JP7433022B2 - Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same - Google Patents

Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same Download PDF

Info

Publication number
JP7433022B2
JP7433022B2 JP2019205597A JP2019205597A JP7433022B2 JP 7433022 B2 JP7433022 B2 JP 7433022B2 JP 2019205597 A JP2019205597 A JP 2019205597A JP 2019205597 A JP2019205597 A JP 2019205597A JP 7433022 B2 JP7433022 B2 JP 7433022B2
Authority
JP
Japan
Prior art keywords
silica
silica particles
powder
particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019205597A
Other languages
Japanese (ja)
Other versions
JP2021075438A (en
Inventor
一彦 楠
昌史 牛尾
快朗 萩原
俊夫 向井
克昌 矢木
睦人 田中
匡史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2019205597A priority Critical patent/JP7433022B2/en
Publication of JP2021075438A publication Critical patent/JP2021075438A/en
Application granted granted Critical
Publication of JP7433022B2 publication Critical patent/JP7433022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、複数の閉気孔を有する中空のシリカ粒子およびその製造方法、ならびに当該中空シリカ粒子を含有する樹脂複合体に関する。本発明は、特に、周波数60GHz以上の高周波信号に対応した高周波用配線基板の絶縁膜の製造に用いることができる、複数の閉気孔を有する中空のシリカ粒子と、樹脂との樹脂複合体に関するものである。 The present invention relates to hollow silica particles having a plurality of closed pores, a method for producing the same, and a resin composite containing the hollow silica particles. The present invention particularly relates to a resin composite of hollow silica particles having a plurality of closed pores and a resin, which can be used for manufacturing an insulating film of a high-frequency wiring board that supports high-frequency signals with a frequency of 60 GHz or higher. It is.

通信技術の高度化に伴う情報量の増大、ミリ波レーダ等のミリ波帯域の急速な利用拡大等により、周波数の高周波数化が進行している。これらの高周波信号を伝送する回路基板は、回路パターンとなる電極と誘電体基板から構成されている。高周波信号の伝送の際のエネルギー損失を抑えるためには、誘電体材料の誘電正接(tanδ)が小さいことが必要となる。低誘電損とするには、誘電性材料は低極性および低双極子モーメントを有していなければならない。 BACKGROUND OF THE INVENTION Due to the increase in the amount of information due to the advancement of communication technology and the rapid expansion of the use of millimeter wave bands such as millimeter wave radar, frequencies are becoming higher and higher. The circuit board that transmits these high-frequency signals is composed of electrodes that form a circuit pattern and a dielectric substrate. In order to suppress energy loss during transmission of high-frequency signals, the dielectric material needs to have a small dielectric loss tangent (tan δ). To have low dielectric loss, the dielectric material must have low polarity and low dipole moment.

誘電体材料としては、主にセラミックス粒子、樹脂およびそれらを複合させた複合体が用いられている。特に、近年のミリ波帯域の利用拡大に伴い、より一層の低誘電正接(tanδ)のセラミックス粒子、および樹脂が求められている。樹脂は、比誘電率(εr)は比較的小さく高周波デバイスに適しているが、誘電正接(tanδ)や熱膨張係数はセラミックス粒子より大きい。このため、ミリ波帯域用のセラミック粒子と樹脂との複合体には、(1)セラミックス粒子自体の低誘電正接(tanδ)化、(2)セラミックス粒子を高充填し大きな誘電正接(tanδ)を示す樹脂の量を減らすことが適している。 As dielectric materials, ceramic particles, resins, and composites of these are mainly used. In particular, with the recent expansion in the use of millimeter wave bands, ceramic particles and resins with even lower dielectric loss tangents (tan δ) are required. Resin has a relatively small dielectric constant (εr) and is suitable for high-frequency devices, but its dielectric loss tangent (tan δ) and coefficient of thermal expansion are larger than those of ceramic particles. For this reason, composites of ceramic particles and resin for millimeter wave bands require (1) a low dielectric loss tangent (tan δ) of the ceramic particles themselves, and (2) a high dielectric loss tangent (tan δ) by highly filling the ceramic particles. It is suitable to reduce the amount of resin shown.

セラミックス粒子としてシリカ(SiO)粒子が従来から用いられている。シリカ粒子の形状が、角張った形状であると、樹脂中での流動性、分散性、充填性が悪くなり、また製造装置の摩耗も進む。これらを改善するため、球状のシリカ粒子が広く用いられている。球状シリカ粒子は真球に近いほど、樹脂中の充填性、流動性、および耐金型磨耗性が向上すると考えられ、真円度の高い粒子が追求されてきた。さらに、粒子の粒度分布の適正化を図ることによる一層の充填性の向上も検討されてきた。 Silica (SiO 2 ) particles have conventionally been used as ceramic particles. If the shape of the silica particles is angular, the fluidity, dispersibility, and filling properties in the resin will be poor, and the manufacturing equipment will also be worn out. To improve these problems, spherical silica particles are widely used. It is thought that the closer the spherical silica particles are to a true sphere, the better the filling properties, fluidity, and mold wear resistance in the resin will be, and therefore particles with high roundness have been sought. Further, studies have been made to further improve the filling property by optimizing the particle size distribution of the particles.

球状シリカ粒子の製造法として溶射法が知られている。溶射法では、原料となる破砕シリカ粉末を2000℃以上の火炎中に通すことにより、シリカ粉末を溶融し、表面張力により形状を球状化する。溶融球状化された粒子同士が融着しないように気流搬送して回収し、溶射後の粒子は急冷される。溶融状態から急冷されるため、得られたシリカ粒子は、非晶質(アモルファス)構造を有する。 A thermal spraying method is known as a method for producing spherical silica particles. In the thermal spraying method, crushed silica powder as a raw material is passed through a flame of 2000° C. or higher to melt the silica powder and make it spherical in shape due to surface tension. The molten spheroidized particles are transported and collected by air current so that they do not fuse together, and the sprayed particles are rapidly cooled. Since the silica particles are rapidly cooled from a molten state, the obtained silica particles have an amorphous structure.

溶射法による球状シリカ粒子は非晶質であるため、その熱膨張率および熱伝導率は低い。非晶質シリカ粒子の熱膨張率は、0.5ppm/Kであり、熱伝導率は1.4W/mKである。これらの物性は、結晶構造を有さず非晶質(アモルファス)構造を有する石英ガラスの熱膨張率と概ね同等である。このため、高熱膨張の樹脂に混合して半導体封止材用フィラーとして用いた場合、封止材自体の熱膨張を下げる効果が得られる。封止材の熱膨張率をSiに近い値とすることで、ICチップを封止する際の熱膨張挙動に起因する変形を抑えることができる。 Since the spherical silica particles produced by thermal spraying are amorphous, their coefficient of thermal expansion and thermal conductivity are low. The thermal expansion coefficient of the amorphous silica particles is 0.5 ppm/K, and the thermal conductivity is 1.4 W/mK. These physical properties are roughly equivalent to the coefficient of thermal expansion of quartz glass, which does not have a crystalline structure but has an amorphous structure. Therefore, when mixed with a high thermal expansion resin and used as a filler for a semiconductor encapsulant, the effect of lowering the thermal expansion of the encapsulant itself can be obtained. By setting the thermal expansion coefficient of the sealing material to a value close to that of Si, deformation caused by thermal expansion behavior when sealing the IC chip can be suppressed.

以上述べてきたとおり、封止材用シリカ粒子に求められる特性としては、樹脂に大量に配合して複合体としての性能を維持できる充填性、流動性、および耐金型磨耗性等に加えて、ミリ波帯域の高周波の優れた誘電特性である。誘電特性は、材質の物性値であるためシリカ粒子の誘電正接を低減させることは困難であった。 As mentioned above, the properties required of silica particles for encapsulants include fillability, fluidity, and mold abrasion resistance so that they can be blended into resin in large quantities and maintain performance as a composite. , has excellent dielectric properties at high frequencies in the millimeter wave band. Since dielectric properties are physical property values of materials, it has been difficult to reduce the dielectric loss tangent of silica particles.

特許文献1には、平均粒径が0.1~20μmのシリカゲルに対して、Zn化合物をZnO換算で0.5質量%以上添加し、この混合物を900~1100℃で熱処理することを特徴とする主結晶相がクオーツからなる多孔質粉末の製造方法が記載されている。得られた多孔質粉末は、微細な気孔を有し、低誘電率化用の骨材などに有用であるとの記載はあるが、ここでの微細な気孔は、開気孔であり、閉気孔は記載されていない。 Patent Document 1 discloses that a Zn compound is added to silica gel having an average particle size of 0.1 to 20 μm in an amount of 0.5% by mass or more in terms of ZnO, and the mixture is heat-treated at 900 to 1100°C. A method for producing a porous powder whose main crystalline phase is quartz is described. It is stated that the obtained porous powder has fine pores and is useful for aggregates for lowering the dielectric constant, but the fine pores here are open pores and closed pores. is not listed.

特許文献2には、球状の非晶質シリカからなる粒子材料を加熱し(加熱工程)、結晶化する製造方法が記載されているが、得られた樹脂組成物添加用球状結晶質シリカ粉体は、気孔を有していない。 Patent Document 2 describes a manufacturing method in which a particle material made of spherical amorphous silica is heated (heating step) and crystallized, and the resulting spherical crystalline silica powder for addition to a resin composition. has no pores.

特開2002-20111号公報Japanese Patent Application Publication No. 2002-20111 特開2018-145037号公報Japanese Patent Application Publication No. 2018-145037

本発明者らは、周波数が60GHz~80GHzのミリ波帯域において優れた誘電特性を有する複数の閉気孔を有する中空のシリカ粒子の探求と、それらを樹脂に混合した高周波デバイス用途の樹脂複合体の作製を目指した。 The present inventors have explored hollow silica particles with multiple closed pores that have excellent dielectric properties in the millimeter-wave frequency band of 60 GHz to 80 GHz, and created a resin composite for high-frequency device applications by mixing them with resin. The aim was to create one.

本願発明者は上記課題を解決することを目的とし鋭意研究しその結果、低誘電正接の樹脂複合体を得るには、先ず、球状の溶融(非晶質)シリカを、熱処理し結晶化させることが有効であることを見出した。すなわち結晶質シリカは、ミリ波帯域(60GHz~80GHZ)での誘電正接が、従来広く使用されてきた非晶質シリカに比べて大幅に低下することを初めて確認した。この結果、球状の結晶質シリカ粒子は、高周波デバイス用途として優れた誘電特性を示すシリカ粒子となる。 The inventor of the present application has conducted extensive research aimed at solving the above problems, and as a result, in order to obtain a resin composite with a low dielectric loss tangent, first, spherical fused (amorphous) silica is heat-treated and crystallized. was found to be effective. That is, it was confirmed for the first time that the dielectric loss tangent of crystalline silica in the millimeter wave band (60 GHz to 80 GHz) is significantly lower than that of amorphous silica, which has been widely used in the past. As a result, the spherical crystalline silica particles become silica particles that exhibit excellent dielectric properties for use in high-frequency devices.

本願発明者らは更に高周波デバイス用途の優れたシリカ粒子を得るべく検討を行った。空気は誘電正接の小さい物質として知られている。このためシリカ粒子へ空気相を導入することが有効である。しかし、溶射法で製造される結晶質シリカ粒子に空気相を導入することは不可能であった。本発明者らは、シリカ造粒粉末を熱処理して、シリカ造粒粉末の焼結挙動と結晶化挙動を制御することで、複数の閉気孔を有する中空の球状結晶質シリカ粒子を製造できることを見出し本発明に至った。 The inventors of the present invention further conducted studies to obtain silica particles that are excellent for use in high-frequency devices. Air is known as a substance with a small dielectric loss tangent. For this reason, it is effective to introduce an air phase into the silica particles. However, it has been impossible to introduce an air phase into crystalline silica particles produced by thermal spraying. The present inventors have discovered that hollow spherical crystalline silica particles having multiple closed pores can be produced by heat-treating silica granulated powder and controlling the sintering behavior and crystallization behavior of the silica granulated powder. Heading This invention has been achieved.

かくして、本発明によれば、下記を提供する:
(1)閉気孔率が1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含み、周波数70GHzにおける誘電正接が、0.0042以下であることを特徴とする複数の閉気孔を有する中空のシリカ粒子。
(2)前記閉気孔率が2.0%以上70.0%以下である前記(1)に記載の中空のシリカ粒子。
(3)結晶質シリカを80質量%以上含む前記(1)または(2)に記載の中空のシリカ粒子。
(4)前記結晶質シリカが、クリストバライトまたは石英の少なくとも1種である前記(1)~(3)のいずれか1つに記載の中空のシリカ粒子。
(5)前記中空のシリカ粒子の平均粒径(D50)が3~100μmである前記(1)~(4)のいずれか1つに記載の中空のシリカ粒子。
(6)前記中空のシリカ粒子の平均粒径(D50)が75~100μmである前記(1)~(4)のいずれか1つに記載の中空のシリカ粒子。
)前記中空のシリカ粒子の円形度が、0.8以上である前記(1)~(6)のいずれか1つに記載の中空のシリカ粒子。
(8)原料粒子としてシリカ微粉末を造粒し、または原料粒子として前記シリカ微粉末と黒鉛微粉末からなる混合微粉末を造粒して、造粒粉末を得る工程、そして
前記造粒粉末を1200℃~1600℃で熱処理して、閉気孔率1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含み、周波数70GHzにおける誘電正接が、0.0042以下である複数の閉気孔を有する中空のシリカ粒子を得る工程
を含むことを特徴とする複数の閉気孔を有する中空のシリカ粒子の製造方法。
(9)前記結晶質シリカ微粉末が、天然石英微粉末である前記(8)に記載の製造方法。
(10)前記シリカ微粉末が、天然石英微粉末と非晶質シリカ微粉末の混合物である前記(8)に記載の製造方法。
(11)前記造粒粉末の平均粒径(D50)が3~100μmである前記(8)~(10)のいずれか1つに記載の製造方法。
(12)前記造粒粉末の平均粒径(D50)が75~100μmである前記(8)~(10)のいずれか1つに記載の製造方法。
(1)樹脂と、前記(1)~(7)のいずれか1つに記載の中空のシリカ粒子を少なくとも含む樹脂複合組成物。
(1)前記(1)に記載の樹脂複合組成物を硬化して得られる樹脂複合体。
Thus, according to the invention we provide:
(1) It has a closed porosity of 1.0% or more and 70.0% or less, contains crystalline silica in an amount of 50% by mass or more, and has a dielectric loss tangent of 0.0042 or less at a frequency of 70 GHz. Hollow silica particles with multiple closed pores.
(2) The hollow silica particles according to (1) above, wherein the closed porosity is 2.0% or more and 70.0% or less .
(3) Hollow silica particles according to (1) or (2) above, containing 80% by mass or more of crystalline silica.
(4) The hollow silica particle according to any one of (1) to (3) above, wherein the crystalline silica is at least one type of cristobalite or quartz.
(5) The hollow silica particles according to any one of (1) to (4) above, wherein the hollow silica particles have an average particle diameter (D50) of 3 to 100 μm.
(6) The hollow silica particles according to any one of (1) to (4) above, wherein the hollow silica particles have an average particle diameter (D50) of 75 to 100 μm.
( 7 ) The hollow silica particle according to any one of (1) to (6) above, wherein the hollow silica particle has a circularity of 0.80 or more.
(8) A step of obtaining granulated powder by granulating fine silica powder as raw material particles, or granulating a mixed fine powder of the fine silica powder and fine graphite powder as raw material particles, and Heat treated at 1200°C to 1600°C, the closed porosity is 1.0% to 70.0%, contains crystalline silica 50% by mass or more, and has a dielectric loss tangent of 0.0042 or less at a frequency of 70GHz. 1. A method for producing hollow silica particles having a plurality of closed pores, the method comprising the step of obtaining hollow silica particles having a certain plurality of closed pores.
(9) The manufacturing method according to (8) above, wherein the crystalline silica fine powder is natural quartz fine powder.
(10) The manufacturing method according to (8) above, wherein the fine silica powder is a mixture of fine natural quartz powder and fine amorphous silica powder.
(11) The manufacturing method according to any one of (8) to (10) above, wherein the granulated powder has an average particle diameter (D50) of 3 to 100 μm.
(12) The manufacturing method according to any one of (8) to (10) above, wherein the granulated powder has an average particle diameter (D50) of 75 to 100 μm.
(1 3 ) A resin composite composition containing at least a resin and the hollow silica particles according to any one of (1) to (7) above.
(1 4 ) A resin composite obtained by curing the resin composite composition according to (1 3 ) above.

本発明によれば、樹脂複合体は、結晶質シリカを含有するために低い誘電正接を有する。また本発明の中空の球状シリカは、誘電正接の低い空気相を含む気孔を、閉気孔率1%以上含むことから、従来の非晶質シリカ粒子に比べて誘電特性が優れ高周波デバイス向けの半導体分野に好適なシリカ粒子となる。 According to the present invention, the resin composite has a low dielectric loss tangent because it contains crystalline silica. In addition, the hollow spherical silica of the present invention contains pores containing an air phase with a low dielectric loss tangent, and has a closed porosity of 1% or more, so it has superior dielectric properties compared to conventional amorphous silica particles, and is suitable for semiconductors for high-frequency devices. This makes the silica particles suitable for various fields.

図1は、平均粒径が3μm未満のシリカ微粉末をスプレードライヤーで造粒した造粒粉末の断面SEM像である。FIG. 1 is a cross-sectional SEM image of a granulated powder obtained by granulating fine silica powder with an average particle size of less than 3 μm using a spray dryer. 図2は、図1に示す造粒粉末を大気雰囲気で、1500℃で熱処理して得られた本発明の複数の閉気孔を有する中空のシリカ粒子の断面SEM像である。FIG. 2 is a cross-sectional SEM image of a hollow silica particle having a plurality of closed pores of the present invention obtained by heat-treating the granulated powder shown in FIG. 1 at 1500° C. in an air atmosphere.

本発明のシリカ粒子は、閉気孔率が1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含むことを特徴とする複数の閉気孔を有する中空のシリカ粒子である。 The silica particles of the present invention are hollow silica particles having a plurality of closed pores, which have a closed porosity of 1.0% or more and 70.0% or less, and contain crystalline silica in an amount of 50% or more by mass. be.

シリカ(SiO)の結晶構造としては、クリストバライト、石英等がある。これらの結晶構造を有するシリカは非晶質シリカと比べると、高い熱膨張率および熱伝導率を有する。このため、溶融(非晶質)シリカを、結晶質シリカに適切な量、置き換えることで、ICチップ等との熱膨張差異を抑制しつつ、熱伝導率を向上させることができる。結晶質シリカはミリ波帯域での誘電特性が優れる。さらに結晶シリカに空気相を導入することで、高周波デバイス用途のシリカ粒子として適する。 Crystal structures of silica (SiO 2 ) include cristobalite, quartz, and the like. Silica having these crystal structures has a higher coefficient of thermal expansion and higher thermal conductivity than amorphous silica. Therefore, by replacing fused (amorphous) silica with crystalline silica in an appropriate amount, thermal conductivity can be improved while suppressing the difference in thermal expansion with IC chips and the like. Crystalline silica has excellent dielectric properties in the millimeter wave band. Furthermore, by introducing an air phase into crystalline silica, it is suitable as silica particles for use in high-frequency devices.

結晶質シリカへの空気相の導入は、多ければ多いほど、誘電特性は優れるが、一方で、熱伝導の低下や、機械的特性低下のため閉気孔率は70%以下、より好ましくは50%以下である。閉気孔率は1.0%未満となると、空気相導入による誘電特性の改善効果が小さく期待できなくなるため、1.0%以上である。閉気孔率は好ましくは2.0%以上である。気孔には、外気と接続している開気孔と粒子内部に孤立している閉気孔とがある。本発明で規定する空気相の含有量は閉気孔に含まれる空気である。 The more air phase is introduced into crystalline silica, the better the dielectric properties will be. However, on the other hand, the closed porosity will be 70% or less, more preferably 50%, due to decreased thermal conductivity and mechanical properties. It is as follows. If the closed porosity is less than 1.0%, the effect of improving dielectric properties by introducing an air phase will be too small to be expected, so it is set to 1.0% or more. The closed porosity is preferably 2.0% or more. Pores include open pores that are connected to the outside air and closed pores that are isolated inside the particle. The content of the air phase defined in the present invention is air contained in closed pores.

本発明のシリカ粒子の誘電正接の測定方法を以下に示す。シリカ粒子に対して直接、誘電正接を測定することができないため本発明では、樹脂との複合体を作製し当該樹脂複合体の誘電正接を測定した。シリカ粒子の誘電正接は、樹脂に対するシリカ粒子の含有量を変動させてシリカ粒子含有率と誘電正接との関係を求めた後、シリカ粒子が含有率100%の誘電正接を外挿して求めることができる。本発明では、樹脂複合体を、遮断円筒導波管法(JIS R1660-1:2004)に基づき、ネットワークアナライザー「N5227A(キーサイト・テクノロジー社製)」を用いて70GHz周波数で測定した。エポキシ樹脂に対して0および80質量%のシリカ粒子との複合化体と誘電正接との関係から、シリカ粒子100%の数値を外挿し、得られた数値をシリカ粒子の誘電正接とした。 A method for measuring the dielectric loss tangent of silica particles of the present invention is shown below. Since it is not possible to directly measure the dielectric loss tangent of silica particles, in the present invention, a composite with a resin was prepared and the dielectric loss tangent of the resin composite was measured. The dielectric loss tangent of silica particles can be determined by varying the content of silica particles in the resin and determining the relationship between the silica particle content and the dielectric loss tangent, and then extrapolating the dielectric loss tangent when the silica particle content is 100%. can. In the present invention, the resin composite was measured at a frequency of 70 GHz using a network analyzer "N5227A (manufactured by Keysight Technologies)" based on the blocked cylindrical waveguide method (JIS R1660-1:2004). From the relationship between the dielectric loss tangent and the composite of 0 and 80% by mass of silica particles based on the epoxy resin, the value for 100% silica particles was extrapolated, and the obtained value was taken as the dielectric loss tangent of the silica particles.

本発明の複数の閉気孔を有する中空のシリカ粒子の70GHz周波数での誘電正接は、閉気孔率が1.0%を超える0.0042以下が好ましく、また0.0013未満であると、閉気孔率が70%を超え、機械的強度が低下する可能性があるため、0.0013~0.0042であることが好ましい。誘電正接が0.0013~0.0040の範囲が、より好ましく、0.0013~0.0037の範囲がさらに好ましい。 The dielectric loss tangent at 70 GHz frequency of the hollow silica particles having a plurality of closed pores of the present invention is preferably 0.0042 or less with a closed porosity exceeding 1.0%, and when it is less than 0.0013, closed pores The ratio is preferably 0.0013 to 0.0042 because it may exceed 70% and the mechanical strength may decrease. The dielectric loss tangent is more preferably in the range of 0.0013 to 0.0040, and even more preferably in the range of 0.0013 to 0.0037.

本発明のシリカ粒子は複数の閉気孔を有する中空のシリカ粒子である。シリカ粒子内の閉気孔が単一である場合、不可避的に気孔は粒子内で偏在する。その結果、粒子の機械的強度に不均一性が生じる。閉気孔率が高くなると強度低下部を起点として閉気孔が潰れる不具合が生じることから、閉気孔が単一で存在することは好ましくない。一方、複数の閉気孔を有するシリカ粒子では機械的強度は平準化されるので上述する不具合は生じることがない。 The silica particles of the present invention are hollow silica particles having a plurality of closed pores. When a silica particle has a single closed pore, the pores are inevitably unevenly distributed within the particle. As a result, non-uniformity occurs in the mechanical strength of the particles. If the closed porosity increases, a problem arises in which the closed pores collapse starting from the strength-decreased portion, so it is not preferable for a single closed pore to exist. On the other hand, since the mechanical strength of silica particles having a plurality of closed pores is leveled out, the above-mentioned problems do not occur.

本発明のシリカ粒子が複数の閉気孔を有することは、シリカ粒子の断面組織観察を行えばよい。断面組織の観察は、例えば、複数のシリカ粒子を、エポキシ樹脂に埋め込んだのちシリカ断面が観察面に露出するようにダイヤモンドスラリーで研磨を施し、当該断面を走査型電子顕微鏡(SEM)で観察すればよい。 The fact that the silica particles of the present invention have a plurality of closed pores can be determined by observing the cross-sectional structure of the silica particles. To observe the cross-sectional structure, for example, multiple silica particles are embedded in epoxy resin, polished with diamond slurry so that the silica cross section is exposed on the observation surface, and the cross section is observed with a scanning electron microscope (SEM). Bye.

閉気孔率の計算方法を以下に示す。シリカ粒子内に存在する気孔は、閉気孔である。シリカ粒子の密度を、アルキメデス法を用いて求める場合、得られる密度は開気孔を考慮せず、閉気孔のみを考慮しており、「見かけ密度」と呼ばれる。アルキメデス法とは、液体中に固体が同体積の液体の質量と同じだけ浮力を受けることを用いて試料の密度を求める方法である。シリカ粒子の見かけ密度を実在の材料に対する理想的な密度である真密度で除することで閉気孔率を求めることができる。本発明の複数の閉気孔を有する中空のシリカ粒子の閉気孔率は液体に水を用いたアルキメデス法によって測定した。
閉気孔率=100×{1-(見かけ密度/真密度)}(%)
The method for calculating closed porosity is shown below. The pores present within the silica particles are closed pores. When determining the density of silica particles using the Archimedes method, the obtained density does not take into account open pores, but only closed pores, and is called "apparent density." The Archimedes method is a method for determining the density of a sample by using the fact that a solid in a liquid receives the same amount of buoyancy as the mass of the same volume of liquid. The closed porosity can be determined by dividing the apparent density of the silica particles by the true density, which is the ideal density for the actual material. The closed porosity of the hollow silica particles having a plurality of closed pores of the present invention was measured by the Archimedes method using water as the liquid.
Closed porosity = 100 x {1-(apparent density/true density)} (%)

シリカ粒子の真密度は、粒子が非晶質シリカおよび結晶質シリカから構成される場合、それぞれのシリカの真密度に存在割合を乗じることで求めることができる。例えば、非晶質シリカが66.2%であり、結晶質シリカ33.2%(クリストバライト32.0%、石英1.8%)である場合、このシリカ粒子の真密度は、非晶質シリカ真密度×0.662+クリストバライト真密度×0.320+石英真密度×0.018で求めることができる。非晶質シリカ、クリストバライト、石英の真密度は、25℃、常圧において、それぞれ、2.196g/cm、2.334g/cm、2.648g/cmである。シリカ粒子が非晶質および結晶質から構成される場合の存在割合は、XRDで求めることができる。 When the particles are composed of amorphous silica and crystalline silica, the true density of the silica particles can be determined by multiplying the true density of each silica by the abundance ratio. For example, if the amorphous silica is 66.2% and the crystalline silica is 33.2% (cristobalite 32.0%, quartz 1.8%), the true density of the silica particles is It can be determined by true density x 0.662 + cristobalite true density x 0.320 + quartz true density x 0.018. The true densities of amorphous silica, cristobalite, and quartz are 2.196 g/cm 3 , 2.334 g/cm 3 , and 2.648 g/cm 3 at 25° C. and normal pressure, respectively. The abundance ratio of silica particles composed of amorphous and crystalline particles can be determined by XRD.

本発明の構成は、クリストバライトまたは石英の少なくとも1種類の結晶質シリカを含む複数の閉気孔を有する中空の球状シリカ粒子である。球状シリカ粒子中の結晶質シリカの含有量は、50%以上である。50%以上であれば、閉気孔を有しない非晶質シリカに比べて優れた誘電特性が発現する。より好ましくは80%以上の結晶質シリカを含有するとよい。結晶質シリカの割合は多ければ多いほど誘電特性は向上する。 The composition of the present invention is a hollow spherical silica particle with a plurality of closed pores containing at least one type of crystalline silica of cristobalite or quartz. The content of crystalline silica in the spherical silica particles is 50% or more. If it is 50% or more, excellent dielectric properties will be exhibited compared to amorphous silica which does not have closed pores. More preferably, it contains 80% or more of crystalline silica. The higher the proportion of crystalline silica, the better the dielectric properties.

結晶相の割合は、X線回折(XRD)により測定した。XRDで測定では、結晶性ピークの積分強度の和(Ic)と非晶質のハロー部分の積分強度(Ia)から、以下の式で計算することにより結晶相の割合を求めた。
X(結晶相割合)=Ic/(Ic+Ia)×100 (%)
さらに、クリストバライト、石英等の結晶相の含有量は、X線回折により定量分析することで求めた。X線回折による定量分析では、リートベルト法などの解析方法を用い、標準試料を用いずに定量分析を行った。本発明では、X線回折装置「D2 PHASER」(ブルカー社製)を用いた。リードベルト法による結晶相の定量分析は、結晶構造解析ソフトウエア「TOPAS」(ブルカー社製)にて行った。
The proportion of crystalline phase was measured by X-ray diffraction (XRD). In the XRD measurement, the ratio of the crystalline phase was calculated from the sum of the integrated intensities of the crystalline peak (Ic) and the integrated intensity of the amorphous halo portion (Ia) using the following formula.
X (crystal phase ratio) = Ic/(Ic+Ia) x 100 (%)
Furthermore, the content of crystal phases such as cristobalite and quartz was determined by quantitative analysis using X-ray diffraction. In the quantitative analysis by X-ray diffraction, an analysis method such as the Rietveld method was used, and the quantitative analysis was performed without using a standard sample. In the present invention, an X-ray diffraction device "D2 PHASER" (manufactured by Bruker) was used. Quantitative analysis of the crystal phase by the Riedveld method was performed using crystal structure analysis software "TOPAS" (manufactured by Bruker).

本発明の複数の閉気孔を有する中空のシリカ粒子の平均粒径(D50)は、3~100μmであることが好ましい。平均粒径が3μm未満であると、粒子の凝集性が大きくなり流動性が著しく低下するため、好ましくない。平均粒径が100μmを超えると粒子間の空隙が残存しやすく充填性を上げることが困難となり、好ましくない。平均粒径が10~80μmの範囲が、より好ましい。 The average particle diameter (D50) of the hollow silica particles having a plurality of closed pores of the present invention is preferably 3 to 100 μm. If the average particle diameter is less than 3 μm, the agglomeration of the particles increases and the fluidity decreases significantly, which is not preferable. If the average particle size exceeds 100 μm, voids between particles tend to remain, making it difficult to improve filling properties, which is not preferable. More preferably, the average particle size is in the range of 10 to 80 μm.

平均粒子径(D50)は、レーザー回折・散乱式粒度分布測定法により測定した、体積基準の粒度分布において、累積体積が50%のメジアン径D50を求めた。なお、レーザー回折・散乱式粒度分布測定法は、シリカ粒子を分散させた分散液にレーザー光を照射し、分散液から発せられる回折・散乱光の強度分布パターンから粒度分布を求める方法である。本発明では、レーザー回折・散乱式粒度分布測定装置「CILAS920」(シーラス社製)を用いた。 The average particle diameter (D50) was determined by determining the median diameter D50 at a cumulative volume of 50% in a volume-based particle size distribution measured by a laser diffraction/scattering particle size distribution measurement method. Note that the laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion in which silica particles are dispersed is irradiated with laser light, and the particle size distribution is determined from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion. In the present invention, a laser diffraction/scattering particle size distribution analyzer "CILAS920" (manufactured by Cirrus Co., Ltd.) was used.

本発明の中空の球状シリカ粒子は、円形度が0.80以上であることが好ましい。円形度が0.80未満であると、半導体封止材用の樹脂複合組成物のシリカ粒子等として利用する場合に、流動性、分散性、充填性が十分でなく、また封止材作製用機器の摩耗が促進される場合がある。 The hollow spherical silica particles of the present invention preferably have a circularity of 0.80 or more. If the circularity is less than 0.80, the fluidity, dispersibility, and filling properties will be insufficient when used as silica particles in a resin composite composition for semiconductor encapsulation materials, and the Equipment wear may be accelerated.

円形度は、「撮影粒子投影面積相当円の周囲長÷撮影粒子像の周囲長」で求められ、この値が1に近づくほど真球に近づくことを意味する。本発明の円形度はフロー式粒子像分析法により求めた。フロー式粒子像分析法では、シリカ粒子を液体に流して粒子の静止画像として撮像し、得られた粒子像を基に画像解析を行い、シリカ粒子の円形度を求める。これら複数の円形度の平均値を平均円形度とした。フロー式粒子像分析法により平均円形度を測定する際の粒子個数は、少なすぎると正しく平均値を得ることができない。少なくとも粒子100個以上は必要で、好ましくは500個以上、よりこの好ましくは、1000個以上である。本発明では、フロー式粒子像分析装置「FPIA-3000」(スペクトリス社製)を用いて、約500個の粒子を用いた。 Circularity is determined by "perimeter of a circle equivalent to the projected area of the photographed particle divided by perimeter of the photographed particle image," and the closer this value is to 1, the closer it is to a true sphere. The circularity of the present invention was determined by a flow particle image analysis method. In the flow-type particle image analysis method, silica particles are flowed through a liquid to capture a still image of the particles, and image analysis is performed based on the obtained particle image to determine the circularity of the silica particles. The average value of these plural circularities was defined as the average circularity. When the average circularity is measured by the flow particle image analysis method, if the number of particles is too small, an accurate average value cannot be obtained. At least 100 particles or more are required, preferably 500 or more, more preferably 1000 or more. In the present invention, approximately 500 particles were used using a flow type particle image analyzer "FPIA-3000" (manufactured by Spectris).

本発明の複数の閉気孔を有する中空のシリカ粒子は、原料粒子としてシリカ微粉末を造粒するか、または原料粒子として前記シリカ微粉末と黒鉛微粉末からなる混合微粉末を造粒して、造粒粉末を得る工程と、前記造粒粉末を1200℃~1600℃で熱処理する工程を含む。 The hollow silica particles having a plurality of closed pores of the present invention are obtained by granulating fine silica powder as raw material particles, or by granulating a mixed fine powder consisting of the fine silica powder and fine graphite powder as raw material particles, The method includes a step of obtaining a granulated powder and a step of heat-treating the granulated powder at 1200°C to 1600°C.

結晶質シリカは、通常、球状の非晶質シリカを大気雰囲気下で熱処理を行い、結晶化させることで得られる。熱処理温度、時間を変えることで、結晶質シリカの含有量を変動・制御させることが可能である。
本発明の複数の閉気孔を有する中空のシリカ粒子は、閉気孔率が1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含むことを特徴とする。シリカ粒子に空気相を導入するために、原料粒子としてシリカ微粉末またはシリカ微粉末と黒鉛微粉末からなる混合微粉末を造粒する。
Crystalline silica is usually obtained by heat-treating spherical amorphous silica in the air to crystallize it. By changing the heat treatment temperature and time, it is possible to vary and control the content of crystalline silica.
The hollow silica particles having a plurality of closed pores of the present invention are characterized by having a closed porosity of 1.0% or more and 70.0% or less, and containing 50% by mass or more of crystalline silica. In order to introduce an air phase into the silica particles, fine silica powder or a mixed fine powder of fine silica powder and fine graphite powder is granulated as raw material particles.

結晶質シリカへの空気相導入は、原料粒子として、平均粒径がサブミクロン~数ミクロンのシリカ微粉末を球状に造粒し、その後、造粒粉末を容器に充填し熱処理することで行われる。容器は、熱処理温度で安定な酸化物系の材質であれば良く、例えばアルミナを用いることができる。造粒方法には、流動層造粒、撹拌造粒、スプレードライ、押し出し造粒等がある。本発明の製造方法では、球形に近い造粒粉末が得られれば特に、造粒方法は問わない。図1は、平均粒径が3μm未満のシリカ微粉末を、スプレードライヤーを用いて造粒した造粒粉末の断面SEM像である。 The air phase is introduced into crystalline silica by granulating fine silica powder with an average particle size of submicrons to several microns into spherical shapes as raw material particles, and then filling the granulated powder into a container and heat-treating it. . The container may be made of an oxide-based material that is stable at the heat treatment temperature; for example, alumina can be used. Granulation methods include fluidized bed granulation, stirring granulation, spray drying, extrusion granulation, and the like. In the production method of the present invention, any granulation method may be used as long as a granulated powder having a nearly spherical shape can be obtained. FIG. 1 is a cross-sectional SEM image of a granulated powder obtained by granulating fine silica powder with an average particle size of less than 3 μm using a spray dryer.

使用するシリカの原料粒子の大きさ、および造粒条件により平均粒径3μm~100μmの造粒粉を作り分けることができる。原料粒子には、結晶質シリカ微粉末の他に、非晶質の微粉末、またその混合物の微粉末を使用することもできる。天然石英の微粉末と非晶質シリカの微粉末の混合微粉末から造粒粉末を作製すると、天然石英微粉末のみから成る原料粒子を用いる場合に比べて閉気孔を多く導入することができる。 Depending on the size of the silica raw material particles used and the granulation conditions, granulated powders with an average particle size of 3 μm to 100 μm can be produced. In addition to crystalline silica fine powder, amorphous fine powder or a fine powder of a mixture thereof can also be used as the raw material particles. When granulated powder is produced from a mixed fine powder of natural quartz fine powder and amorphous silica fine powder, more closed pores can be introduced than when raw material particles consisting only of natural quartz fine powder are used.

この理由は、次のように考えられる。例えば、天然石英微粉末のみからなる原料粒子を、1200℃以上の熱処理でクリストバライトに相転移させる場合、空気相は、原料粒子である造粒粉末中の空隙が合体しながら形成される。この際、石英と相転移したクリストバライトの真密度の違いから、得られる複数の閉気孔を有する中空のシリカ粒子は、粒子全体としては、膨張しながら、空隙の合体と気孔の形成が進む。図2は、図1に示す造粒粉末を大気雰囲気で、1500℃で熱処理して得られた本発明の複数の閉気孔を有する中空のシリカ粒子の断面SEM像である。
一方、天然石英微粉末以外に非晶質シリカ微粉末が原料粒子内に存在する場合は、相転移したクリストバライトと非晶質シリカは真密度がほぼ同じであるため、非晶質シリカ部分は膨張せずに結晶化が進行する。造粒粉末全体として膨張するなかで、非晶質シリカ原料粒子部分は膨張しないので、非晶質シリカ原料粒子部分の周辺には新たな空隙が生成する。
The reason for this is thought to be as follows. For example, when raw material particles consisting only of natural quartz fine powder undergo a phase transition to cristobalite by heat treatment at 1200° C. or higher, the air phase is formed as voids in the granulated powder, which is the raw material particles, coalesce. At this time, due to the difference in true density between quartz and phase-transformed cristobalite, the resulting hollow silica particles having a plurality of closed pores expand as a whole, while coalescence of voids and formation of pores proceed. FIG. 2 is a cross-sectional SEM image of a hollow silica particle having a plurality of closed pores of the present invention obtained by heat-treating the granulated powder shown in FIG. 1 at 1500° C. in an air atmosphere.
On the other hand, if amorphous silica fine powder is present in the raw material particles in addition to natural quartz fine powder, the phase-transformed cristobalite and amorphous silica have almost the same true density, so the amorphous silica part expands. Crystallization proceeds without While the granulated powder as a whole expands, the amorphous silica raw material particle portion does not expand, so new voids are generated around the amorphous silica raw material particle portion.

原料粒子としてシリカ微粉末と同様の平均粒径を有する黒鉛微粉末を添加し造粒する場合、この造粒粉末を熱処理すると、黒鉛微粉末が燃焼しガス化するので、黒鉛微粉末が存在していた箇所に新たな空間が形成される。黒鉛微粉末の燃焼により導入される空隙量は大きく、これにより最大70%程度の閉気孔率の複数の閉気孔を有する中空のシリカ粒子を得ることができる。 When fine graphite powder having the same average particle size as fine silica powder is added as raw material particles and granulated, when this granulated powder is heat-treated, the fine graphite powder burns and gasifies, so that fine graphite powder is not present. A new space will be created in the place that was previously occupied. The amount of voids introduced by combustion of the fine graphite powder is large, and as a result, hollow silica particles having a plurality of closed pores with a closed porosity of about 70% at maximum can be obtained.

造粒粉末を1200℃~1600℃で熱処理することで、閉気孔率1%以上の中空の球状結晶質シリカを得ることができる。黒鉛微粉末を含んだシリカ造粒粉末を用いる場合、黒鉛は、熱処理工程において700℃以上の温度で酸素と反応し燃焼してCOとなり、放出されて無くなる。このため、シリカ粒子内に気孔を多く導入することができる。熱処理工程で、結晶化挙動とともに焼結挙動を制御することにより、黒鉛のガス化により作られた粒子表面の穴は、熱処理中に閉じることができ、閉気孔を生成させることができる。後述する樹脂との混練時にシリカ粒子に開気孔が残存していると、開気孔内に樹脂が侵入してしまうので、シリカ粒子への空気導入が妨げられる。またシリカ粒子と樹脂との相互作用が強くなりすぎるため樹脂複合組成物の流動性が低下することから好ましくない。 By heat-treating the granulated powder at 1200° C. to 1600° C., hollow spherical crystalline silica with a closed porosity of 1% or more can be obtained. When using silica granulated powder containing fine graphite powder, the graphite reacts with oxygen at a temperature of 700° C. or higher in the heat treatment process, burns, and becomes CO 2 , which is released and disappears. Therefore, many pores can be introduced into the silica particles. By controlling the sintering behavior as well as the crystallization behavior in the heat treatment process, the pores on the particle surface created by the gasification of graphite can be closed during the heat treatment, producing closed pores. If open pores remain in the silica particles during kneading with a resin, which will be described later, the resin will enter the open pores, which will prevent air from being introduced into the silica particles. Further, the interaction between the silica particles and the resin becomes too strong, resulting in a decrease in the fluidity of the resin composite composition, which is not preferable.

本発明では、最終的に得られた複数の閉気孔を有する中空のシリカ粒子と樹脂との複合組成物、さらには樹脂複合組成物を硬化した樹脂複合体を製造することができる。樹脂複合組成物の組成について、以下に説明する。 In the present invention, it is possible to produce a finally obtained composite composition of hollow silica particles having a plurality of closed pores and a resin, and further a resin composite obtained by curing the resin composite composition. The composition of the resin composite composition will be explained below.

複数の閉気孔を有する中空のシリカ粒子と樹脂とを含むスラリー組成物を用いて、半導体封止材(特に固形封止材)、層間絶縁フィルム等の樹脂複合組成物を得ることができる。さらには、これらの樹脂複合体組成物を硬化させることで、封止材(硬化体)、半導体パッケージ用基板等の樹脂複合体を得ることができる。
前記樹脂複合組成物を製造する場合、例えば、複数の閉気孔を有する中空のシリカ粒子及び樹脂の他に、硬化剤、硬化促進剤、難燃剤等を必要により配合し、混錬等の公知の方法で複合化する。そして、ペレット状、フィルム状等、用途に応じて成型する。
さらに、前記樹脂複合組成物を硬化して樹脂複合体を製造する場合、例えば、樹脂複合組成物に熱を加えて溶融して、用途に応じた形状に加工し、溶融時よりも高い熱を加えて完全に硬化させる。この場合、トランスファーモールド法等の公知の方法を使用することができる。
Using a slurry composition containing hollow silica particles having a plurality of closed pores and a resin, resin composite compositions such as semiconductor encapsulants (particularly solid encapsulants), interlayer insulation films, etc. can be obtained. Furthermore, by curing these resin composite compositions, resin composites such as encapsulants (cured products) and substrates for semiconductor packages can be obtained.
When producing the resin composite composition, for example, in addition to the hollow silica particles having a plurality of closed pores and the resin, a curing agent, a curing accelerator, a flame retardant, etc. are blended as necessary, and known methods such as kneading are carried out. Compound by method. Then, it is molded into pellets, films, etc. depending on the purpose.
Furthermore, when producing a resin composite by curing the resin composite composition, for example, the resin composite composition is melted by applying heat and processed into a shape according to the intended use, and then heated at a higher temperature than when melting. Add and cure completely. In this case, known methods such as transfer molding can be used.

パッケージ用基板や層間絶縁フィルム等の半導体関連材料を製造する場合には、樹脂複合組成物に使用する樹脂組成物として、エポキシ樹脂を採用することが好ましい。エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等を用いることができる。これらの中の1種類を単独で用いることもできるし、異なる分子量を有する2種類以上を併用することもできる。これらのエポキシ樹脂中でも特にビスフェノールA型エポキシ樹脂が好ましい。 When manufacturing semiconductor-related materials such as package substrates and interlayer insulation films, it is preferable to employ epoxy resin as the resin composition used in the resin composite composition. The epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin, etc. can be used. One type among these can be used alone, or two or more types having different molecular weights can be used in combination. Among these epoxy resins, bisphenol A type epoxy resins are particularly preferred.

前記硬化剤としては、例えば、フェノール系硬化剤を使用することができる。フェノール系硬化剤としては、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類等を、単独あるいは2種以上組み合わせて使用することができる。 As the curing agent, for example, a phenolic curing agent can be used. As the phenolic curing agent, phenol novolac resins, alkylphenol novolak resins, polyvinylphenols, etc. can be used alone or in combination of two or more.

前記フェノール硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が0.1以上、1.0未満が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。 The blending amount of the phenol curing agent is preferably such that the equivalent ratio (phenolic hydroxyl group equivalent/epoxy group equivalent) with the epoxy resin is 0.1 or more and less than 1.0. This eliminates the residual unreacted phenol curing agent and improves moisture absorption and heat resistance.

樹脂組成物に配合される本発明の複数の閉気孔を有する中空のシリカ粒子の量は、耐熱性、熱膨張率の観点から、多いことが好ましい。樹脂組成物の全体質量に対して、一般に80質量%以上95質量%未満であることが好ましい。 The amount of the hollow silica particles having a plurality of closed pores of the present invention to be blended into the resin composition is preferably large from the viewpoint of heat resistance and coefficient of thermal expansion. Generally, it is preferably 80% by mass or more and less than 95% by mass with respect to the total mass of the resin composition.

以下の実施例・比較例を通じて、本発明について説明する。ただし、本発明は、以下の実施例に限定して解釈されるものではない。 The present invention will be explained through the following examples and comparative examples. However, the present invention is not interpreted as being limited to the following examples.

以下の実施例、比較例で作製された複数の閉気孔を有する中空のシリカ粒子の閉気孔率、円形度、平均粒径および結晶質シリカ割合(%)は、上述の説明にしたがって測定した。誘電正接の値が0.0042以下のものを合格とした。 The closed porosity, circularity, average particle diameter, and crystalline silica percentage (%) of hollow silica particles having a plurality of closed pores produced in the following Examples and Comparative Examples were measured according to the above explanation. Those with a dielectric loss tangent value of 0.0042 or less were considered to be passed.

(シリカ粒子と樹脂との複合体作製)
シリカ粒子とエポキシ樹脂(三菱化学製YX-4000H)を用い、エポキシ樹脂に対して0質量%(無添加)および80質量%のシリカ粒子を、温度100℃、二本ロールミルで混練した。混練後の試料を乳鉢・乳棒で粉砕した。金型(50φ)に粉砕後の試料を充填しプレス機にセットした。成形温度175℃で約1分間1MPaにて加圧した後、5MPaで9分間保持した。その後、金型を水冷プレスに移し、約10分間冷却した後、硬化したシリカ粒子-樹脂板を金型から取り出した。作製したシリカ粒子-樹脂板を外周刃切断し、約10mm×10mmに加工した。硬化したシリカ粒子-樹脂板の厚みを変えるために、高精度平面研削(秀和工業製SGM-5000)で研削し、厚みを0.2mm~1.0mmの間で変動させた。
(Preparation of composite of silica particles and resin)
Using silica particles and epoxy resin (YX-4000H manufactured by Mitsubishi Chemical), 0% by mass (no additives) and 80% by mass of silica particles with respect to the epoxy resin were kneaded at a temperature of 100° C. in a two-roll mill. The sample after kneading was ground with a mortar and pestle. A mold (50φ) was filled with the ground sample and set in a press. After pressurizing at 1 MPa for about 1 minute at a molding temperature of 175° C., the molding was held at 5 MPa for 9 minutes. Thereafter, the mold was transferred to a water-cooled press, and after cooling for about 10 minutes, the cured silica particle-resin plate was taken out from the mold. The prepared silica particle-resin plate was cut with a peripheral blade and processed into a size of about 10 mm x 10 mm. In order to vary the thickness of the cured silica particle-resin plate, it was ground using high-precision surface grinding (SGM-5000 manufactured by Shuwa Kogyo), and the thickness was varied between 0.2 mm and 1.0 mm.

(実施例1~4)
平均粒径2μmの破砕状シリカ(石英)微粉末をスプレードライヤー(大川原化工機株式会社製CL-8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて熱処理温度が1400℃(実施例1)、1450℃(実施例2)、1500℃(実施例3)、1550℃(実施例4)で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。平均粒径はそれぞれ84μmであった。得られた複数の閉気孔を有する中空のシリカ粒子を使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 1 to 4)
Pulverized silica (quartz) fine powder with an average particle size of 2 μm was granulated using a spray dryer (CL-8 manufactured by Okawara Kakoki Co., Ltd.), filled into an alumina container, and heated in an electric furnace SUPER-BURN (Motoyama Co., Ltd.). The heat treatment temperature was 1400 °C (Example 1), 1450 °C (Example 2), 1500 °C (Example 3), and 1550 °C (Example 4) for 6 hours in an air atmosphere. . As a result of SEM observation, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The average particle size of each was 84 μm. A composite with a resin was produced using the obtained hollow silica particles having a plurality of closed pores. The percentage of crystalline silica is shown in Table 1.

(実施例5~7)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末を質量比75:25で混合しスプレードライヤー(大川原化工機株式会社製CL-8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて熱処理温度をそれぞれ表1に示す1450℃~1550℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。平均粒径はそれぞれ78μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 5 to 7)
A crushed silica (quartz) fine powder with an average particle size of 2 μm and a spherical amorphous silica fine powder with an average particle size of 2 μm were mixed at a mass ratio of 75:25 and produced using a spray dryer (CL-8 manufactured by Okawara Kakoki Co., Ltd.). The pellets were granulated, filled in an alumina container, and heat-treated in an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at temperatures of 1450°C to 1550°C shown in Table 1 for 6 hours in an air atmosphere. . As a result of SEM observation, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The average particle size was 78 μm in each case. A composite with a resin was prepared using the obtained crystalline silica. The percentage of crystalline silica is shown in Table 1.

(実施例8~10)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末を質量比65:35で混合しスプレードライヤー(大川原化工機株式会社製CL-8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて熱処理温度をそれぞれ表1に示す1450℃~1550℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られたシリカ粒子を、XRDを用いて結晶性シリカの含有量を定量化した。平均粒径はそれぞれ75μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 8 to 10)
A crushed silica (quartz) fine powder with an average particle size of 2 μm and a spherical amorphous silica fine powder with an average particle size of 2 μm were mixed at a mass ratio of 65:35 and produced using a spray dryer (CL-8 manufactured by Okawara Kakoki Co., Ltd.). The pellets were granulated, filled in an alumina container, and heat-treated in an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at temperatures of 1450°C to 1550°C shown in Table 1 for 6 hours in an air atmosphere. . As a result of SEM observation, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The crystalline silica content of the obtained silica particles was quantified using XRD. The average particle size was 75 μm in each case. A composite with a resin was prepared using the obtained crystalline silica. The percentage of crystalline silica is shown in Table 1.

(実施例11~13)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末を質量比45:55で混合しスプレードライヤー(大川原化工機株式会社製CL-8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて熱処理温度をそれぞれ表1に示す1450℃~1550℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られたシリカ粒子を、XRDを用いて結晶性シリカの含有量を定量化した。平均粒径はそれぞれ76μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 11 to 13)
A crushed silica (quartz) fine powder with an average particle size of 2 μm and a spherical amorphous silica fine powder with an average particle size of 2 μm were mixed at a mass ratio of 45:55 and produced using a spray dryer (CL-8 manufactured by Okawara Kakoki Co., Ltd.). The pellets were granulated, filled in an alumina container, and heat-treated in an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at temperatures of 1450°C to 1550°C shown in Table 1 for 6 hours in an air atmosphere. . As a result of SEM observation, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The crystalline silica content of the obtained silica particles was quantified using XRD. The average particle size was 76 μm in each case. A composite with a resin was prepared using the obtained crystalline silica. The percentage of crystalline silica is shown in Table 1.

(実施例14)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末を質量比25:75で混合しスプレードライヤー(大川原化工機株式会社製CL-8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて熱処理温度をそれぞれ表1に示す1450℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られたシリカ粒子を、XRDを用いて結晶性シリカの含有量を定量化した。平均粒径は77μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Example 14)
A crushed silica (quartz) fine powder with an average particle size of 2 μm and a spherical amorphous silica fine powder with an average particle size of 2 μm were mixed at a mass ratio of 25:75 and produced using a spray dryer (CL-8 manufactured by Okawara Kakoki Co., Ltd.). The pellets were granulated, filled into an alumina container, and heat-treated in an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at a heat treatment temperature of 1450° C. shown in Table 1 for 6 hours in an air atmosphere. As a result of SEM observation, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The crystalline silica content of the obtained silica particles was quantified using XRD. The average particle size was 77 μm. A composite with a resin was prepared using the obtained crystalline silica. The percentage of crystalline silica is shown in Table 1.

(実施例15~18)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末と平均粒径が2μmの黒鉛微粉末を質量比で59:32:9(実施例15)、54:29:17(実施例16)、46:25:29(実施例17)、40:22:38(実施例18)で混合し、スプレードライヤー(大川原化工機株式会社製CL-8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて熱処理温度が1500℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、得られたシリカ粒子は、複数の閉気孔を有していた。また、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られたシリカ粒子を、XRDを用いて結晶質シリカの含有量を定量化した。平均粒径はそれぞれ、82μm、84μm、79μm、80μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 15 to 18)
A mass ratio of crushed silica (quartz) fine powder with an average particle size of 2 μm, spherical amorphous silica fine powder with an average particle size of 2 μm, and graphite fine powder with an average particle size of 2 μm is 59:32:9 (Example 15) , 54:29:17 (Example 16), 46:25:29 (Example 17), and 40:22:38 (Example 18), and spray dryer (CL-8 manufactured by Okawara Kakoki Co., Ltd.). The mixture was granulated, filled into an alumina container, and heat-treated in an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at a heat treatment temperature of 1500° C. for 6 hours in an air atmosphere. As a result of SEM observation, the obtained silica particles had a plurality of closed pores. In addition, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The crystalline silica content of the obtained silica particles was quantified using XRD. The average particle diameters were 82 μm, 84 μm, 79 μm, and 80 μm, respectively. A composite with a resin was prepared using the obtained crystalline silica. The percentage of crystalline silica is shown in Table 1.

(実施例19~21)
平均粒径2μmの破砕状シリカ(石英)微粉末をスプレードライヤーで造粒し、アルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて熱処理温度が1500℃(実施例19,20)、1400℃(実施例21)で、6時間、大気雰囲気下で処理した。SEM観察の結果、得られた各シリカ粒子は、複数の閉気孔を有していた。また、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。平均粒径はそれぞれ、21μm、98μm、11μmであった。得られた複数の閉気孔を有する中空のシリカ粒子を使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 19-21)
Crushed silica (quartz) fine powder with an average particle size of 2 μm was granulated using a spray dryer, filled into an alumina container, and heat-treated at a temperature of 1500°C using an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.). Examples 19 and 20) and 1400° C. (Example 21) for 6 hours in an air atmosphere. As a result of SEM observation, each obtained silica particle had a plurality of closed pores. In addition, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The average particle diameters were 21 μm, 98 μm, and 11 μm, respectively. A composite with a resin was produced using the obtained hollow silica particles having a plurality of closed pores. The percentage of crystalline silica is shown in Table 1.

(比較例1~比較例3)
比較例1~比較例3では、球状の非晶質シリカ微粉末を、アルミナ容器に入れ、1400℃(比較例1)、1450℃(比較例2)、1100℃(比較例3)で)6時間、大気雰囲気で熱処理した。SEM観察の結果、得られた各シリカ粒子は、複数の閉気孔を有していた。また、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られた球状シリカ粒子を、XRDを用いて結晶性シリカの含有量を定量化した。平均粒径はそれぞれ35μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Comparative example 1 to comparative example 3)
In Comparative Examples 1 to 3, spherical amorphous silica fine powder was placed in an alumina container and heated at 1400°C (Comparative Example 1), 1450°C (Comparative Example 2), and 1100°C (Comparative Example 3). It was heat treated in an air atmosphere for a period of time. As a result of SEM observation, each obtained silica particle had a plurality of closed pores. In addition, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The crystalline silica content of the obtained spherical silica particles was quantified using XRD. The average particle size was 35 μm in each case. A composite with a resin was prepared using the obtained crystalline silica. The percentage of crystalline silica is shown in Table 1.

(比較例4)
平均粒径2μmの破砕状シリカ(石英)微粉末をスプレードライヤー(大川原化工機株式会社製CL-8)で造粒した。この後、アルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて熱処理温度が1200℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、得られた各シリカ粒子は、複数の閉気孔を有していた。また、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られた球状シリカは、XRDで結晶質シリカの含有量を定量化した。平均粒径は84μmであった。また、得られたシリカ粒子を使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Comparative example 4)
A fine crushed silica (quartz) powder with an average particle size of 2 μm was granulated using a spray dryer (CL-8 manufactured by Okawara Kakoki Co., Ltd.). Thereafter, the mixture was filled into an alumina container and heat-treated in an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at a heat treatment temperature of 1200° C. for 6 hours in an air atmosphere. As a result of SEM observation, each obtained silica particle had a plurality of closed pores. In addition, no adhesion of silica particles to each other due to fusion or change in shape due to heat treatment was observed. The crystalline silica content of the obtained spherical silica was quantified by XRD. The average particle size was 84 μm. Furthermore, a composite with a resin was prepared using the obtained silica particles. The percentage of crystalline silica is shown in Table 1.

実施例、比較例で得られたシリカ粒子の閉気孔率、円形度、および誘電正接の値を表1に示す。 Table 1 shows the closed porosity, circularity, and dielectric loss tangent values of the silica particles obtained in Examples and Comparative Examples.

Figure 0007433022000001
Figure 0007433022000001

比較例1、2では、得られたシリカ粒子は、結晶質シリカを50質量%以上含むが、閉気孔率が0.0%であったため誘電正接の値が0.0042を超過した。比較例3、4では、閉気孔率が1.0%未満であることに加えて、結晶質シリカの含有量が50質量%未満であったため、誘電正接の値は0.0050を超過していることが分かる。
一方、本発明の実施例では、得られたシリカ粒子は、結晶質シリカが50質量%以上、閉気孔率が1.0%以上とであったために誘電正接の値が0.0042以下となりミリ波帯域において優れた誘電特性を有することが分かる。
In Comparative Examples 1 and 2, the obtained silica particles contained 50% by mass or more of crystalline silica, but the closed porosity was 0.0%, so the dielectric loss tangent value exceeded 0.0042. In Comparative Examples 3 and 4, in addition to the closed porosity being less than 1.0%, the content of crystalline silica was less than 50% by mass, so the value of the dielectric loss tangent exceeded 0.0050. I know that there is.
On the other hand, in the examples of the present invention, the obtained silica particles had crystalline silica of 50% by mass or more and closed porosity of 1.0% or more, so the dielectric loss tangent value was 0.0042 or less. It can be seen that it has excellent dielectric properties in the wave band.

結晶質シリカを50質量%以上含み、閉気孔率が1.0%以上2.0%未満である実施例1~4および実施例19~21では、誘電正接の値は0.0041~0.0042であった。
特に、原料粒子として結晶質シリカ微粉末と非晶質シリカ微粉末の混合物を造粒した実施例5~14、原料粒子として前記シリカ微粉末と黒鉛粉末からなる混合微粉末を造粒した実施例17~20では、これらの造粒粉末を1200~1600℃で熱処理することで、複数の閉気孔を有する閉気孔率が2.0%以上の中空粒子が得られ、誘電正接の値は0.0040以下であり、誘電特性が更に優れることが分かる。黒鉛粉末を用いて造粒すると、気孔率は8%を上回り70%まで増加させることができた。この結果、誘電正接の値が0.0037以下となり、誘電特性としてさらに好ましいことが分かった。
In Examples 1 to 4 and Examples 19 to 21, which contain 50% by mass or more of crystalline silica and have a closed porosity of 1.0% or more and less than 2.0%, the dielectric loss tangent value is 0.0041 to 0.00%. It was 0042.
In particular, Examples 5 to 14 in which a mixture of crystalline silica fine powder and amorphous silica fine powder were granulated as raw material particles, and Examples 5 to 14 in which a mixed fine powder consisting of the above-mentioned silica fine powder and graphite powder were granulated as raw material particles. In Nos. 17 to 20, by heat-treating these granulated powders at 1200 to 1600°C, hollow particles having a closed porosity of 2.0% or more and having a plurality of closed pores were obtained, and the value of the dielectric loss tangent was 0. 0040 or less, which shows that the dielectric properties are even more excellent. When granulated using graphite powder, the porosity could be increased from more than 8% to 70%. As a result, the value of the dielectric loss tangent was 0.0037 or less, which was found to be more preferable in terms of dielectric properties.

Claims (14)

閉気孔率が1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含み、周波数70GHzにおける誘電正接が、0.0042以下であることを特徴とする複数の閉気孔を有する中空のシリカ粒子。 A plurality of closed pores having a closed porosity of 1.0% or more and 70.0% or less, containing 50% by mass or more of crystalline silica, and having a dielectric loss tangent of 0.0042 or less at a frequency of 70 GHz. Hollow silica particles with pores. 前記閉気孔率が2.0%以上70.0%以下である請求項1に記載の中空のシリカ粒子。 The hollow silica particles according to claim 1, wherein the closed porosity is 2.0% or more and 70.0% or less . 結晶質シリカを80質量%以上含む請求項1または2に記載の中空のシリカ粒子。 The hollow silica particles according to claim 1 or 2, containing 80% by mass or more of crystalline silica. 前記結晶質シリカが、クリストバライトまたは石英の少なくとも1種である請求項1~3のいずれか1項に記載の中空のシリカ粒子。 Hollow silica particles according to any one of claims 1 to 3, wherein the crystalline silica is at least one of cristobalite and quartz. 前記中空のシリカ粒子の平均粒径(D50)が3~100μmである請求項1~4のいずれか1項に記載の中空のシリカ粒子。 The hollow silica particles according to any one of claims 1 to 4, wherein the hollow silica particles have an average particle diameter (D50) of 3 to 100 μm. 前記中空のシリカ粒子の平均粒径(D50)が75~100μmである請求項1~4のいずれか1項に記載の中空のシリカ粒子。The hollow silica particles according to any one of claims 1 to 4, wherein the hollow silica particles have an average particle diameter (D50) of 75 to 100 μm. 前記中空のシリカ粒子の円形度が、0.80以上である請求項1~のいずれか1項に記載の中空のシリカ粒子。 The hollow silica particle according to any one of claims 1 to 6 , wherein the hollow silica particle has a circularity of 0.80 or more. 原料粒子としてシリカ微粉末を造粒し、または原料粒子として前記シリカ微粉末と黒鉛微粉末からなる混合微粉末を造粒して、造粒粉末を得る工程と、
前記造粒粉末を1200℃~1600℃で熱処理して、閉気孔率1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含み、周波数70GHzにおける誘電正接が、0.0042以下である複数の閉気孔を有する中空のシリカ粒子を得る工程と、
を含むことを特徴とする複数の閉気孔を有する中空のシリカ粒子の製造方法。
Granulating silica fine powder as raw material particles or granulating a mixed fine powder of the silica fine powder and graphite fine powder as raw material particles to obtain granulated powder;
The granulated powder is heat-treated at 1200° C. to 1600° C. to have a closed porosity of 1.0% or more and 70.0% or less, contains crystalline silica in an amount of 50% by mass or more, and has a dielectric loss tangent at a frequency of 70 GHz. Obtaining hollow silica particles having a plurality of closed pores of 0.0042 or less ;
A method for producing hollow silica particles having a plurality of closed pores, the method comprising:
前記シリカ微粉末が、天然石英微粉末である請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the fine silica powder is a fine natural quartz powder. 前記シリカ微粉末が、天然石英微粉末と非晶質シリカ微粉末の混合物である請求項8に記載の製造方法。 9. The manufacturing method according to claim 8, wherein the fine silica powder is a mixture of fine natural quartz powder and fine amorphous silica powder. 前記造粒粉末の平均粒径(D50)が3~100μmである請求項8~10のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 8 to 10, wherein the granulated powder has an average particle diameter (D50) of 3 to 100 μm. 前記造粒粉末の平均粒径(D50)が75~100μmである請求項8~10のいずれか1項に記載の製造方法。The manufacturing method according to any one of claims 8 to 10, wherein the granulated powder has an average particle diameter (D50) of 75 to 100 μm. 樹脂と、請求項1~7のいずれか1項に記載の中空のシリカ粒子を少なくとも含む樹脂複合組成物。 A resin composite composition comprising at least a resin and the hollow silica particles according to any one of claims 1 to 7. 請求項13に記載の樹脂複合組成物を硬化して得られる樹脂複合体。 A resin composite obtained by curing the resin composite composition according to claim 13 .
JP2019205597A 2019-11-13 2019-11-13 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same Active JP7433022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019205597A JP7433022B2 (en) 2019-11-13 2019-11-13 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019205597A JP7433022B2 (en) 2019-11-13 2019-11-13 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same

Publications (2)

Publication Number Publication Date
JP2021075438A JP2021075438A (en) 2021-05-20
JP7433022B2 true JP7433022B2 (en) 2024-02-19

Family

ID=75899369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019205597A Active JP7433022B2 (en) 2019-11-13 2019-11-13 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same

Country Status (1)

Country Link
JP (1) JP7433022B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117615994A (en) * 2021-07-07 2024-02-27 Agc株式会社 Light-scattering silica particles and method for producing light-scattering silica particles
JPWO2023008290A1 (en) 2021-07-28 2023-02-02
TW202402673A (en) * 2022-03-25 2024-01-16 日商日鐵化學材料股份有限公司 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342010A (en) 2000-05-30 2001-12-11 Kyocera Corp Inorganic hollow particle and its manufacturing method
JP2006062902A (en) 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
JP2012136363A (en) 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2014009146A (en) 2012-07-02 2014-01-20 Sakai Chem Ind Co Ltd Particle having voids therein and manufacturing method of the same
JP2017193462A (en) 2016-04-20 2017-10-26 花王株式会社 Hollow silica particle and method for producing the same
JP2019043825A (en) 2017-09-06 2019-03-22 太平洋セメント株式会社 Inorganic particle
JP2019077586A (en) 2017-10-24 2019-05-23 花王株式会社 Method for producing hollow silica particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342010A (en) 2000-05-30 2001-12-11 Kyocera Corp Inorganic hollow particle and its manufacturing method
JP2006062902A (en) 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
JP2012136363A (en) 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2014009146A (en) 2012-07-02 2014-01-20 Sakai Chem Ind Co Ltd Particle having voids therein and manufacturing method of the same
JP2017193462A (en) 2016-04-20 2017-10-26 花王株式会社 Hollow silica particle and method for producing the same
JP2019043825A (en) 2017-09-06 2019-03-22 太平洋セメント株式会社 Inorganic particle
JP2019077586A (en) 2017-10-24 2019-05-23 花王株式会社 Method for producing hollow silica particles

Also Published As

Publication number Publication date
JP2021075438A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP7433022B2 (en) Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same
WO2020241902A1 (en) Spherical crystalline silica particles, spherical silica particle mixture, and composite material
US5340781A (en) Spherical corundum particles, process for preparation thereof and rubber or plastic composition having high thermal conductivity and having spherical corundum paticles incorporated therein
CN110636989A (en) Spherical crystalline silica particles and method for producing same
KR102646023B1 (en) Spherical alumina particle mixture and method for producing the same, and resin composite composition and resin composite containing the spherical alumina particle mixture
KR102247230B1 (en) Spherical eukryptite particles and manufacturing method thereof
EP0276321B1 (en) Spherical corundum particles, process for their production, and highly heat-conductive rubber or plastic composition containing them
KR20010100875A (en) Epoxy resin composition for encapsulating semiconductor and semiconductor device using the same
JP2021161005A (en) Particulate material, production method thereof, filler material, and heat conductive material
JP6739627B2 (en) Coated magnesium oxide particles, method for producing the same, and thermally conductive resin composition
JP6056716B2 (en) Granule, method for producing the same, and method for producing glass article
WO2021235530A1 (en) Spherical crystalline silica particles and method for producing same
JP2001122615A (en) Boron nitride coated spherical borate particle,, mixed powder containing the same and method for manufacture thereof
JPH11269302A (en) Filler for improving thermal conductivity of resin product and its production
WO2022210920A1 (en) Powder, production method therefor, and resin composition production method
JP2009215134A (en) Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler
WO2023182511A1 (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
WO2024004738A1 (en) Magnesium oxide powder and resin composition using same
WO2024004736A1 (en) Magnesium oxide powder and resin composition which uses same
WO2023112928A1 (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
WO2024071434A1 (en) Spherical silica particles, resin composite composition containing same, and production method thereof
JPH07188579A (en) Coated magnesium oxide powder
JP2023166202A (en) Particle and method for producing the same
JP2023150838A (en) Powder and method for producing the same, and method for producing resin composition
JP2009215132A (en) Spherical particle, resin composition containing it, its producing method, filler being aggregation of the spherical particle and semiconductor resin sealing agent containing the filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240206

R150 Certificate of patent or registration of utility model

Ref document number: 7433022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150