篩別工程とを組合わせることにより平均粒径1〜10μmに調整することを特徴とする窒化アルミニウム粉末の製造方法;第3に、上記第1に記載の窒化アルミニウム粉末と樹脂との混合物を硬化してなることを特徴とする絶縁性と熱伝導性に優れた樹脂複合物を提供するものである。
【0008】
【作用】
AlNは優れた耐食性と耐熱性を有することから化合物半導体製造用るつぽとして実用化されている他、優れた熱伝導性と電気絶縁性を生かした電子材料として高熱伝導性基板あるいは放熱部品などで注目されている材料である。
【0009】
これらの材料として用いられるAlN粉末の製造法としては、Al23 粉体とカーボン粉体の混合組成物をN2 ガス雰囲気で焼成する還元窒化法、およびAl粉体をN2 ガスないしアンモニアガス雰囲気中で窒化する直接窒化法が代表的である。しかしこれらの方法で作製されたAlN粉末は粉体自体の結晶性が低いため、熱伝導性が低く、混合される樹脂とのなじみが悪いこともあって、このAlN粉末を樹脂に混合した樹脂複合物の熱放散性も改善されない。
【0010】
本発明では、前述の製法によるAlN粉末を焼結助剤とともにN2 ガス雰囲気中で焼結して結晶を成長させた焼結体、すなわち少なくとも100W/m・K 以上の熱伝導率をもつ焼結体を、例えばスタンプミルで粗砕し、さらにこれをボールミルで粉砕する工程に篩分機を挿入して過粉砕を避けながら粒度構成を調整することによって得られたAlN粉末を樹脂に混合して樹脂複合物に高い熱伝導性を与えることができる。なお、熱伝導率が100W/m・K 未満の焼結体では粉砕後の粒度調整によっても樹脂に混合して所期の効果が得られない。
【0011】
AlN焼結体を粉砕して得られるAlN粉末を樹脂と混合して樹脂複合物とする際の粉体特性を前述のように限定した理由は次の通りである。
【0012】
焼結助剤としてのY23 は焼結時にAlN結晶粒の成長を促進し、AlN粒内酸素をとりこみ、熱伝導性を高めるのに効果があるが、粉末中ではアルミニウムや窒素、酸素と化合物をつくって残存しており、粉末中のY含有量がY23 に換算して0.1重量%未満では焼結性を高める効果がなく、一方10重量%を越えると熱伝導性を阻害するためY23 含有量を0.1〜10重量%とした。
【0013】
焼結助剤としては、上記Y23 の他に、AlN焼結体の熱伝導率を阻害しないもので、所定の熱伝導率が得られるものであればよい。例えばCaO、SrO、BaOなどの酸化物や各種塩類などのアルカリ土類化合物、あるいはLa23 、CeO2 、PrO2 、Nd23 、Gd23 、Dy23 などの希土類酸化物から選ばれる1つ以上の化合物を上記Y23 同様に、AlN焼結体の熱伝導率の阻害がなく、また十分に熱伝導率が得られ適量を添加することができる。
【0014】
粉末の嵩密度については焼結により粒子成長しているので、1.8g/cm3 を越える粉末は実質的に製造が難しく、一方0.5g/cm3 未満では樹脂と混練したときに体積が増大し、樹脂に馴染みにくいので0.5〜1.8g/cm3 とした。
【0015】
タップ密度は加工比重とも言い、振動させた容器内の粉末の単位体積当りの質量であり、タップ密度が2.2g/cm3 を越える粉末は実質的に製造が難しく、一方、1.0g/cm3 未満では樹脂とのなじみが悪くなるので1.0〜2.2g/cm3 とした。
【0016】
比表面積についてはBET値が5m2/gを越えると表面活性が大きく、安定性が得られないことと付着ガスなどにより樹脂とのなじみが悪くなり、また0.5m2/g未満では実質的に粒径が大きくなり樹脂複合物としての使用には適さないので0.5〜5m2/gとした。
【0017】
平均粒径については1μm未満では充填性が悪く、10μmを越えると樹脂複合物としたときの平滑性、射出成形などの流動性に支障が出るので1〜10μmとした。
【0018】
また、前述の粉砕工程、篩別工程としては前者には振動ミル、ロールクラッシャー、ボールミル、スタンプミルなどが利用でき、後者には振動ふるいや気流分級などが利用できるが、AlNの分解を抑制する必要上、水系での湿式工程は好ましくない。さらに、得られたAlN粉末をエポキシ樹脂等とともに混合して樹脂複合物が得られる。
【0019】
以下、実施例をもって本発明をさらに説明するが、本発明はこれに限定されるものではない。
【0020】
【実施例】
東洋アルミニウム(株)製のAlN粉に信越化学製のY23 粉を3重量%混合しN2 中、1850℃で5時間焼成してプレート状の焼結体を得た。この焼結体の熱伝導率は150W/m・K であった。
【0021】
このAlN焼結体約200gをアルミナ製の容器に入れ、ハンマーはアルミナ製のものを使い、ストローク長4cm、ストローク数100rpm でスタンプミルにかけて6時間粉砕した。得られた粉を次いで、200メッシュの篩目の篩に入れ、ストローク数138rpm で30分間ロータップ篩別器にかけ、篩別し、篩下の粉約90gを得た。篩上は原料として再利用しつつ、同様のスタンプミル、ロータップ篩別を8回繰り返し、篩下の粉約700gを得た。このときロータップ篩別器での1回毎の収率は40〜50%であった。
【0022】
次いで、篩下の粉670gを3mmφのアルミナ製ボール5kgと共に、容量3.61のアルミナ製ポットに入れ、振幅7.5mm、回転数1000rpm で、乾式のボールミルにかけて6時間粉砕した。
【0023】
このようにして得られたAlN粉末の比表面積は2.94m2/gで平均レーザー径が3.66μmであった。また、嵩密度は0.66g/cm3 、タップ密度は1.20g/cm3 であった。比表面積は、モノソープ製の装置を用い、1点BET法で測定した。平均レーザー径は、島津製作所製レーザー回折式粒度測定機SALD−1100を用い、試料を0.2%ヘキサメタリン酸ナトリウム水溶液中に3分間超音波で分散させて測定した。測定によって得られたAlN粉末の粒度分布を図1に示す。嵩密度、タップ密度はJISK5101に準拠して測定した。なお焼結助剤として添加されていたY23 の粉末中の含有量は2.89重量%であった。
【0024】
次いで上記特性を有するAlN粉末をエポキシ樹脂および硬化剤とともに混合して(配合割合:AlN粉70%、エポキシ樹脂20%、硬化剤10%)樹脂複合物とした。
【0025】
上記で得られた複合物を、まだ流動性があるうちに型に流し込み硬化させて30×50×1mmの板状のサンプルを作製した。このサンプルの長手方向の端部10mmの位置に熱電対を接着剤で固定して置き反対側の端部10mmを小型のホットプレートに、SUS製の重しを乗せて固定した。ホットプレートは予め40℃に設定しておきサンプルをホットプレートに乗せた時点からの温度変化を時間と共に測定した。このとき室温は20℃であった。
【0026】
比較のために(株)アドマテックス製のSiO2 粉末、型番SO−25Rおよび、東洋アルミニウム(株)製のAlN粉末型番HFグレード(直接窒化粉)を用いて上記と同様にそれぞれ作製した樹脂複合物のサンプルについても同様に温度変化を測定した。
【0027】
それぞれのサンプルの温度変化を図2に示す。20秒後の温度のついて比較すると、SiO2 粉末とAlN粉末を混合したサンプルはそれぞれ26℃、28℃であるのに対し、本発明品のAlN粉末を混合したサンプルは33℃と極めて熱伝導率が高いことがわかる。
【0028】
【発明の効果】
以上説明したように、本発明によれば、AlN焼結体を粉砕することによって高熱伝導性のAlN粉末が得られるので、この粉末を樹脂と混合することによって、従来のSiO2 粉末やAl23 粉末を用いたものよりも高い熱伝導性を樹脂複合物に与えることができる。
【図面の簡単な説明】
【図1】実施例で得られたAlNの粒度分布図である。
【図2】実施例で得られた樹脂複合物および比較品の樹脂複合物の熱伝導特性図である。
[0001]
[Industrial application fields]
The present invention relates to an aluminum nitride powder having good thermal conductivity, a method for producing the same, and a resin composite having excellent insulation and thermal conductivity obtained by mixing the aluminum nitride powder and a resin.
[0002]
[Prior art]
After surface mounting electronic circuits and electrode wirings composed of semiconductor elements on a circuit board, in order to protect them, for example, an electronic component group is packaged by being covered with an ultraviolet curable insulating resin. Resin having insulation and thermal conductivity by mixing SiO 2 powder, Al 2 O 3 powder, etc. with resin in order to advance heat dissipation from these electronic components as the density and functionality increase. Composites are used. These powders also have the effect of increasing flame retardancy.
[0003]
[Problems to be solved by the invention]
However, more recent electronic devices are required to be smaller, lighter, higher density, and higher reliability. With the increase in power circuits and high-power components in surface mounting, SiO 2 powder and A resin composite using Al 2 O 3 powder is insufficient, and there is a problem that a resin composite having sufficiently high thermal conductivity is desired.
[0004]
Therefore, the object of the present invention is to replace the conventional resin composite using SiO 2 or Al 2 O 3 with good insulation and excellent thermal conductivity that can be used for resin heat-dissipating sheets and heat-dissipating parts for electronic parts. Another object is to provide a resin composite.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has advanced research focusing on aluminum nitride (AlN) as a thermally conductive filler such as a filler for protecting an IC circuit, as a substitute for SiO 2 or Al 2 O 3 powder. It was.
[0006]
Since the AlN powder as manufactured by the conventional AlN manufacturing method is a fine powder, the high heat conductivity inherently cannot be obtained, but the heat conductivity is high and the heat conductivity is at least 100 W / m · K or more. When obtaining powder by grinding from the state of AlN sintered body with conductivity, if the particle size distribution is adjusted, a powder having a thermal conductivity relatively close to that of the sintered body can be obtained and composite with resin The present invention has been found.
[0007]
That is, according to the present invention, first, nitriding obtained by pulverizing an aluminum nitride sintered body having a thermal conductivity of 100 W / m · K or more obtained by sintering AlN powder together with a sintering aid in an N 2 gas atmosphere. a aluminum powder, a content of 0.1 to 10 wt% in the powder of Y 2 O 3 added as the sintering aid, the bulk density of the powder is 0. 5~1. 8g / cm 3 , an aluminum nitride powder characterized by a tap density of 1.0 to 2.2 g / cm 3 , a specific surface area of 0.5 to 5 m 2 / g by BET method, and an average particle size of 1 to 10 μm; 2. When grinding an aluminum nitride sintered body having a thermal conductivity of 100 W / m · K or more, which is obtained by sintering AlN powder together with a sintering aid in an N 2 gas atmosphere , both are non-aqueous machines. The average particle size of 1 to 10 μm by combining the pulverization step and the sieving step a method of producing an aluminum nitride powder characterized by adjusting to m ; and third, an insulating property and a thermal conductivity characterized by curing the mixture of the aluminum nitride powder and the resin described in the first item above It is intended to provide a resin composite excellent in the above.
[0008]
[Action]
AlN has been put into practical use as a crucible for manufacturing compound semiconductors because of its excellent corrosion resistance and heat resistance, and as an electronic material that makes use of its excellent thermal conductivity and electrical insulation, it has a high thermal conductivity substrate or heat dissipation component. This material is attracting attention.
[0009]
The production method of AlN powder used as these materials includes a reduction nitriding method in which a mixed composition of Al 2 O 3 powder and carbon powder is fired in an N 2 gas atmosphere, and Al powder is treated with N 2 gas or ammonia. A direct nitriding method in which nitriding is performed in a gas atmosphere is typical. However, since the AlN powder produced by these methods has low crystallinity of the powder itself, its thermal conductivity is low, and it may be poorly compatible with the resin to be mixed. The heat dissipation of the composite is not improved.
[0010]
In the present invention, a sintered body obtained by sintering AlN powder by the above-described manufacturing method together with a sintering aid in an N 2 gas atmosphere to grow crystals, that is, a sintered body having a thermal conductivity of at least 100 W / m · K or more. For example, the aggregate is coarsely crushed with a stamp mill, and further, AlN powder obtained by adjusting the particle size constitution while inserting a sieving machine into the step of pulverizing this with a ball mill and avoiding excessive pulverization is mixed with the resin. High thermal conductivity can be imparted to the resin composite. A sintered body having a thermal conductivity of less than 100 W / m · K cannot be mixed with the resin even by adjusting the particle size after pulverization, and the desired effect cannot be obtained.
[0011]
The reason why the powder characteristics when the AlN powder obtained by pulverizing the AlN sintered body is mixed with a resin to form a resin composite is as described above is as follows.
[0012]
Y 2 O 3 as a sintering aid promotes the growth of AlN crystal grains during sintering, takes in oxygen in the AlN grains, and is effective in enhancing thermal conductivity. However, in the powder, aluminum, nitrogen, oxygen When the Y content in the powder is less than 0.1% by weight in terms of Y 2 O 3 , there is no effect of improving the sinterability, while when it exceeds 10% by weight, the heat conduction In order to inhibit the property, the content of Y 2 O 3 was set to 0.1 to 10% by weight.
[0013]
As the sintering aid, in addition to the above Y 2 O 3 , any material that does not inhibit the thermal conductivity of the AlN sintered body and that can obtain a predetermined thermal conductivity may be used. For example, alkaline earth compounds such as oxides and various salts such as CaO, SrO and BaO, or rare earth oxidation such as La 2 O 3 , CeO 2 , PrO 2 , Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 As in the case of Y 2 O 3 , one or more compounds selected from the products can be added in an appropriate amount without inhibiting the thermal conductivity of the AlN sintered body and sufficiently obtaining the thermal conductivity.
[0014]
As for the bulk density of the powder, since the particles are grown by sintering, a powder exceeding 1.8 g / cm 3 is substantially difficult to produce, whereas if it is less than 0.5 g / cm 3 , the volume increases when kneaded with the resin. Since it increased and it was difficult to adapt to resin, it was set to 0.5 to 1.8 g / cm 3 .
[0015]
The tap density is also called processing specific gravity, and is the mass per unit volume of the powder in the vibrated container. A powder having a tap density exceeding 2.2 g / cm 3 is substantially difficult to produce, whereas 1.0 g / If it is less than cm 3 , the familiarity with the resin becomes worse, so 1.0 to 2.2 g / cm 3 was set.
[0016]
As for the specific surface area, when the BET value exceeds 5 m 2 / g, the surface activity is large, the stability cannot be obtained, and the familiarity with the resin is deteriorated due to the adhering gas, etc., and it is substantially less than 0.5 m 2 / g. Since the particle size becomes too large, it is not suitable for use as a resin composite, so it was set to 0.5 to 5 m 2 / g.
[0017]
When the average particle size is less than 1 μm, the filling property is poor, and when it exceeds 10 μm, the fluidity such as smoothness and injection molding when used as a resin composite is hindered.
[0018]
Moreover, as the above-mentioned pulverization process and sieving process, a vibration mill, a roll crusher, a ball mill, a stamp mill, etc. can be used for the former, and a vibration sieve, airflow classification, etc. can be used for the latter. In view of necessity, a wet process in an aqueous system is not preferable. Furthermore, the obtained AlN powder is mixed with an epoxy resin or the like to obtain a resin composite.
[0019]
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this.
[0020]
【Example】
Toyo in the AlN powder manufactured by (Corporation) were mixed Etsu Chemical Co. of Y 2 O 3 powder 3 wt% N 2, was obtained by calcining for 5 hours platelike sintered body at 1850 ° C.. The thermal conductivity of this sintered body was 150 W / m · K.
[0021]
About 200 g of this AlN sintered body was put in an alumina container, and an alumina hammer was used and pulverized for 6 hours in a stamp mill at a stroke length of 4 cm and a stroke number of 100 rpm. The obtained powder was then placed in a 200 mesh sieve, passed through a low-tap sieving machine at a stroke number of 138 rpm for 30 minutes, and sieved to obtain about 90 g of the sieved powder. The same stamp mill and low-tap sieving were repeated 8 times while reusing the sieving material as a raw material to obtain about 700 g of sieving powder. At this time, the yield of each time in the low tap sieving machine was 40 to 50%.
[0022]
Next, 670 g of the powder under the sieve was put in an alumina pot having a capacity of 3.61 together with 5 kg of 3 mmφ alumina balls, and pulverized for 6 hours on a dry ball mill at an amplitude of 7.5 mm and a rotation speed of 1000 rpm.
[0023]
The AlN powder thus obtained had a specific surface area of 2.94 m 2 / g and an average laser diameter of 3.66 μm. The bulk density was 0.66 g / cm 3, a tap density of 1.20 g / cm 3. The specific surface area was measured by a one-point BET method using a monosoap device. The average laser diameter was measured by using a laser diffraction particle size analyzer SALD-1100 manufactured by Shimadzu Corporation and dispersing the sample in an aqueous 0.2% sodium hexametaphosphate solution with an ultrasonic wave for 3 minutes. The particle size distribution of the AlN powder obtained by the measurement is shown in FIG. The bulk density and the tap density were measured according to JISK5101. The content of Y 2 O 3 added as a sintering aid in the powder was 2.89% by weight.
[0024]
Next, AlN powder having the above characteristics was mixed with an epoxy resin and a curing agent (mixing ratio: 70% AlN powder, 20% epoxy resin, 10% curing agent) to obtain a resin composite.
[0025]
The composite obtained above was poured into a mold and cured while still having fluidity to produce a plate-like sample of 30 × 50 × 1 mm. A thermocouple was fixed with an adhesive at a position of 10 mm in the longitudinal direction of the sample, and the opposite end 10 mm was fixed on a small hot plate with a weight made of SUS. The hot plate was set to 40 ° C. in advance, and the temperature change from the time when the sample was placed on the hot plate was measured with time. At this time, the room temperature was 20 ° C.
[0026]
For comparison, resin composites prepared in the same manner as described above using SiO 2 powder manufactured by Admatechs Co., Ltd., model number SO-25R, and AlN powder model number HF grade (direct nitrided powder) manufactured by Toyo Aluminum Co., Ltd. The temperature change was similarly measured for the sample of the product.
[0027]
The temperature change of each sample is shown in FIG. Comparing the temperature after 20 seconds, the sample in which the SiO 2 powder and the AlN powder are mixed is 26 ° C. and 28 ° C., respectively, while the sample in which the AlN powder of the present invention is mixed is 33 ° C. It can be seen that the rate is high.
[0028]
【The invention's effect】
As described above, according to the present invention, a highly heat-conductive AlN powder can be obtained by pulverizing an AlN sintered body. By mixing this powder with a resin, a conventional SiO 2 powder or Al 2 powder can be obtained. Higher thermal conductivity than that using O 3 powder can be imparted to the resin composite.
[Brief description of the drawings]
FIG. 1 is a particle size distribution diagram of AlN obtained in Examples.
FIG. 2 is a heat conduction characteristic diagram of a resin composite obtained in an example and a comparative resin composite.

Claims (3)

AlN粉末を焼結助剤とともにN 2 ガス雰囲気中で焼結してなる熱伝導率が100W/m・K以上の窒化アルミニウム焼結体を粉砕して得られる窒化アルミニウム粉末であって、前記焼結助剤として添加されたY23の粉末中の含量が0.1〜10重量%であり、該粉末の嵩密度が0 . 5〜1 . 8g/cm 3 、タップ密度が1.0〜2.2g/cm3、BET法による比表面積が0.5〜5m2/gおよび平均粒径が1〜10μmであることを特徴とする窒化アルミニウム粉末。 An aluminum nitride powder obtained by pulverizing an aluminum nitride sintered body having a thermal conductivity of 100 W / m · K or more obtained by sintering AlN powder together with a sintering aid in an N 2 gas atmosphere, a content of 0.1 to 10 wt% in the powder of Y 2 O 3 added as sintering aid, the bulk density of the powder is 0. 5~1. 8g / cm 3 , a tap density of 1.0 An aluminum nitride powder having a specific surface area of 0.5 to 5 m 2 / g and an average particle diameter of 1 to 10 μm, up to 2.2 g / cm 3 , a BET method. AlN粉末を焼結助剤とともにN 2 ガス雰囲気中で焼結してなる熱伝導率が100W/m・K以上の窒化アルミニウム焼結体を粉砕する際、いずれも非水系での機械的粉砕工程と篩別工程とを組合わせることにより平均粒径1〜10μmに調整することを特徴とする窒化アルミニウム粉末の製造方法。When pulverizing an aluminum nitride sintered body having a thermal conductivity of 100 W / m · K or more, which is obtained by sintering AlN powder together with a sintering aid in an N 2 gas atmosphere, a non-aqueous mechanical pulverization process. And an sieving step to adjust the average particle size to 1 to 10 μm . 請求項1記載の窒化アルミニウム粉末と樹脂との混合物を硬化してなることを特徴とする絶縁性と熱伝導性に優れた樹脂複合物。A resin composite having excellent insulation and thermal conductivity, wherein the mixture of the aluminum nitride powder and the resin according to claim 1 is cured.
JP12215796A 1996-04-19 1996-04-19 High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same Expired - Fee Related JP3936990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12215796A JP3936990B2 (en) 1996-04-19 1996-04-19 High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12215796A JP3936990B2 (en) 1996-04-19 1996-04-19 High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same

Publications (2)

Publication Number Publication Date
JPH09286606A JPH09286606A (en) 1997-11-04
JP3936990B2 true JP3936990B2 (en) 2007-06-27

Family

ID=14829016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12215796A Expired - Fee Related JP3936990B2 (en) 1996-04-19 1996-04-19 High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same

Country Status (1)

Country Link
JP (1) JP3936990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121812A (en) * 2009-12-10 2011-06-23 Tokuyama Corp Aluminum nitride powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134824B2 (en) * 2007-02-05 2013-01-30 日東電工株式会社 Resin molded product manufacturing method
JP5901190B2 (en) * 2011-09-13 2016-04-06 株式会社トクヤマ Method for producing aluminum nitride sintered granules
JP5726279B2 (en) * 2013-12-06 2015-05-27 株式会社トクヤマ Aluminum nitride powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121812A (en) * 2009-12-10 2011-06-23 Tokuyama Corp Aluminum nitride powder

Also Published As

Publication number Publication date
JPH09286606A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
JP6773153B2 (en) Boron Nitride Agglomerated Particles, Method for Producing Boron Nitride Aggregated Particles, The Boron Nitride Agglomerated Particle-Containing Resin Composition, Mold, and Sheet
JP7069314B2 (en) Bulked boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
KR101398682B1 (en) Hexagonal boron nitride powder and method for producing same
JP6950148B2 (en) Aluminum Nitride-Boron Nitride Composite Agglomerated Particles and Their Manufacturing Methods
JP6500339B2 (en) Heat dissipation sheet, coating liquid for heat dissipation sheet, and power device
JP3911554B2 (en) Spherical aluminum nitride filler and method for producing the same
JP2022522814A (en) High-purity, low-aluminum spherical β-silicon nitride powder, its manufacturing method and applications
JP2022522311A (en) Ultra-purity, low-radioactive spherical silicon nitride powder, its manufacturing method and applications
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
JP3936990B2 (en) High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
WO2021100807A1 (en) Method for adjusting particle crush strength of boron nitride powder, boron nitride powder and method for producing same
JPH11269302A (en) Filler for improving thermal conductivity of resin product and its production
JPH07252377A (en) Highly heat-conductive resin composition
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP2678213B2 (en) Manufacturing method of aluminum nitride sintered body
JP7203284B2 (en) Method for producing sintered boron nitride sheet, and sintered sheet
JP7273586B2 (en) Boron nitride powder and resin composition
WO2023210649A1 (en) COLUMNAR PARTICLES OF β-SILICON NITRIDE, COMPOSITE PARTICLES, SINTERED SUBSTRATE FOR HEAT RADIATION, RESIN COMPOSITE, INORGANIC COMPOSITE, METHOD FOR PRODUCING COLUMNAR PARTICLES OF β-SILICON NITRIDE, AND METHOD FOR PRODUCING COMPOSITE PARTICLES
CN116003879B (en) Rapid preparation method of spherical silicon nitride powder
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JP2023147855A (en) boron nitride powder
JP2009215134A (en) Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler
JP2024022830A (en) Boron nitride powder and method for producing boron nitride powder
JPS63218585A (en) High heat-conductive aluminum nitride sintered body and manufacture

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees