JP2009215134A - Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler - Google Patents

Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler Download PDF

Info

Publication number
JP2009215134A
JP2009215134A JP2008062521A JP2008062521A JP2009215134A JP 2009215134 A JP2009215134 A JP 2009215134A JP 2008062521 A JP2008062521 A JP 2008062521A JP 2008062521 A JP2008062521 A JP 2008062521A JP 2009215134 A JP2009215134 A JP 2009215134A
Authority
JP
Japan
Prior art keywords
spherical particles
magnesium oxide
water
phase
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008062521A
Other languages
Japanese (ja)
Inventor
Hideki Otsubo
英樹 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008062521A priority Critical patent/JP2009215134A/en
Publication of JP2009215134A publication Critical patent/JP2009215134A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water resistant spherical particle which has precise and superior sphericity although the content of magnesium oxide with a high thermal conductivity is large, which can be highly filled in a sealing resin and, in addition, which has extremely superior water resistance, a resin composition containing it, its producing method, a filler being the aggregation of the water resistant spherical particle and a semiconductor resin sealing agent containing the filler. <P>SOLUTION: The water resistant spherical particle is characterized in that a layer being constituted of at least one phase selected from among Mg<SB>2</SB>SiO<SB>4</SB>, MgAl<SB>2</SB>O<SB>4</SB>, MgSiO<SB>3</SB>, Mg<SB>2</SB>Al<SB>4</SB>Si<SB>5</SB>O<SB>18</SB>, Mg<SB>3</SB>Al<SB>2</SB>Si<SB>3</SB>O<SB>12</SB>and Mg<SB>4</SB>Al<SB>10</SB>Si<SB>2</SB>O<SB>3</SB>is formed on the surface of the spherical particle containing magnesium oxide and that a ratio of a major side to a minor side of 1.0-1.15 in average. The producing method of the water resistant spherical particle is characterized in that the water resistant spherical particle is obtained by forming a layer being constituted of at least one phase selected from among Mg<SB>2</SB>SiO<SB>4</SB>, MgAl<SB>2</SB>O<SB>4</SB>, MgSiO<SB>3</SB>, Mg<SB>2</SB>Al<SB>4</SB>Si<SB>5</SB>O<SB>18</SB>, Mg<SB>3</SB>Al<SB>2</SB>Si<SB>3</SB>O<SB>12</SB>and Mg<SB>4</SB>Al<SB>10</SB>Si<SB>2</SB>O<SB>3</SB>is formed on the surface of the spherical particle by cooling and solidifying a molten particle containing magnesium oxide. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸化マグネシウムを含有する球状粒子の表面にMgSiO、MgAl、MgSiO、MgAlSi18、MgAlSi12及びMgAl10Siから選択される少なくとも一つの相から構成される層が形成された耐水性球状粒子、それを含む樹脂組成物及びその製造方法、並びにその耐水性球状粒子の集合物であるフィラー及びそれを含む半導体樹脂封止剤に関する。 The present invention provides Mg 2 SiO 4 , MgAl 2 O 4 , MgSiO 3 , Mg 2 Al 4 Si 5 O 18 , Mg 3 Al 2 Si 3 O 12 and Mg 4 Al 10 Si on the surface of spherical particles containing magnesium oxide. Water-resistant spherical particles in which a layer composed of at least one phase selected from 2 O 3 is formed, a resin composition containing the same, a method for producing the same, and a filler that is an aggregate of the water-resistant spherical particles and Relates to a semiconductor resin encapsulant containing

従来から、半導体樹脂封止剤等の放熱フィラーとしては、球形度が良好で高充填が容易であり、また低価格であることから、球状非晶質シリカが多用されている。しかしながら、近年、半導体デバイスの高集積化、ハイパワー化等に伴い、半導体デバイスからの発熱量が増大し、当該用途等においては、より高熱伝導な球状の放熱フィラーが求められるようになり、そのため、高熱伝導な球状アルミナが多用されている。   Conventionally, as a heat radiation filler such as a semiconductor resin encapsulant, spherical amorphous silica has been frequently used because of its good sphericity, easy high filling, and low cost. However, in recent years, with higher integration and higher power of semiconductor devices, the amount of heat generated from the semiconductor devices has increased, and in such applications, spherical heat-dissipating fillers with higher thermal conductivity have been demanded. Highly thermal conductive spherical alumina is often used.

球状アルミナは、球状非晶質シリカに比して一桁大きな熱伝導率を有するものの、球形度、緻密性の点において、球状非晶質シリカに劣り、アルミナが本質的に有する高熱伝導性を十分発揮していない。球状アルミナは、一般に球状非晶質シリカと同様に溶融による球状化プロセスを経て製造されるが、球状非晶質シリカが凝固の際に融液の原子構造がほぼ維持されるために、凝固収縮が極めて小さく真球状になりやすいのに対して、球状アルミナの場合、低密度な融液から高密度な結晶質アルミナへの凝固であるために、凝固収縮が大きく、それによる欠陥の生成が避けられない。そのため、球状アルミナは、球としての形状性及び緻密性は球状非晶質シリカに大きく劣り、放熱フィラーとして用いる場合の充填性が悪くなってしまう。また、アルミナは、高硬度であるために、樹脂成形用の金型を著しく損耗させるという欠点がある。   Although spherical alumina has a thermal conductivity that is an order of magnitude greater than that of spherical amorphous silica, it is inferior to spherical amorphous silica in terms of sphericity and compactness, and has the high thermal conductivity inherent to alumina. It is not fully demonstrated. Spherical alumina is generally manufactured through a spheroidizing process similar to spherical amorphous silica, but the solid structure shrinks because the amorphous structure of the melt is almost maintained during the solidification of spherical amorphous silica. Is extremely small and tends to be spherical, whereas in the case of spherical alumina, solidification shrinkage is large due to solidification from a low-density melt to high-density crystalline alumina, thereby avoiding the generation of defects. I can't. For this reason, spherical alumina is greatly inferior to spherical amorphous silica in shape and density as a sphere, and the filling property when used as a heat radiation filler is deteriorated. In addition, since alumina has a high hardness, it has a drawback that the mold for resin molding is significantly worn out.

一方、酸化マグネシウムは、実用的な酸化物セラミックスの中においては最も熱伝導率が大きく、絶縁性も良好で、比較的低硬度であることから、放熱フィラーへの適用材料として期待されている。しかしながら、酸化マグネシウムは、高融点における溶融による緻密球状化が困難であるため、アルミナ以上に高充填可能な放熱フィラーの製造が困難であり、また表面積を小さくすることができないために、酸化マグネシウムの欠点である耐水性の悪さを回避することも困難である。以上のような理由から、酸化マグネシウムは、半導体樹脂封止剤等の放熱フィラーとして工業的に広く適用されるには至っていない。   Magnesium oxide, on the other hand, has the highest thermal conductivity among practical oxide ceramics, has good insulating properties, and is relatively low in hardness. However, since magnesium oxide is difficult to form into a dense sphere by melting at a high melting point, it is difficult to produce a heat dissipating filler that can be filled more than alumina, and the surface area cannot be reduced. It is also difficult to avoid the disadvantage of poor water resistance. For the reasons described above, magnesium oxide has not been widely applied industrially as a heat dissipating filler for semiconductor resin sealants and the like.

以上の観点から、酸化マグネシウムの球状化と耐水性について改善が施されている(特許文献1及び2参照)。特許文献1には、酸化マグネシウム粉末に対し、アルミナ及び/又はシリカ粒子を添加し、これをスプレードライヤーを用いて粒状化して球形顆粒物を得た後、かかる粒状化状態を崩すことなく、当該造粒物の少なくとも一部を溶融し、次いでこれを急速に冷却することによって、酸化マグネシウム系物質を製造することが開示されている。一方、特許文献2には、複酸化物により被覆され、かつ、平均形状係数が1.25以下であることを特徴とする球状被覆酸化マグネシウム粉末、及び酸化マグネシウム粉末の表面に融点が2773K以下の複酸化物を形成する元素の化合物を存在させ、高温中で溶融させることによって、被覆酸化マグネシウム粉末を製造することが開示されている。
特許第2590491号公報 国際公開WO2005/033215号公報
From the above viewpoints, improvements have been made in the spheroidization and water resistance of magnesium oxide (see Patent Documents 1 and 2). In Patent Document 1, alumina particles and / or silica particles are added to a magnesium oxide powder and granulated using a spray dryer to obtain a spherical granule. It has been disclosed to produce a magnesium oxide based material by melting at least a portion of the granulate and then rapidly cooling it. On the other hand, Patent Document 2 discloses a spherical coated magnesium oxide powder that is coated with a double oxide and has an average shape factor of 1.25 or less, and a melting point of 2773 K or less on the surface of the magnesium oxide powder. It is disclosed that a coated magnesium oxide powder is produced by the presence of a compound of an element forming a double oxide and melting at a high temperature.
Japanese Patent No. 2590491 International Publication WO 2005/033215

しかしながら、特許文献1に記載の製造方法においては、アルミナ及びシリカ粒子とそれと接する酸化マグネシウム粉末の一部を溶融させて、すなわちアルミナ及びシリカ粒子を融剤として使用して酸化マグネシウム系物質を得ようとしているので、緻密で球形状が良好な球状酸化マグネシウム系粒子が得られるとは考えられない。したがって、特許文献1に記載の製造方法によって製造された酸化マグネシウム系物質によっては、封止樹脂への実質的な充填性を向上させることはできず、封止剤の熱伝導率を向上させることは困難であると考えられる。また、特許文献1に記載の製造方法においては、アルミナ及びシリカ粒子とそれと接する酸化マグネシウム粉末の一部が溶融凝固して生成すると推察される酸化マグネシウム以外の物質が、酸化マグネシウムを十分に被覆するとは考えられず、用途によっては、耐水性に問題が生じる可能性が高いと思われる。   However, in the production method described in Patent Document 1, the alumina and silica particles and a part of the magnesium oxide powder in contact therewith are melted, that is, the magnesium oxide material is obtained using the alumina and silica particles as a flux. Therefore, it is unlikely that spherical magnesium oxide-based particles having a fine and good spherical shape can be obtained. Therefore, depending on the magnesium oxide-based material manufactured by the manufacturing method described in Patent Document 1, the substantial filling property to the sealing resin cannot be improved, and the thermal conductivity of the sealing agent is improved. Is considered difficult. In addition, in the production method described in Patent Document 1, when a substance other than magnesium oxide, which is presumed to be produced by melting and solidifying a part of the alumina and silica particles and the magnesium oxide powder in contact therewith, sufficiently covers the magnesium oxide. In some applications, there is a high possibility of problems in water resistance.

また、前記特許文献2に記載の製造方法においては、球状化前の酸化マグネシウムに、電融法、焼結法により製造された粉末を用いることで、得られる球状粉末内部における緻密性を向上させることは可能であるものの、球状被覆酸化マグネシウム粉末の球形度は、球状化前の酸化マグネシウム粉末の球形度に大きく依存すると思われ、当該粉末が粉砕プロセスを経て得られている限り、すべての球状被覆酸化マグネシウム粉末の球形度を高めることは困難であると思われる。また、球状化プロセスにおいて、複酸化物からなる被覆層の凝固に伴う収縮により、被覆層及び/又は被覆層と内部の酸化マグネシウムとの界面に欠陥が生成する可能性が高いと推察され、用途によっては、耐水性に問題が生じる可能性が高いと思われる。   In addition, in the production method described in Patent Document 2, the density inside the obtained spherical powder is improved by using a powder produced by electrofusion or sintering for magnesium oxide before spheroidization. It is possible, however, that the sphericity of the spherical coated magnesium oxide powder appears to depend greatly on the sphericity of the magnesium oxide powder before spheronization, so long as the powder is obtained through a grinding process, It seems difficult to increase the sphericity of the coated magnesium oxide powder. Also, in the spheronization process, it is assumed that there is a high possibility that defects are generated at the interface between the coating layer and / or the coating layer and the internal magnesium oxide due to shrinkage accompanying the solidification of the coating layer made of a double oxide. Depending on the water resistance, there is a high possibility of problems in water resistance.

そこで、本発明は、高熱伝導な酸化マグネシウムを多く含有しながら、緻密で球形度が良好で、封止樹脂への高充填が可能であり、それに加えて、耐水性が極めて良好な耐水性球状粒子、それを含む樹脂組成物及びその製造方法、並びにその耐水性球状粒子の集合物であるフィラー及びそれを含む半導体樹脂封止剤を提供することを目的とする。   Therefore, the present invention contains a high amount of highly heat-conductive magnesium oxide, is dense and has a good sphericity, can be highly filled into a sealing resin, and in addition, has a water-resistant spherical shape with extremely good water resistance. It is an object of the present invention to provide particles, a resin composition containing the same, a method for producing the same, a filler that is an aggregate of the water-resistant spherical particles, and a semiconductor resin sealant containing the filler.

以上の目的を達成するために、本発明者らは、鋭意検討を重ねた結果、酸化マグネシウムを含有する球状粒子の表面に、MgSiO、MgAl、MgSiO、MgAlSi18、MgAlSi12及びMgAl10Siから選択される少なくとも一つの相から構成される層を形成することによって、高熱伝導な酸化マグネシウムを多く含有しながら、緻密で球形度が良好で、封止樹脂への高充填が可能であり、それに加えて、耐水性が極めて良好にすることができることを見出した。すなわち、本発明は、酸化マグネシウムを含有する球状粒子の表面に、MgSiO、MgAl、MgSiO、MgAlSi18、MgAlSi12及びMgAl10Siから選択される少なくとも一つの相から構成される層が形成されており、長辺と短辺の比が平均で1.0〜1.15であることを特徴とする耐水性球状粒子である。また、本発明は、耐水性球状粒子を含む樹脂組成物であり、さらに、本発明は、酸化マグネシウムを含有する溶融粒子を冷却凝固することによって、該球状粒子の表層にMgSiO、MgAl、MgSiO、MgAlSi18、MgAlSi12及びMgAl10Siから選択される少なくとも一つの相を形成して、耐水性球状粒子を得ることを特徴とする耐水性球状粒子の製造方法である。 In order to achieve the above object, the present inventors have made extensive studies, and as a result, Mg 2 SiO 4 , MgAl 2 O 4 , MgSiO 3 , Mg 2 Al 4 are formed on the surface of the spherical particles containing magnesium oxide. By forming a layer composed of at least one phase selected from Si 5 O 18 , Mg 3 Al 2 Si 3 O 12 and Mg 4 Al 10 Si 2 O 3 , it contains a large amount of magnesium oxide with high thermal conductivity. However, the present inventors have found that it is dense and has a good sphericity, can be highly filled into a sealing resin, and in addition, can have extremely good water resistance. That is, in the present invention, Mg 2 SiO 4 , MgAl 2 O 4 , MgSiO 3 , Mg 2 Al 4 Si 5 O 18 , Mg 3 Al 2 Si 3 O 12, and Mg 4 are formed on the surface of spherical particles containing magnesium oxide. A layer composed of at least one phase selected from Al 10 Si 2 O 3 is formed, and the ratio of the long side to the short side is 1.0 to 1.15 on average. Spherical particles. Further, the present invention is a resin composition containing water-resistant spherical particles, and the present invention further comprises cooling and solidifying molten particles containing magnesium oxide to form Mg 2 SiO 4 , MgAl on the surface layer of the spherical particles. Forming at least one phase selected from 2 O 4 , MgSiO 3 , Mg 2 Al 4 Si 5 O 18 , Mg 3 Al 2 Si 3 O 12 and Mg 4 Al 10 Si 2 O 3 to form water-resistant spherical particles Is a method for producing water-resistant spherical particles.

本発明に係る耐水性球状粒子は、高熱伝導性を示し、緻密性、高球形度を併せ持ち、半導体樹脂封止剤のフィラー等、絶縁性の放熱フィラーとして好適に用いられる。すなわち、本発明は、前記耐水性球状粒子の集合体であり、平均粒径が5〜500μmであることを特徴とするフィラーであり、またそのフィラーと樹脂を含む半導体樹脂封止剤である。   The water-resistant spherical particles according to the present invention exhibit high thermal conductivity, have both denseness and high sphericity, and are suitably used as insulating heat radiation fillers such as fillers for semiconductor resin sealants. That is, the present invention is an aggregate of the above water-resistant spherical particles, a filler characterized by having an average particle diameter of 5 to 500 μm, and a semiconductor resin encapsulant containing the filler and a resin.

以上のように本発明によれば、高熱伝導な酸化マグネシウムを多く含有しながら、緻密で球形度が良好で、封止樹脂への高充填が可能であり、それに加えて、耐水性が極めて良好な耐水性球状粒子、それを含む樹脂組成物及びその製造方法、並びにその耐水性球状粒子の集合物であるフィラー及びそれを含む半導体樹脂封止剤を提供することができる。   As described above, according to the present invention, while containing a large amount of highly heat-conductive magnesium oxide, it is dense and has good sphericity, and can be filled into a sealing resin, and in addition, has excellent water resistance. Water-resistant spherical particles, a resin composition containing the same, a method for producing the same, a filler that is an aggregate of the water-resistant spherical particles, and a semiconductor resin encapsulant containing the filler can be provided.

本発明に係る耐水性球状粒子において、前記酸化マグネシウムを含有する球状粒子は、(a)酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子であるか、(b)酸化マグネシウムとMgSiOを主成分とすることが好ましい。 In the water-resistant spherical particles according to the present invention, is the spherical particle containing magnesium oxide (a) a spherical particle exhibiting a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4 ? (B) Magnesium oxide and Mg 2 SiO 4 are preferably the main components.

前記酸化マグネシウムを含有する球状粒子が、(a)酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子である場合、長辺と短辺の比が平均で1.0〜1.15であるが、1.0〜1.1であることが好ましい。球状粒子の長辺と短辺の比がこの範囲にあれば封止樹脂への充填性、成形性が特に優れたものとなるからである。このような範囲の球状粒子は、冷媒による急冷が凝固前の粒子同士の接触を抑制することができるので、後述する球状の溶融粒子を冷媒に投入して急冷することによって容易に得ることができる。 When the spherical particles containing magnesium oxide are spherical particles exhibiting a eutectic structure composed of (a) a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4 , the ratio of the long side to the short side is an average. 1.0 to 1.15, but preferably 1.0 to 1.1. This is because if the ratio of the long side to the short side of the spherical particles is within this range, the filling property and moldability into the sealing resin are particularly excellent. Spherical particles in such a range can be easily obtained by rapidly cooling by introducing spherical molten particles, which will be described later, into the refrigerant because rapid cooling with the refrigerant can suppress contact between particles before solidification. .

本発明に係る耐水性球状粒子において、共晶組織とは、一つの液相(融液)が、冷却中に共晶温度において、分離して異なる複数の固相が晶出する反応、すなわち共晶反応によって生成する組織であり、層状、繊維又は棒状、又はそれに類する形状の規則性のある組織である。   In the water-resistant spherical particles according to the present invention, the eutectic structure is a reaction in which a single liquid phase (melt) separates at the eutectic temperature during cooling, and a plurality of different solid phases crystallize. It is a structure generated by a crystal reaction, and is a regular structure in the form of layers, fibers or rods, or the like.

溶融凝固プロセスを経て製造される結晶質の球状粒子は、一般に結晶粒の集合組織を呈しており、多数の粒界の存在が実質的な熱伝導率を低下せしめ、物質固有の熱伝導率を得ることが困難である。これに対し、共晶組織は、構成相の連続性が高く、また、構成相間も整合性が良好な界面が形成されており、物質固有の熱伝導率が発揮されやすい。   The crystalline spherical particles produced through the melt-solidification process generally have a grain texture, and the existence of a large number of grain boundaries lowers the substantial thermal conductivity, thus reducing the intrinsic thermal conductivity of the substance. It is difficult to obtain. On the other hand, the eutectic structure has high continuity of constituent phases, and an interface having good consistency between the constituent phases is formed, and the thermal conductivity inherent to the substance is easily exhibited.

共晶温度は、一般的に、晶出する各固相の融点より低く、共晶反応を用いれば、所望の相の融点より低い温度のプロセスで相を晶出させることが可能になる。例えば、一般に酸化マグネシウムは、2824℃の高い融点を持つため、化学炎への投入による溶融は困難であるが、共晶反応又は共晶組成に近い組成での溶融凝固反応によれば、化学炎への投入による酸化マグネシウム相の晶出が可能になる。   The eutectic temperature is generally lower than the melting point of each solid phase to be crystallized, and if a eutectic reaction is used, the phase can be crystallized by a process at a temperature lower than the melting point of the desired phase. For example, in general, magnesium oxide has a high melting point of 2824 ° C., so that it is difficult to melt by adding it to a chemical flame. However, according to a melt solidification reaction with a composition close to a eutectic reaction or a eutectic composition, It becomes possible to crystallize the magnesium oxide phase by adding it to the.

共晶組成の融液は、一般に、凝固温度が極めて低く、粘度が低く流動性が良く、また凝固収縮が小さいので、結晶質物への凝固であっても、他の組成の結晶質物への凝固に比べて球形状が良好な球状粒子を得やすい。また、共晶組成から組成比が大きく異ならない組成においても、共晶組成の融液及びその凝固と同様の特徴を有する。   Eutectic melts generally have a very low solidification temperature, low viscosity, good flowability, and low solidification shrinkage, so that solidification into crystalline materials of other compositions is possible even when solidifying into crystalline materials. It is easy to obtain spherical particles having a good spherical shape compared to. Further, a composition whose composition ratio does not greatly differ from the eutectic composition has the same characteristics as the eutectic composition melt and its solidification.

前記酸化マグネシウムを含有する球状粒子が、(b)酸化マグネシウムとMgSiOを主成分とする場合、本発明に係る耐水性球状粒子の長辺と短辺の比が平均で1.0〜1.1となる。この場合、前記酸化マグネシウムを含有する球状粒子が、Mg、Si及びOを主成分とする溶融粒子を冷却凝固することによって非晶質相を主相とする球状粒子を得たのち、該非晶質相を主相とする球状粒子を加熱することにより結晶化させることが好ましい。 When the spherical particles containing magnesium oxide have (b) magnesium oxide and Mg 2 SiO 4 as main components, the ratio of the long side to the short side of the water-resistant spherical particles according to the present invention is 1.0 to on average. 1.1. In this case, the spherical particles containing magnesium oxide are obtained by cooling and solidifying molten particles containing Mg, Si and O as main components to obtain spherical particles having an amorphous phase as a main phase. It is preferable to crystallize spherical particles whose main phase is a phase by heating.

本発明に係る球状粒子は、その球状粒子の長辺と短辺の比が1.0〜1.1の範囲に調整されているので、封止樹脂への充填性、成形性が特に優れている。このような範囲の球状粒子は、非晶質の粒子を経由することにより、容易に得ることができる。すなわち、本発明においては、Mg、Si及びOを主成分とする溶融粒子を冷却して、一旦、Mg、Si及びOを主成分とする非晶質相から構成される球状粒子を得る。この非晶質相から構成される球状粒子は、特に、溶融粒子を液体冷媒による超急冷凝固することによって、非平衡状態での凝固が可能になり、溶融時の原子構造がほぼ維持された状態で凝固されるために、凝固収縮が極めて小さく、球形状が良好な球状粒子が得られやすい。ここで、「非晶質」とは、透過電子顕微鏡観察によって、結晶格子像を確認することができない相の原子構造を意味するが、結晶化前の球状粒子の主要構成相である非晶質相中に微量の結晶質相が含まれていても、結晶化後の球状粒子の球形度を始めとする特性を低下させることはないために、問題はない。得られた非晶質相から構成される球状粒子は、所定の温度に加熱されることで、酸化マグネシウム及びMgSiOに結晶化する。この際、球状粒子は等方的に収縮するため、前記非晶質の粒子が持つ良好な球形状が維持され、酸化マグネシウム及びMgSiOを主成分とする結晶質の球状粒子を得ることができる。 Since the spherical particles according to the present invention have the ratio of the long side to the short side of the spherical particles adjusted to a range of 1.0 to 1.1, the filling property to the sealing resin and the moldability are particularly excellent. Yes. Spherical particles in such a range can be easily obtained by passing through amorphous particles. That is, in the present invention, molten particles mainly composed of Mg, Si and O are cooled to obtain spherical particles composed of an amorphous phase mainly composed of Mg, Si and O. Spherical particles composed of this amorphous phase can be solidified in a non-equilibrium state, particularly by maintaining the atomic structure at the time of melting substantially by rapidly solidifying the molten particles with a liquid refrigerant. Therefore, it is easy to obtain spherical particles with extremely small solidification shrinkage and good spherical shape. Here, “amorphous” means an atomic structure of a phase in which a crystal lattice image cannot be confirmed by observation with a transmission electron microscope, but is an amorphous that is a main constituent phase of a spherical particle before crystallization. Even if a small amount of crystalline phase is contained in the phase, there is no problem because the characteristics such as the sphericity of the spherical particles after crystallization are not deteriorated. The obtained spherical particles composed of the amorphous phase are crystallized into magnesium oxide and Mg 2 SiO 4 by being heated to a predetermined temperature. At this time, since the spherical particles shrink isotropically, the good spherical shape of the amorphous particles is maintained, and crystalline spherical particles mainly composed of magnesium oxide and Mg 2 SiO 4 are obtained. Can do.

本発明に係る耐水球状粒子において、酸化マグネシウムとMgSiOを主成分とするとは、非結晶化や結晶化を妨げない範囲で酸化マグネシウムとMgSiO以外の他の成分を微量に含ませても良いという趣旨であり、例えばA、P及びOが95重量%以上であることを意味する。また、Mg、Si及びOを主成分とするとは、Mg、Si及びOの非結晶化や結晶化を妨げない範囲でMg、Si及びO以外の他の成分を微量に含ませても良いという趣旨であり、例えばMg、Si及びOが95重量%以上であることを意味する。さらに、Mg、Al及びOを主成分とするとは、Mg、Al及びOの共晶組成化を妨げない範囲でMg、Al及びO以外の他の成分を微量に含ませても良いという趣旨であり、例えばMg、Al及びOが95重量%以上であることを意味する。また、非晶質相を主相とするとは、結晶質相を微量に含ませても良いという趣旨であり、例えば、非晶質相が95重量%以上であることを意味し、非晶質相のみから構成される場合、及び非晶質相の間に結晶質相が含まれる場合が含まれる。さらに、長辺とは、球状粒子の最も長い直径をいい、短辺とは、球状粒子の最も短い直径をいう。長辺と短辺の比の測定は、例えばレーザ顕微鏡を用いて行うことができる。本発明に係る耐水性球状粒子においては、レーザ顕微鏡を用いて、50個の球状粒子の測定を行い、その平均値を算出したものである。 In the water-resistant spherical particles according to the present invention, magnesium oxide and Mg 2 SiO 4 are the main components if they contain trace amounts of components other than magnesium oxide and Mg 2 SiO 4 within a range that does not hinder non-crystallization or crystallization. For example, it means that A, P and O are 95% by weight or more. In addition, when Mg, Si and O are the main components, it is possible to contain a small amount of other components other than Mg, Si and O as long as they do not prevent non-crystallization or crystallization of Mg, Si and O. This means that, for example, Mg, Si and O are 95% by weight or more. Furthermore, Mg, Al, and O as the main component means that other components other than Mg, Al, and O may be included in a trace amount within a range that does not hinder the eutectic composition of Mg, Al, and O. For example, it means that Mg, Al and O are 95% by weight or more. In addition, the amorphous phase as the main phase means that the crystalline phase may be contained in a trace amount, for example, it means that the amorphous phase is 95% by weight or more. The case where it consists only of a phase and the case where a crystalline phase is contained between an amorphous phase are included. Further, the long side refers to the longest diameter of the spherical particles, and the short side refers to the shortest diameter of the spherical particles. The ratio of the long side to the short side can be measured using, for example, a laser microscope. In the water-resistant spherical particles according to the present invention, 50 spherical particles are measured using a laser microscope, and the average value is calculated.

酸化マグネシウムを含有する球状粒子は、平均粒径が5〜500μmであることが好ましく、5〜200μmであることがさらに好ましい。球状粒子の平均粒径が5μm未満であると表面積が大きくなり、耐水性に問題が生じる可能性があり、球状粒子の平均粒径が500μmより大きくなると、半導体封止樹脂等への充填性が悪くなるからである。平均粒径の調整は、篩による分級によって行うことができる。   The spherical particles containing magnesium oxide preferably have an average particle size of 5 to 500 μm, more preferably 5 to 200 μm. If the average particle size of the spherical particles is less than 5 μm, the surface area becomes large, which may cause a problem in water resistance. If the average particle size of the spherical particles is larger than 500 μm, the filling property to the semiconductor sealing resin or the like is increased. Because it gets worse. Adjustment of the average particle diameter can be performed by classification with a sieve.

(a)酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子である場合、酸化マグネシウムを含有する球状粒子を得るためには、先ず、Mg、Al及びOを主成分とする溶融粒子を冷却することによって球状に凝固させる工程を要する。また、(b)酸化マグネシウムとMgSiOを主成分とし、長辺と短辺の比が平均で1.0〜1.1である場合、酸化マグネシウムを含有する球状粒子を得るためには、先ず、Mg、Si及びOを主成分とする溶融粒子を冷却することによって球状に凝固させる工程を要する。溶融粒子とは、その構成成分が溶融状態を保った状態で球状化されたものである。このような溶融粒子は、例えば、フレーム法、アトマイズ法及びスピンディスク法によって得ることができ、特にフレーム法によることが好ましい。フレーム法は、一粒一粒が構成成分からなる粒子を融点以上の温度の高温域を通過させる方法であり、例えば、組成調製された粒子を化学炎又は熱プラズマ中に投入し溶融させ溶融状態の球状粒子を得る方法である。アトマイズ法は、坩堝等の中で構成成分からなる原料を溶融させて坩堝に開けられた吐出口より融液を噴出させる方法であり、スピンディスク法は、高速で回転するディスク上に融液を溶融状態を保った状態で衝突させる方法である。 (A) In the case of spherical particles exhibiting a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4, in order to obtain spherical particles containing magnesium oxide, first, Mg, Al and A step of solidifying into a spherical shape by cooling the molten particles containing O as a main component is required. In addition, in order to obtain spherical particles containing magnesium oxide when (b) magnesium oxide and Mg 2 SiO 4 are the main components and the ratio of the long side to the short side is 1.0 to 1.1 on average. First, a step of solidifying into a spherical shape by cooling the molten particles mainly composed of Mg, Si and O is required. The molten particles are those in which the constituent components are spheroidized in a molten state. Such molten particles can be obtained, for example, by a flame method, an atomizing method, and a spin disk method, and particularly preferably by a flame method. The flame method is a method in which particles each consisting of a constituent component are passed through a high temperature region having a temperature equal to or higher than the melting point. For example, the prepared particles are put into a chemical flame or thermal plasma to be melted and melted. It is the method of obtaining the spherical particle. The atomization method is a method in which a raw material composed of constituent components is melted in a crucible or the like, and a melt is ejected from a discharge port opened in the crucible. The spin disk method is a method in which a melt is applied to a disk that rotates at high speed. It is the method of making it collide in the state which maintained the molten state.

フレーム法は、スプレードライヤー等により粉末状の原料を造粒した粒子、及び原料を焼結又は溶融凝固させたバルク材料を粉砕し、所望の粒度分布になるように、調整した粒子等を用いることができ、その粒子をその凝集を抑制しながら化学炎又は熱プラズマ中に投入し、化学炎又は熱プラズマ中で溶融させることによって行われる。   In the flame method, particles prepared by granulating powdery raw materials with a spray dryer, etc., and bulk materials obtained by sintering or melting and solidifying the raw materials are pulverized to use particles adjusted so as to obtain a desired particle size distribution. It is performed by putting the particles into a chemical flame or thermal plasma while suppressing the aggregation and melting them in the chemical flame or thermal plasma.

また、フレーム法は、原料のコロイド液や有機金属重合体等の所望の組成比の元素を含む液状の前駆物質などを用いることができ、その液状原料を、ノズル等を用いて化学炎又は熱プラズマ中に噴霧し、化学炎又は熱プラズマ中で溶剤又は分散媒を蒸発させた上で溶融させることによって行われる。ノズルと化学炎又は熱プラズマの間に低温の加熱域を設け、液状原料中の溶剤又は分散媒を蒸発させた上で、化学炎又は熱プラズマ中に投入することもできる。   In the flame method, a liquid precursor containing an element having a desired composition ratio such as a raw material colloidal liquid or an organometallic polymer can be used. It is carried out by spraying into plasma and evaporating the solvent or dispersion medium in a chemical flame or thermal plasma and then melting it. It is also possible to provide a low-temperature heating zone between the nozzle and the chemical flame or thermal plasma and evaporate the solvent or dispersion medium in the liquid raw material, and then put it into the chemical flame or thermal plasma.

フレーム法において、化学炎の発生源としては、2400℃以上の高温が得られれば良く、例えば、酸素−アセチレンの混合ガスや、それに水素を加えた混合ガス等が高温を得やすいことから好適に用いられる。また、熱プラズマの発生源としては、酸素、窒素、アルゴン、炭酸ガス及びこれらの混合ガス、並びに水が用いられ、ガスが用いられる場合、誘導結合方式のプラズマ装置が用いられるが、水が用いられることが好ましい。   In the flame method, it is only necessary to obtain a high temperature of 2400 ° C. or higher as a generation source of the chemical flame. Used. In addition, oxygen, nitrogen, argon, carbon dioxide gas and mixed gas thereof, and water are used as a source of thermal plasma. When gas is used, an inductively coupled plasma apparatus is used, but water is used. It is preferred that

アトマイズ法又はスピンディスク法の場合、原料としては、粉体、成形体、焼結体及び凝固体のいずれでも良く、また、これらの二つ以上が組み合わせたものでも良い。これら原料をその融点より高い融点を有する坩堝、例えば、Mo、W、Ta、Ir、Pt製等の坩堝、又は水などによって冷却が施されたCu製の坩堝等に収容した後、溶融させる。溶融方法は、原料をその融点以上の温度に加熱することが可能な方法であれば、いかなる方法でも良く、例えば、高周波、プラズマ、レーザ、電子ビーム、光又は赤外線等を用いることができる。原料の溶融は、原料が蒸発又は分解せず、且つ坩堝が著しく消耗しない雰囲気で行われることが好ましい。大気中、不活性ガス中、真空中等、原料と用いられる坩堝の材質に応じて、最適な雰囲気が選択される。   In the case of the atomizing method or the spin disk method, the raw material may be any of powder, a molded body, a sintered body, and a solidified body, or a combination of two or more of these. These raw materials are accommodated in a crucible having a melting point higher than the melting point thereof, for example, a crucible made of Mo, W, Ta, Ir, Pt or the like, or a Cu crucible cooled by water or the like and then melted. The melting method may be any method as long as the raw material can be heated to a temperature equal to or higher than its melting point, and for example, high frequency, plasma, laser, electron beam, light, or infrared can be used. The raw material is preferably melted in an atmosphere in which the raw material is not evaporated or decomposed and the crucible is not significantly consumed. An optimum atmosphere is selected depending on the raw material and the material of the crucible used, such as in the air, in an inert gas, or in a vacuum.

アトマイズ法は、ガス圧等を用いて坩堝底部等にあけられた細孔より融液を噴出させることによって球状の溶融粒子を形成することができる。スピンディスク法は、坩堝を傾転させる、アトマイズ法の場合と同様にガス圧等を用いて坩堝底部等にあけられた細孔より融液を噴出させるなどによって、回転するディスクに融液を衝突させて、球状の溶融粒子を形成することができる。   In the atomization method, spherical molten particles can be formed by ejecting a melt from pores opened in a crucible bottom or the like using gas pressure or the like. The spin disk method tilts the crucible, and in the same way as in the atomizing method, the melt collides with the rotating disk by, for example, jetting the melt from the pores opened at the bottom of the crucible using gas pressure etc. And spherical molten particles can be formed.

酸化マグネシウムを含有する球状粒子が(a)酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子である場合、溶融前の原料の構成成分の割合を調整する必要がある。凝固直前の溶融粒子が共晶組成となるように原料の構成成分の割合を徴する必要があるが、球形状及び熱伝導率が良好な球状粒子を得るためには、必ずしも共晶点と呼ばれる特定の組成である必要はない。例えば、その原材料が溶融した際の酸化マグネシウムと酸化アルミニウムとしての重量比43:57〜57:43となるように調整されていることが必要である。このような原料の組成比にすることによって、均一な共晶組織が形成され易く、良好な球形状を有する球状粒子を得ることができる。溶融前の原料としては、一般的には、酸化マグネシウム及び酸化アルミニウムが用いられるが、溶融した際に酸化物になるものであれば良く、水酸化物、炭酸塩等を用いても良い。また、冷却工程は、例えば、球状の溶融粒子を冷媒に投入して急冷することによって行うことができる。上述した本発明に係る球状粒子の製造方法における原料の構成成分の割合であれば、球状の溶融粒子についての冷媒による冷却によって共晶組織を呈する球状粒子を得ることができる。 When the spherical particles containing magnesium oxide are spherical particles exhibiting a eutectic structure composed of (a) a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4 , the proportion of the constituent components of the raw material before melting is adjusted There is a need to. It is necessary to collect the proportions of the constituent components of the raw material so that the molten particles immediately before solidification have an eutectic composition, but in order to obtain spherical particles with a good spherical shape and thermal conductivity, it is not always necessary to specify a eutectic point. It is not necessary to have the composition. For example, the weight ratio of magnesium oxide to aluminum oxide when the raw material is melted needs to be adjusted to be 43:57 to 57:43. By setting the composition ratio of such raw materials, a uniform eutectic structure is easily formed, and spherical particles having a good spherical shape can be obtained. As the raw material before melting, magnesium oxide and aluminum oxide are generally used. However, any material can be used as long as it becomes an oxide when melted, and hydroxide, carbonate, or the like may be used. The cooling step can be performed, for example, by putting spherical molten particles into a refrigerant and quenching. If it is the ratio of the component of the raw material in the manufacturing method of the spherical particle which concerns on this invention mentioned above, the spherical particle which exhibits a eutectic structure by cooling with the refrigerant | coolant about a spherical molten particle can be obtained.

また、酸化マグネシウムを含有する球状粒子が、(b)酸化マグネシウムとMgSiOを主成分とし、長辺と短辺の比が平均で1.0〜1.1である場合、Mg、Si及びOを主成分とする溶融粒子は、例えば、酸化マグネシウムと二酸化ケイ素から得ることができ、その場合、溶融粒子の構成成分の酸化マグネシウムと二酸化ケイ素の割合は、前者よりモル比で65:35〜85:15の範囲であることが好ましい。この範囲より二酸化ケイ素の割合が大きくなると高熱伝導な球状粒子が得られなくなり、またこの範囲より酸化マグネシウムの割合が大きくなると球形状が良好な球状粒子を得ることが困難になるからである。また、この場合、球状の溶融粒子を冷却して非晶質相を主相とする球状粒子を得るが、この冷却工程は、溶融状態を保った状態で、冷媒に球状の溶融粒子を投入して急冷することによって、本発明に係る耐水球状粒子を得ることができる。Mg、Si及びOを主成分とする溶融粒子であれば、液体冷媒による急冷によって非平衡状態での凝固が可能になり、この球状粒子は、溶融時の原子構造がほぼ維持された状態で凝固されるために、凝固収縮が極めて小さく、球形状が良好な球状粒子が得られやすい。 Further, when the spherical particles containing magnesium oxide are mainly composed of (b) magnesium oxide and Mg 2 SiO 4 and the ratio of the long side to the short side is 1.0 to 1.1 on average, Mg, Si The molten particles containing O and O as main components can be obtained from, for example, magnesium oxide and silicon dioxide. In this case, the ratio of magnesium oxide and silicon dioxide as constituents of the molten particles is 65:35 in molar ratio from the former. It is preferable to be in the range of ˜85: 15. This is because when the proportion of silicon dioxide is larger than this range, spherical particles having high thermal conductivity cannot be obtained, and when the proportion of magnesium oxide is larger than this range, it becomes difficult to obtain spherical particles having a good spherical shape. In this case, the spherical molten particles are cooled to obtain spherical particles having an amorphous phase as a main phase. In this cooling step, the spherical molten particles are charged into the refrigerant while maintaining the molten state. The water-resistant spherical particles according to the present invention can be obtained by rapid cooling. In the case of molten particles mainly composed of Mg, Si and O, solidification in a non-equilibrium state is possible by rapid cooling with a liquid refrigerant, and the spherical particles are solidified in a state in which the atomic structure at the time of melting is substantially maintained. For this reason, it is easy to obtain spherical particles with extremely small solidification shrinkage and good spherical shape.

酸化マグネシウムを含有する球状粒子が(a)酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子である場合、及び(b)酸化マグネシウムとMgSiOを主成分とし、長辺と短辺の比が平均で1.0〜1.1である場合いずれも、冷媒としては、非可燃性の液体が好ましく、水を分散媒としたAl、Si及びMgから選択される少なくとも一種の元素を含むコロイド状液体を好適に用いることができる。コロイド状液体の濃度は重量割合で、0.05〜10%の範囲にあることが好ましい。この範囲より濃度が低い場合は、球状粒子に耐水性を付与しうるに十分な表層を形成することができず、この範囲より濃度が高い場合は、球状粒子の球形度が悪くなる可能性があるからである。このような冷媒により溶融粒子を急冷することによって、表層がMgSiO、MgAl、MgSiO、MgAlSi18、MgAlSi12及びMgAl10Siのいずれか一以上の相から構成される。また、冷媒による急冷を用いることによって、凝固前の粒子同士の接触を抑制し、良好な球形状を作ることができる。 When spherical particles containing magnesium oxide are (a) spherical particles exhibiting a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4 , and (b) magnesium oxide and Mg 2 SiO 4 In any case, the ratio of the long side to the short side is 1.0 to 1.1 on average, and as the refrigerant, a non-flammable liquid is preferable, and Al, Si using water as a dispersion medium, and A colloidal liquid containing at least one element selected from Mg can be suitably used. The concentration of the colloidal liquid is preferably in the range of 0.05 to 10% by weight. When the concentration is lower than this range, it is not possible to form a surface layer sufficient to impart water resistance to the spherical particles, and when the concentration is higher than this range, the sphericity of the spherical particles may be deteriorated. Because there is. By rapidly cooling the molten particles with such a refrigerant, the surface layer has Mg 2 SiO 4 , MgAl 2 O 4 , MgSiO 3 , Mg 2 Al 4 Si 5 O 18 , Mg 3 Al 2 Si 3 O 12 and Mg 4 Al 10. It is composed of one or more phases of Si 2 O 3 . In addition, by using quenching with a refrigerant, it is possible to suppress contact between particles before solidification and to form a good spherical shape.

得られた非晶質相を主相とする溶融粒子の長辺と短辺の比を平均で1.0〜1.1に調整しても良い。当該非晶質球状粒子は、液体冷媒による超急冷によって溶融時の原子構造がほぼ維持された状態で凝固されたものであり、凝固収縮が極めて小さく、球形状が良好な球状粒子が得られる。   You may adjust the ratio of the long side of a molten particle which uses the obtained amorphous phase as a main phase to a short side to 1.0-1.1 on an average. The amorphous spherical particles are solidified in a state in which the atomic structure at the time of melting is substantially maintained by ultra-rapid cooling with a liquid refrigerant, and spherical particles having a very small solidification shrinkage and a good spherical shape can be obtained.

酸化マグネシウムを含有する球状粒子が、(b)酸化マグネシウムとMgSiOを主成分とし、長辺と短辺の比が平均で1.0〜1.1である場合、さらに、非晶質相を主相とする球状粒子を加熱することにより結晶化させるが、この際の加熱温度は、1350℃〜2100℃であることが好ましく、1450℃〜1800℃であることがさらに好ましい。このように加熱することにより、当該非晶質球状粒子を結晶化させて、酸化マグネシウムと、MgSiOから構成される球状粒子を得ることができる。得られた非晶質相から構成される球状粒子は所定の温度に加熱されることで、酸化マグネシウム及びMgSiOに結晶化する。この際、球状粒子は等方的に収縮するため、前記非晶質の粒子が持つ良好な球形状が維持された、酸化マグネシウム及びMgSiOから構成される結晶質の球状粒子を得ることができる。加熱の際の温度、時間、昇降温速度等を適宜選択することにより目的の球状粒子を得ることができる。この加熱処理は、非晶質相を主相とする球状粒子を1350℃〜2100℃で加熱することが可能な方法であればいかなる方法でも良く、抵抗加熱、サセプターを用いた高周波誘導加熱、レーザ加熱、電子ビーム加熱、光加熱、赤外線加熱等いかなる方式を用いても良い。 When the spherical particles containing magnesium oxide are mainly composed of (b) magnesium oxide and Mg 2 SiO 4 , and the ratio of the long side to the short side is 1.0 to 1.1 on average, it is further amorphous. Crystallization is performed by heating spherical particles whose main phase is the phase. The heating temperature at this time is preferably 1350 ° C. to 2100 ° C., more preferably 1450 ° C. to 1800 ° C. By heating in this way, the amorphous spherical particles can be crystallized to obtain spherical particles composed of magnesium oxide and Mg 2 SiO 4 . The obtained spherical particles composed of the amorphous phase are heated to a predetermined temperature to crystallize into magnesium oxide and Mg 2 SiO 4 . At this time, since the spherical particles shrink isotropically, crystalline spherical particles composed of magnesium oxide and Mg 2 SiO 4 are obtained, in which the good spherical shape of the amorphous particles is maintained. Can do. The desired spherical particles can be obtained by appropriately selecting the temperature, time, heating rate, etc. during heating. This heat treatment may be any method as long as spherical particles whose main phase is an amorphous phase can be heated at 1350 ° C. to 2100 ° C., such as resistance heating, high frequency induction heating using a susceptor, laser Any method such as heating, electron beam heating, light heating, or infrared heating may be used.

一般的には、酸化アルミニウム、酸化マグネシウム等のセラミックス製、又は、モリブデン、タンタル、白金、イリジウム等の高融点金属製の坩堝等に非晶質球状粒子を収容して坩堝ごと加熱を行う方法、非晶質球状粒子を所定の温度勾配と均熱領域が設けられた前記坩堝と同様の素材からなる管状炉中を移動させながら加熱を行う方法、又は、非晶質球状粒子を、所定の温度勾配と均熱領域が設けられた前記坩堝と同様の素材からなる縦型管状炉中を落下させながら加熱を行う方法等が採用される。   Generally, a method of heating the entire crucible by storing amorphous spherical particles in a crucible made of ceramics such as aluminum oxide and magnesium oxide, or a high melting point metal such as molybdenum, tantalum, platinum, iridium, etc. A method of heating amorphous spherical particles while moving them in a tubular furnace made of the same material as the crucible provided with a predetermined temperature gradient and a soaking area, or amorphous spherical particles at a predetermined temperature. A method of heating while dropping in a vertical tubular furnace made of the same material as that of the crucible provided with a gradient and a soaking area is adopted.

非晶質球状粒子の加熱処理は、大気中、不活性ガス中、還元性ガス中、炭化水素ガス中、真空中などいかなる雰囲気で行われても良いが、用いられる坩堝及び加熱方式により制限を受ける場合がある。   The heat treatment of the amorphous spherical particles may be performed in any atmosphere, such as in the air, in an inert gas, in a reducing gas, in a hydrocarbon gas, or in a vacuum, but is limited by the crucible used and the heating method. There is a case to receive.

本発明に係る耐水性球状粒子は、球形状が良好なため、極めて流動性が良く、樹脂に充填する際に極めて良好な成形性を示す。得られた耐水性球状粒子は、所望の充填率が得られるよう分級された後、必要に応じて表面処理が施されて更に充填率を向上させることができる。表面処理剤としては、一般にシラン系カップリング剤が用いられるが、他にチタネート系及びアルミネート系カップリング剤を用いることもできる。   Since the water-resistant spherical particles according to the present invention have a good spherical shape, the fluid-resistant spherical particles have extremely good fluidity and exhibit extremely good moldability when filled into a resin. The obtained water-resistant spherical particles are classified so as to obtain a desired filling rate, and then subjected to a surface treatment as necessary to further improve the filling rate. As the surface treatment agent, a silane coupling agent is generally used, but titanate and aluminate coupling agents can also be used.

本発明に係る樹脂組成物は、エポキシ樹脂、シリコーン樹脂、及びポリイミド樹脂等の樹脂原料に上述した耐水性球状粒子が充填されていることが好ましく、またシリコーンゴム等に充填されても良い。また、本発明に係る樹脂組成物は、成形時、必要に応じて硬化剤、硬化促進剤等が添加される。   The resin composition according to the present invention is preferably filled with the above-mentioned water-resistant spherical particles in a resin raw material such as an epoxy resin, a silicone resin, and a polyimide resin, or may be filled with silicone rubber or the like. Moreover, the resin composition which concerns on this invention is added with a hardening | curing agent, a hardening accelerator, etc. as needed at the time of shaping | molding.

本発明に係るフィラーは、本発明に係る耐水性球状粒子の集合体であり、その平均粒径は5〜500μmの範囲であることが好ましい。この範囲未満の場合は、粒子の表面積が大きくなり耐水性に問題が生じる可能性があり、この範囲を越える場合は、半導体封止樹脂等への充填性が悪くなるからである。平均粒径の調整は、篩による乾式または湿式の分級によって容易に行うことができ、その用途に応じて適切な目の粗さの篩を選択して所望の粒度分布を有するフィラーを得ることができる。   The filler according to the present invention is an aggregate of water-resistant spherical particles according to the present invention, and the average particle size thereof is preferably in the range of 5 to 500 μm. If it is less than this range, the surface area of the particles may be increased, which may cause a problem in water resistance. If it exceeds this range, the filling property to the semiconductor sealing resin or the like will be deteriorated. Adjustment of the average particle diameter can be easily performed by dry or wet classification using a sieve, and a filler having a desired particle size distribution can be obtained by selecting a sieve having an appropriate mesh size according to the application. it can.

本発明に係る半導体樹脂封止剤は、本発明に係るフィラーと樹脂から構成される前記樹脂組成物からなる。半導体樹脂封止剤とは、集積回路を外部の熱やゴミ、湿気、衝撃などから守る樹脂組成物であり、一定以上の電気的絶縁性、耐水性に加え、優れた成形性および放熱性(高熱伝導性)が要求される。本発明に係るフィラーは、球形状および熱伝導性が良好な球状粒子の集合体であり、流動性が良く成形性が良好で、充填率を高くすることが可能であるため、本発明に係るフィラー及び樹脂からなる半導体樹脂封止剤は、優れた熱伝導性を有し、特に発熱量が大きな高性能集積回路に好適に用いられる。   The semiconductor resin sealant according to the present invention is composed of the resin composition composed of the filler and the resin according to the present invention. A semiconductor resin sealant is a resin composition that protects integrated circuits from external heat, dust, moisture, impact, etc. In addition to a certain level of electrical insulation and water resistance, it has excellent moldability and heat dissipation ( High thermal conductivity) is required. The filler according to the present invention is an aggregate of spherical particles having a spherical shape and good thermal conductivity, has good fluidity and good moldability, and can increase the filling rate. A semiconductor resin encapsulant composed of a filler and a resin has excellent thermal conductivity, and is particularly suitable for a high performance integrated circuit having a large calorific value.

本発明に係る半導体樹脂封止剤は、樹脂が固形材である場合、圧縮成形法やトランスファ成形法等により成形される。圧縮成形法は、金型のキャビティ内で樹脂を溶融させ圧縮しフィラーを成形するように硬化させて、予めキャビティ内に設置された、基板上のICチップ、ダイパッド、ボンディングワイヤのすべて、及びリードフレームの一部を封止する方法であり、トランスファ成形法は、金型のキャビティ外のポットで樹脂を溶融させて、小さな穴を通して溶融樹脂およびフィラーをキャビティ内に送り、キャビティ内でフィラーを成形するように硬化させて、圧縮成形法と同様に各部品を封止する方法である。   When the resin is a solid material, the semiconductor resin encapsulant according to the present invention is molded by a compression molding method, a transfer molding method, or the like. In the compression molding method, the resin is melted and compressed in the cavity of the mold and cured so as to mold the filler, and all of the IC chip, die pad, bonding wire, and leads on the substrate previously set in the cavity. This is a method of sealing part of the frame. In the transfer molding method, the resin is melted in a pot outside the mold cavity, the molten resin and filler are sent into the cavity through a small hole, and the filler is molded in the cavity. This is a method of sealing each component in the same manner as the compression molding method.

また、本発明に係る半導体樹脂封止剤は、樹脂が液状封止材である場合、液状樹脂とフィラーを混合し、ディスペンサー等により必要な箇所に注入する、また塗布する等した後、必要に応じて脱溶媒を行い、次いでフィラーを成形するように硬化させて封止を行うことができる。   In addition, when the resin is a liquid encapsulant, the semiconductor resin encapsulant according to the present invention is necessary after mixing the liquid resin and filler, injecting into a required location with a dispenser or the like, or applying it. Accordingly, the solvent can be removed, and then the filler can be cured to form and sealed.

いずれの方法であっても、フィラーの含有率は60〜90重量%程度であることが好ましい。フィラーの含有率が、この範囲より少ないと、当該フィラーの良好な熱伝導性の効果が得にくく、またこの範囲より多いと、成形が困難になる。樹脂は、目的に応じて多様な種類から選択され、その硬化剤、硬化促進剤はそれに応じて選択され、また成形温度もそれらにより最適な条件が選択される。   In any method, the filler content is preferably about 60 to 90% by weight. When the filler content is less than this range, it is difficult to obtain a good thermal conductivity effect of the filler, and when it is more than this range, molding becomes difficult. The resin is selected from various types according to the purpose, the curing agent and curing accelerator are selected accordingly, and the optimum molding temperature is selected accordingly.

実施例1
次に、本発明に係る耐水性球状粒子の実施例1について説明する。実施例1に係る耐水性球状粒子の原料としては、MgO粉末(高純度化学研究所社製MGO12PB)及びα−Al(住友化学工業社製AKP−30)粉末を用いた。MgO粉末及びα−Al粉末を重量比で55:45の割合で水を用いた湿式ボールミルによって混合し、スプレードライヤーを用いて得られたスラリーを造粒乾燥して平均粒径25μmの顆粒状の粒子を得た。
Example 1
Next, Example 1 of the water-resistant spherical particles according to the present invention will be described. As raw materials for the water-resistant spherical particles according to Example 1, MgO powder (MGO12PB manufactured by High Purity Chemical Laboratory Co., Ltd.) and α-Al 2 O 3 (AKP-30 manufactured by Sumitomo Chemical Co., Ltd.) powder were used. MgO powder and α-Al 2 O 3 powder are mixed by a wet ball mill using water at a weight ratio of 55:45, and the resulting slurry is granulated and dried to have an average particle size of 25 μm. Granular particles were obtained.

得られた顆粒状の粒子を、酸素及びアセチレンの混合ガスの燃焼により形成された火炎中に、混合ガスの噴出方向と平行に供給し、火炎中で溶融球状化した後、火炎先端を流動状態にある濃度2重量%のAlを含有するコロイド液中へ入射させることで溶融粒子を流水中へ投入し凝固させた。 The obtained granular particles are supplied into a flame formed by the combustion of a mixed gas of oxygen and acetylene in parallel with the jet direction of the mixed gas, melted and spheroidized in the flame, and then the flame tip is in a fluid state Then, the molten particles were injected into flowing water to be solidified by being incident on a colloidal solution containing Al 2 O 3 having a concentration of 2% by weight.

得られた球状粒子は平均粒径17μmであり、その長辺と短辺の比は平均で1.13であった。この球状粒子はCu−Kα線を用いたX線回折、球状粒子断面の走査電子顕微鏡観察により、表層がMgAl、で構成され、表層以外の部分が酸化マグネシウムからなる相と、MgAlからなる相から構成される共晶組織を呈していることがわかった。 The obtained spherical particles had an average particle size of 17 μm, and the ratio of the long side to the short side was 1.13 on average. The spherical particles are formed by X-ray diffraction using Cu-Kα rays and scanning electron microscope observation of the cross-section of the spherical particles, the surface layer is composed of MgAl 2 O 4 , and the portion other than the surface layer is composed of magnesium oxide, and MgAl 2 It was found that a eutectic structure composed of a phase composed of O 4 was exhibited.

得られた球状粒子をエポキシシランカップリング剤で処理し、この球状粒子を100%とした場合に、この球状粒子に対して、20重量%のノボラックエポキシ樹脂、10重量%のノボラックフェノール、0.4重量%の硬化促進剤及び0.4重量%のカルナバワックスを加えて100℃で混錬し粉砕した。得られた粉末を170℃で7MPaの圧力でプレス成形して直径20mm、厚さ3mmの成形物を得た。得られた成形物の熱伝導率をレーザフラッシュ法により測定したところ、3.31W/mKの値を得た。また、この成形物を120℃の2気圧水蒸気中に200時間保持して吸湿率の測定を行ったところ、吸水率は0.3%であり、成形物の外観に変化は認められなかった。   When the obtained spherical particles are treated with an epoxy silane coupling agent and the spherical particles are taken as 100%, 20% by weight of a novolac epoxy resin, 10% by weight of novolak phenol, 0.0. 4 wt% curing accelerator and 0.4 wt% carnauba wax were added and kneaded at 100 ° C. and pulverized. The obtained powder was press-molded at 170 ° C. and a pressure of 7 MPa to obtain a molded product having a diameter of 20 mm and a thickness of 3 mm. When the thermal conductivity of the obtained molding was measured by a laser flash method, a value of 3.31 W / mK was obtained. Further, when the molded product was kept in 2 atm water vapor at 120 ° C. for 200 hours to measure the moisture absorption rate, the water absorption rate was 0.3%, and no change was observed in the appearance of the molded product.

実施例2
次に、本発明に係る耐水性球状粒子の実施例2について説明する。実施例1と同様に、MgO粉末及びα−Al粉末を用い、MgO粉末及びα−Al粉末の重量比を45:55の割合にした以外は、実施例1と同様の方法で造粒乾燥して平均粒子径24μmの顆粒状の粒子を得て、実施例1と同様の方法で溶融球状化させたのち、凝固させ球状粒子を得た。得られた球状粒子は、平均粒子径16μmであり、その長辺と短辺の比は平均で1.10であった。この球状粒子はCu−Kα線を用いたX線回折、球状粒子断面の走査電子顕微鏡観察により、表層がMgAl、で構成され、表層以外の部分が酸化マグネシウムからなる相と、MgAlからなる相から構成される共晶組織を呈していることがわかった。
Example 2
Next, Example 2 of the water resistant spherical particles according to the present invention will be described. Similar to Example 1, except that MgO powder and α-Al 2 O 3 powder were used, and the weight ratio of MgO powder and α-Al 2 O 3 powder was changed to a ratio of 45:55. Granulation and drying were performed by a method to obtain granular particles having an average particle size of 24 μm, melt spheroidized by the same method as in Example 1, and then solidified to obtain spherical particles. The obtained spherical particles had an average particle diameter of 16 μm, and the ratio of the long side to the short side was 1.10 on average. The spherical particles are formed by X-ray diffraction using Cu-Kα rays and scanning electron microscope observation of the cross-section of the spherical particles, the surface layer is composed of MgAl 2 O 4 , and the portion other than the surface layer is composed of magnesium oxide, and MgAl 2 It was found that a eutectic structure composed of a phase composed of O 4 was exhibited.

得られた球状粒子をエポキシシランカップリング剤で処理し、この球状粒子を100%とした場合に、この球状粒子に対して、20重量%のノボラックエポキシ樹脂、10重量%のノボラックフェノール、0.4重量%の硬化促進剤及び0.4重量%のカルナバワックスを加えて100℃で混錬し粉砕した。得られた粉末を170℃で7MPaの圧力でプレス成形して直径20mm、厚さ3mmの成形物を得た。得られた成形物の熱伝導率をレーザフラッシュ法により測定したところ、3.04W/mKの値を得た。また、この成形物を120℃の2気圧水蒸気中に200時間保持して吸湿率の測定を行ったところ、吸水率は0.3%であり、成形物の外観に変化は認められなかった。   When the obtained spherical particles are treated with an epoxy silane coupling agent and the spherical particles are taken as 100%, 20% by weight of a novolac epoxy resin, 10% by weight of novolak phenol, 0.0. 4 wt% curing accelerator and 0.4 wt% carnauba wax were added and kneaded at 100 ° C. and pulverized. The obtained powder was press-molded at 170 ° C. and a pressure of 7 MPa to obtain a molded product having a diameter of 20 mm and a thickness of 3 mm. When the thermal conductivity of the obtained molding was measured by a laser flash method, a value of 3.04 W / mK was obtained. Further, when the molded product was kept in 2 atm water vapor at 120 ° C. for 200 hours to measure the moisture absorption rate, the water absorption rate was 0.3%, and no change was observed in the appearance of the molded product.

実施例3
次に、本発明に係る耐水性球状粒子の実施例3について説明する。実施例2に係る耐水性球状粒子の原料としては、MgO粉末(高純度化学研究所社製MGO12PB)及びSiO粉末(高純度化学研究所社製SIO07PB)を用いた。MgO粉末及びSiO粉末をモル比で前者から80:20の割合で水を用いた湿式ボールミルによって混合し、得られたスラリーをスプレードライヤーを用いて造粒乾燥して平均粒径25μmの顆粒状の粒子を得た。
Example 3
Next, Example 3 of the water resistant spherical particles according to the present invention will be described. As raw materials for the water-resistant spherical particles according to Example 2, MgO powder (MGO12PB manufactured by High Purity Chemical Laboratory) and SiO 2 powder (SIO07PB manufactured by High Purity Chemical Laboratory) were used. MgO powder and SiO 2 powder are mixed by a wet ball mill using water at a molar ratio of 80:20 from the former, and the resulting slurry is granulated and dried using a spray dryer to form granules having an average particle size of 25 μm. Obtained particles.

得られた顆粒状の粒子を、酸素及びアセチレンの混合ガスの燃焼により形成された火炎中に、混合ガスの噴出方向と平行に供給し、火炎中で溶融球状化した後、火炎先端を流動状態にある濃度2重量%のSiOを含有するコロイド液中へ入射させることで溶融粒子を流水中へ投入し凝固させた。 The obtained granular particles are supplied into a flame formed by the combustion of a mixed gas of oxygen and acetylene in parallel with the jet direction of the mixed gas, melted and spheroidized in the flame, and then the flame tip is in a fluid state Injected into a colloidal solution containing 2 % by weight of SiO 2 at the concentration of molten particles, the molten particles were put into running water and solidified.

得られた球状粒子は平均粒径22μmであり、その長辺と短辺の比は平均で1.04であった。この球状粒子はCu−Kα線を用いたX線回折、透過電子顕微鏡観察及び透過電子顕微鏡に設置された半導体X線検出器による特性X線の分析により、表層が約0.1μmのMgSiOで、表層以外の部分がMg、Si及びOからなる非晶質相から構成されていることがわかった。 The obtained spherical particles had an average particle size of 22 μm, and the ratio of the long side to the short side was 1.04 on average. The spherical particles X-ray diffraction using Cu-K [alpha line, the analysis of transmission electron microscopy and installed in a transmission electron microscope characteristic X-ray by a semiconductor X-ray detector, a surface layer of about 0.1 [mu] m Mg 2 SiO 4 , it was found that the portion other than the surface layer was composed of an amorphous phase composed of Mg, Si and O.

得られた球状粒子をMgO製坩堝に収容して空気中1550℃で熱処理した。得られた球状粒子は平均粒径18μmであり、その長辺と短辺の比は平均で1.07であった。この球状粒子はCu−Kα線を用いたX線回折及び球状粒子切断面の走査電子顕微鏡観察により、表層がMgSiOから構成され、表層以外の部分がMgO及びMgSiOから構成されていることがわかった。 The obtained spherical particles were placed in a MgO crucible and heat-treated at 1550 ° C. in air. The obtained spherical particles had an average particle diameter of 18 μm, and the ratio of the long side to the short side was 1.07 on average. The spherical particles are composed of Mg 2 SiO 4 on the surface layer by X-ray diffraction using Cu—Kα rays and scanning electron microscope observation of the cut surface of the spherical particles, and the portions other than the surface layer are composed of MgO and Mg 2 SiO 4. I found out.

得られた球状粒子をエポキシシランカップリング剤で処理し、この球状粒子を100%とした場合に、この球状粒子に対して、20重量%のノボラックエポキシ樹脂、10重量%のノボラックフェノール、0.4重量%の硬化促進剤及び0.4重量%のカルナバワックスを加えて100℃で混錬し粉砕した。得られた粉末を170℃で7MPaの圧力でプレス成形して直径20mm、厚さ3mmの成形物を得た。得られた成形物の熱伝導率をレーザフラッシュ法により測定したところ、3.15W/mKの値を得た。また、この成形物を120℃の2気圧水蒸気中に200時間保持して吸湿率の測定を行ったところ、吸水率は0.3%であり、成形物の外観に変化は認められなかった。   When the obtained spherical particles are treated with an epoxy silane coupling agent and the spherical particles are taken as 100%, 20% by weight of a novolac epoxy resin, 10% by weight of novolak phenol, 0.0. 4 wt% curing accelerator and 0.4 wt% carnauba wax were added and kneaded at 100 ° C. and pulverized. The obtained powder was press-molded at 170 ° C. and a pressure of 7 MPa to obtain a molded product having a diameter of 20 mm and a thickness of 3 mm. When the thermal conductivity of the obtained molding was measured by a laser flash method, a value of 3.15 W / mK was obtained. Further, when the molded product was kept in 2 atm water vapor at 120 ° C. for 200 hours to measure the moisture absorption rate, the water absorption rate was 0.3%, and no change was observed in the appearance of the molded product.

実施例4
次に、本発明に係る耐水性球状粒子の実施例4について説明する。実施例3と同様の原料を用い、実施例3と同様の方法によって、平均粒子径25μmの顆粒状の粒子を得た。
Example 4
Next, Example 4 of the water resistant spherical particles according to the present invention will be described. Using the same raw materials as in Example 3, granular particles having an average particle diameter of 25 μm were obtained by the same method as in Example 3.

得られた顆粒状の粒子を、酸素及びアセチレンの混合ガスの燃焼により形成された火炎中に、混合ガスの噴出方向と平行に供給し、火炎中で溶融球状化した後、火炎先端を流動状態にある濃度2重量%のMgOを含有するコロイド液中へ入射させることで溶融粒子を流水中へ投入し凝固させた。   The obtained granular particles are supplied into a flame formed by the combustion of a mixed gas of oxygen and acetylene in parallel with the jet direction of the mixed gas, melted and spheroidized in the flame, and then the flame tip is in a fluid state Injected into a colloidal solution containing 2% by weight of MgO at a concentration of molten particles, the molten particles were poured into running water and solidified.

得られた球状粒子は平均粒径22μmであり、その長辺と短辺の比は平均で1.04であった。この球状粒子はCu−Kα線を用いたX線回折、透過電子顕微鏡観察及び透過電子顕微鏡に設置された半導体X線検出器による特性X線の分析により、表層が約0.2μmのMgSiOで、表層以外の部分がMg、Si及びOからなる非晶質相から構成されていることがわかった。 The obtained spherical particles had an average particle size of 22 μm, and the ratio of the long side to the short side was 1.04 on average. This spherical particle was found to be Mg 2 SiO having a surface layer of about 0.2 μm by X-ray diffraction using Cu-Kα rays, observation with a transmission electron microscope, and analysis of characteristic X-rays using a semiconductor X-ray detector installed in the transmission electron microscope. 4 , it was found that the portion other than the surface layer was composed of an amorphous phase composed of Mg, Si and O.

得られた球状粒子をMgO製坩堝に収容して空気中1550℃で熱処理した。得られた球状粒子は平均粒径18μmであり、その長辺と短辺の比は平均で1.07であった。この球状粒子はCu−Kα線を用いたX線回折及び球状粒子切断面の走査電子顕微鏡観察により、表層がMgSiOから構成され、表層以外の部分がMgO及びMgSiOから構成されていることがわかった。 The obtained spherical particles were placed in a MgO crucible and heat-treated at 1550 ° C. in air. The obtained spherical particles had an average particle diameter of 18 μm, and the ratio of the long side to the short side was 1.07 on average. The spherical particles are composed of Mg 2 SiO 4 on the surface layer by X-ray diffraction using Cu—Kα rays and scanning electron microscope observation of the cut surface of the spherical particles, and the portions other than the surface layer are composed of MgO and Mg 2 SiO 4. I found out.

得られた球状粒子をエポキシシランカップリング剤で処理し、この球状粒子を100%とした場合に、この球状粒子に対して、20重量%のノボラックエポキシ樹脂、10重量%のノボラックフェノール、0.4重量%の硬化促進剤及び0.4重量%のカルナバワックスを加えて100℃で混錬し粉砕した。得られた粉末を170℃で7MPaの圧力でプレス成形して直径20mm、厚さ3mmの成形物を得た。得られた成形物の熱伝導率をレーザフラッシュ法により測定したところ、3.15W/mKの値を得た。また、この成形物を120℃の2気圧水蒸気中に200時間保持して吸湿率の測定を行ったところ、吸水率は0.5%であり、成形物の外観に変化は認められなかった。   When the obtained spherical particles are treated with an epoxy silane coupling agent and the spherical particles are taken as 100%, 20% by weight of a novolac epoxy resin, 10% by weight of novolak phenol, 0.0. 4 wt% curing accelerator and 0.4 wt% carnauba wax were added and kneaded at 100 ° C. and pulverized. The obtained powder was press-molded at 170 ° C. and a pressure of 7 MPa to obtain a molded product having a diameter of 20 mm and a thickness of 3 mm. When the thermal conductivity of the obtained molding was measured by a laser flash method, a value of 3.15 W / mK was obtained. Further, when the molded product was held in 2 atm water vapor at 120 ° C. for 200 hours to measure the moisture absorption rate, the water absorption rate was 0.5%, and no change was observed in the appearance of the molded product.

比較例
次に、本発明に係る球状粒子の比較例について説明する。比較例に係る球状粒子の原料として、実施例1と同程度の粒度分布になるように分級によって粒度調整された電融マグネシアを実施例1と同様の方法で成形した。成形物の熱伝導率をレーザフラッシュ法により測定したところ、3.01W/mKの値を得た。また、この成形物を120℃の2気圧水蒸気中に200時間保持して吸湿率の測定を行ったところ、吸水率は3.1%であり、成形物の表面には複数のクラックが発生した。
Comparative Example Next, a comparative example of spherical particles according to the present invention will be described. As a raw material for the spherical particles according to the comparative example, electrofused magnesia whose particle size was adjusted by classification so as to have a particle size distribution similar to that of Example 1 was molded in the same manner as in Example 1. When the thermal conductivity of the molded product was measured by the laser flash method, a value of 3.01 W / mK was obtained. Further, the moisture absorption rate was measured by holding the molded product in 2 atm water vapor at 120 ° C. for 200 hours. The water absorption rate was 3.1%, and a plurality of cracks occurred on the surface of the molded product. .

Claims (11)

酸化マグネシウムを含有する球状粒子の表面に、MgSiO、MgAl、MgSiO、MgAlSi18、MgAlSi12及びMgAl10Siから選択される少なくとも一つの相から構成される層が形成されており、長辺と短辺の比が平均で1.0〜1.15であることを特徴とする耐水性球状粒子。 Mg 2 SiO 4 , MgAl 2 O 4 , MgSiO 3 , Mg 2 Al 4 Si 5 O 18 , Mg 3 Al 2 Si 3 O 12 and Mg 4 Al 10 Si 2 O 3 are formed on the surface of the spherical particles containing magnesium oxide. A water-resistant spherical particle, wherein a layer composed of at least one phase selected from the above is formed, and the ratio of the long side to the short side is 1.0 to 1.15 on average. 前記酸化マグネシウムを含有する球状粒子が、酸化マグネシウムからなる相とMgAlからなる相から構成される共晶組織を呈する球状粒子であることを特徴とする請求項1記載の耐水性球状粒子。 The water-resistant spherical particles according to claim 1, wherein the spherical particles containing magnesium oxide are spherical particles exhibiting a eutectic structure composed of a phase composed of magnesium oxide and a phase composed of MgAl 2 O 4. . 長辺と短辺の比が平均で1.0〜1.1であり、前記酸化マグネシウムを含有する球状粒子が、酸化マグネシウムとMgSiOを主成分とすることを特徴とする請求項1記載の耐水性球状粒子。 The ratio of long side to short side is 1.0 to 1.1 on average, and the spherical particles containing magnesium oxide are mainly composed of magnesium oxide and Mg 2 SiO 4. Water-resistant spherical particles as described. 前記酸化マグネシウムを含有する球状粒子が、Mg、Si及びOを主成分とする溶融粒子を冷却凝固することによって非晶質相を主相とする球状粒子を得たのち、該非晶質相を主相とする球状粒子を加熱することにより結晶化させたことを特徴とする請求項3記載の耐水性球状粒子。   The spherical particles containing magnesium oxide are obtained by cooling and solidifying molten particles containing Mg, Si and O as main components to obtain spherical particles having an amorphous phase as a main phase. 4. The water-resistant spherical particles according to claim 3, wherein the spherical particles used as a phase are crystallized by heating. 請求項1乃至4いずれか記載の耐水性球状粒子を含む樹脂組成物。   A resin composition comprising the water-resistant spherical particles according to claim 1. 酸化マグネシウムを含有する溶融粒子を冷却凝固することによって、該球状粒子の表層にMgSiO、MgAl、MgSiO、MgAlSi18、MgAlSi12及びMgAl10Siから選択される少なくとも一つの相を形成して、請求項1記載の耐水性球状粒子を得ることを特徴とする耐水性球状粒子の製造方法。 By cooling and solidifying molten particles containing magnesium oxide, Mg 2 SiO 4 , MgAl 2 O 4 , MgSiO 3 , Mg 2 Al 4 Si 5 O 18 , and Mg 3 Al 2 Si 3 O 12 are formed on the surface layer of the spherical particles. And at least one phase selected from Mg 4 Al 10 Si 2 O 3 to form the water-resistant spherical particles according to claim 1. 前記冷却凝固は、水を分散媒としたAl、Si及びMgのいずれか一以上の元素が含まれたコロイド状液体からなる冷媒に前記溶融粒子を投入することによって行われることを特徴とする請求項7記載の耐水性球状粒子の製造方法。   The cooling and solidification is performed by introducing the molten particles into a refrigerant composed of a colloidal liquid containing one or more elements of Al, Si, and Mg using water as a dispersion medium. Item 8. A method for producing water-resistant spherical particles according to Item 7. 溶融粒子は、Mg、Al及びOを主成分とし、その原材料が溶融した際の酸化マグネシウムと酸化アルミニウムとしての重量比が43:57〜57:43となるように調整されていることを特徴とする請求項6又は7記載の耐水性球状粒子の製造方法。   The molten particles are mainly composed of Mg, Al and O, and the weight ratio of magnesium oxide to aluminum oxide when the raw materials are melted is adjusted to be 43:57 to 57:43. The method for producing water-resistant spherical particles according to claim 6 or 7. 前記溶融粒子は、Mg、Si及びOを主成分とし、
その溶融粒子を冷却凝固することによって非晶質相を主相とする球状粒子を得て、該非晶質相を主相とする球状粒子を加熱することにより結晶化させることを特徴とする請求項6又は7記載の耐水性球状粒子の製造方法。
The molten particles are mainly composed of Mg, Si and O,
A spherical particle having an amorphous phase as a main phase is obtained by cooling and solidifying the molten particles, and the spherical particles having the amorphous phase as a main phase are crystallized by heating. 8. A method for producing water-resistant spherical particles according to 6 or 7.
請求項1乃至4いずれか記載の耐水性球状粒子の集合体であり、平均粒径が5〜500μmであることを特徴とするフィラー。   A filler characterized by being an aggregate of water-resistant spherical particles according to any one of claims 1 to 4, having an average particle size of 5 to 500 µm. 請求項10記載のフィラーと樹脂を含む半導体樹脂封止剤。   The semiconductor resin sealing agent containing the filler and resin of Claim 10.
JP2008062521A 2008-03-12 2008-03-12 Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler Pending JP2009215134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062521A JP2009215134A (en) 2008-03-12 2008-03-12 Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062521A JP2009215134A (en) 2008-03-12 2008-03-12 Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler

Publications (1)

Publication Number Publication Date
JP2009215134A true JP2009215134A (en) 2009-09-24

Family

ID=41187393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062521A Pending JP2009215134A (en) 2008-03-12 2008-03-12 Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler

Country Status (1)

Country Link
JP (1) JP2009215134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020900A (en) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk Spherical alumina powder, and method of production and application thereof
WO2014112334A1 (en) * 2013-01-15 2014-07-24 タテホ化学工業株式会社 Coated magnesium oxide powder, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020900A (en) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk Spherical alumina powder, and method of production and application thereof
WO2014112334A1 (en) * 2013-01-15 2014-07-24 タテホ化学工業株式会社 Coated magnesium oxide powder, and method for producing same
JP2014136654A (en) * 2013-01-15 2014-07-28 Tateho Chemical Industries Co Ltd Coated magnesium oxide powder and its manufacturing method
KR101751380B1 (en) 2013-01-15 2017-06-27 다테호 가가쿠 고교 가부시키가이샤 Coated magnesium oxide powder, and method for producing same

Similar Documents

Publication Publication Date Title
JP7046056B2 (en) Spherical crystalline silica particles and their manufacturing method
JP6493226B2 (en) Boron nitride aggregated particles, method for producing boron nitride aggregated particles, resin composition containing boron nitride aggregated particles, molded product, and sheet
TWI672268B (en) Spherical crystalline cerium oxide particle and method of producing the same
JP7011548B2 (en) Powder for ceramic molding, ceramic molding, and its manufacturing method
JP5689985B2 (en) BN Sintered Particles with Recesses, Method for Producing the Same, and Polymer Material
JP5602480B2 (en) Method for producing alumina particles provided with AlN modified layer
KR100785197B1 (en) Spherical coated magnesium oxide powder and method for production thereof, and resin composition comprising the powder
JP6364883B2 (en) Boron nitride particles, boron nitride particle manufacturing method, heat-dissipating sheet coating solution containing boron nitride particles, heat-dissipating sheet containing boron nitride particles, and power device device
JP6934344B2 (en) Powder for spherical silica filler and its manufacturing method
JP2022040270A (en) Powder for ceramic shaping, ceramic shaped article, and method for manufacturing the same
CN116239087A (en) Ultra-pure low-radioactivity spheroid beta silicon nitride powder, and manufacturing method and application thereof
JP6256158B2 (en) Heat dissipation sheet and heat dissipation sheet manufacturing method, slurry for heat dissipation sheet, and power device device
WO2017169987A1 (en) Spherical eucryptite particles and method for producing same
JP7433022B2 (en) Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
WO1988000573A1 (en) Spherical corundum particles, process for their production, and highly heat-conductive rubber or plastic composition containing them
JP2016011358A (en) Resin composition, heat radiation sheet comprising resin composition, and power device unit comprising heat radiation sheet
JP2009215134A (en) Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler
JP7017362B2 (en) Spherical crystalline silica particles and their manufacturing method
JP5446106B2 (en) Spherical phosphor particles, process for producing the same, resin composition and glass composition containing the same
JPH11269302A (en) Filler for improving thermal conductivity of resin product and its production
JP2009215133A (en) Spherical particles, resin composition containing the same and its manufacturing method, as well as filler being aggregate of the spherical particles and semiconductor resin sealing agent containing the filler
JP2009215132A (en) Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same
JP3936990B2 (en) High thermal conductivity aluminum nitride, method for producing the same, and resin composite using the same