JP2021075438A - Hollow silica particle, method for producing the same, resin composite composition using the same, and resin composite - Google Patents
Hollow silica particle, method for producing the same, resin composite composition using the same, and resin composite Download PDFInfo
- Publication number
- JP2021075438A JP2021075438A JP2019205597A JP2019205597A JP2021075438A JP 2021075438 A JP2021075438 A JP 2021075438A JP 2019205597 A JP2019205597 A JP 2019205597A JP 2019205597 A JP2019205597 A JP 2019205597A JP 2021075438 A JP2021075438 A JP 2021075438A
- Authority
- JP
- Japan
- Prior art keywords
- silica
- silica particles
- particles
- fine powder
- hollow silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 345
- 239000002245 particle Substances 0.000 title claims abstract description 115
- 239000000805 composite resin Substances 0.000 title claims abstract description 26
- 239000000377 silicon dioxide Substances 0.000 title claims description 55
- 239000000203 mixture Substances 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 80
- 239000011148 porous material Substances 0.000 claims abstract description 67
- 229910002026 crystalline silica Inorganic materials 0.000 claims abstract description 54
- 229920005989 resin Polymers 0.000 claims abstract description 39
- 239000011347 resin Substances 0.000 claims abstract description 39
- 239000000843 powder Substances 0.000 claims description 93
- 239000010453 quartz Substances 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910002804 graphite Inorganic materials 0.000 claims description 12
- 239000010439 graphite Substances 0.000 claims description 12
- 229910052906 cristobalite Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 description 21
- 239000003822 epoxy resin Substances 0.000 description 15
- 229920000647 polyepoxide Polymers 0.000 description 15
- 239000002131 composite material Substances 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 239000007921 spray Substances 0.000 description 10
- 230000004927 fusion Effects 0.000 description 9
- 238000005469 granulation Methods 0.000 description 9
- 230000003179 granulation Effects 0.000 description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000008393 encapsulating agent Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000002178 crystalline material Substances 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000007751 thermal spraying Methods 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000007088 Archimedes method Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000003703 image analysis method Methods 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Silicon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、複数の閉気孔を有する中空のシリカ粒子およびその製造方法、ならびに当該中空シリカ粒子を含有する樹脂複合体に関する。本発明は、特に、周波数60GHz以上の高周波信号に対応した高周波用配線基板の絶縁膜の製造に用いることができる、複数の閉気孔を有する中空のシリカ粒子と、樹脂との樹脂複合体に関するものである。 The present invention relates to hollow silica particles having a plurality of closed pores, a method for producing the same, and a resin composite containing the hollow silica particles. The present invention particularly relates to a resin composite of a resin and hollow silica particles having a plurality of closed pores, which can be used for producing an insulating film of a high frequency wiring substrate corresponding to a high frequency signal having a frequency of 60 GHz or more. Is.
通信技術の高度化に伴う情報量の増大、ミリ波レーダ等のミリ波帯域の急速な利用拡大等により、周波数の高周波数化が進行している。これらの高周波信号を伝送する回路基板は、回路パターンとなる電極と誘電体基板から構成されている。高周波信号の伝送の際のエネルギー損失を抑えるためには、誘電体材料の誘電正接(tanδ)が小さいことが必要となる。低誘電損とするには、誘電性材料は低極性および低双極子モーメントを有していなければならない。 Due to the increase in the amount of information accompanying the sophistication of communication technology and the rapid expansion of the use of millimeter-wave bands such as millimeter-wave radar, the frequency is increasing. The circuit board that transmits these high-frequency signals is composed of an electrode and a dielectric board that form a circuit pattern. In order to suppress energy loss during transmission of high-frequency signals, it is necessary that the dielectric loss tangent (tan δ) of the dielectric material is small. For low dielectric loss, the dielectric material must have low polarity and low dipole moments.
誘電体材料としては、主にセラミックス粒子、樹脂およびそれらを複合させた複合体が用いられている。特に、近年のミリ波帯域の利用拡大に伴い、より一層の低誘電正接(tanδ)のセラミックス粒子、および樹脂が求められている。樹脂は、比誘電率(εr)は比較的小さく高周波デバイスに適しているが、誘電正接(tanδ)や熱膨張係数はセラミックス粒子より大きい。このため、ミリ波帯域用のセラミック粒子と樹脂との複合体には、(1)セラミックス粒子自体の低誘電正接(tanδ)化、(2)セラミックス粒子を高充填し大きな誘電正接(tanδ)を示す樹脂の量を減らすことが適している。 As the dielectric material, ceramic particles, resins, and composites obtained by combining them are mainly used. In particular, with the recent expansion of the use of the millimeter wave band, ceramic particles and resins having a lower dielectric loss tangent (tan δ) are required. Resins have a relatively small relative permittivity (εr) and are suitable for high-frequency devices, but have a dielectric loss tangent (tan δ) and a coefficient of thermal expansion larger than those of ceramic particles. For this reason, the composite of the ceramic particles for the millimeter wave band and the resin is (1) made into a low dielectric loss tangent (tan δ) of the ceramic particles themselves, and (2) is highly filled with the ceramic particles and has a large dielectric loss tangent (tan δ). It is suitable to reduce the amount of resin shown.
セラミックス粒子としてシリカ(SiO2)粒子が従来から用いられている。シリカ粒子の形状が、角張った形状であると、樹脂中での流動性、分散性、充填性が悪くなり、また製造装置の摩耗も進む。これらを改善するため、球状のシリカ粒子が広く用いられている。球状シリカ粒子は真球に近いほど、樹脂中の充填性、流動性、および耐金型磨耗性が向上すると考えられ、真円度の高い粒子が追求されてきた。さらに、粒子の粒度分布の適正化を図ることによる一層の充填性の向上も検討されてきた。 Silica (SiO 2 ) particles have been conventionally used as ceramic particles. If the shape of the silica particles is angular, the fluidity, dispersibility, and filling property in the resin are deteriorated, and the manufacturing apparatus is also worn. In order to improve these, spherical silica particles are widely used. It is considered that the closer the spherical silica particles are to a true sphere, the better the filling property, fluidity, and mold abrasion resistance in the resin, and particles having a high roundness have been pursued. Furthermore, further improvement of filling property has been studied by optimizing the particle size distribution of the particles.
球状シリカ粒子の製造法として溶射法が知られている。溶射法では、原料となる破砕シリカ粉末を2000℃以上の火炎中に通すことにより、シリカ粉末を溶融し、表面張力により形状を球状化する。溶融球状化された粒子同士が融着しないように気流搬送して回収し、溶射後の粒子は急冷される。溶融状態から急冷されるため、得られたシリカ粒子は、非晶質(アモルファス)構造を有する。 The thermal spraying method is known as a method for producing spherical silica particles. In the thermal spraying method, crushed silica powder as a raw material is passed through a flame at 2000 ° C. or higher to melt the silica powder, and the shape is spheroidized by surface tension. The molten spheroidized particles are transported by air flow so as not to fuse with each other and collected, and the particles after thermal spraying are rapidly cooled. Since it is rapidly cooled from the molten state, the obtained silica particles have an amorphous structure.
溶射法による球状シリカ粒子は非晶質であるため、その熱膨張率および熱伝導率は低い。非晶質シリカ粒子の熱膨張率は、0.5ppm/Kであり、熱伝導率は1.4W/mKである。これらの物性は、結晶構造を有さず非晶質(アモルファス)構造を有する石英ガラスの熱膨張率と概ね同等である。このため、高熱膨張の樹脂に混合して半導体封止材用フィラーとして用いた場合、封止材自体の熱膨張を下げる効果が得られる。封止材の熱膨張率をSiに近い値とすることで、ICチップを封止する際の熱膨張挙動に起因する変形を抑えることができる。 Since the spherical silica particles produced by the thermal spraying method are amorphous, their coefficient of thermal expansion and thermal conductivity are low. The coefficient of thermal expansion of the amorphous silica particles is 0.5 ppm / K, and the thermal conductivity is 1.4 W / mK. These physical properties are substantially the same as the coefficient of thermal expansion of quartz glass having an amorphous structure without having a crystal structure. Therefore, when it is mixed with a resin having a high thermal expansion and used as a filler for a semiconductor encapsulant, the effect of lowering the thermal expansion of the encapsulant itself can be obtained. By setting the coefficient of thermal expansion of the sealing material to a value close to Si, it is possible to suppress deformation due to the thermal expansion behavior when sealing the IC chip.
以上述べてきたとおり、封止材用シリカ粒子に求められる特性としては、樹脂に大量に配合して複合体としての性能を維持できる充填性、流動性、および耐金型磨耗性等に加えて、ミリ波帯域の高周波の優れた誘電特性である。誘電特性は、材質の物性値であるためシリカ粒子の誘電正接を低減させることは困難であった。 As described above, the characteristics required of silica particles for encapsulant materials include filling property, fluidity, and mold abrasion resistance, which can be blended in a large amount with a resin to maintain the performance as a composite. , Excellent dielectric properties of high frequencies in the millimeter wave band. Since the dielectric property is a physical property value of the material, it is difficult to reduce the dielectric loss tangent of the silica particles.
特許文献1には、平均粒径が0.1〜20μmのシリカゲルに対して、Zn化合物をZnO換算で0.5質量%以上添加し、この混合物を900〜1100℃で熱処理することを特徴とする主結晶相がクオーツからなる多孔質粉末の製造方法が記載されている。得られた多孔質粉末は、微細な気孔を有し、低誘電率化用の骨材などに有用であるとの記載はあるが、ここでの微細な気孔は、開気孔であり、閉気孔は記載されていない。 Patent Document 1 is characterized in that a Zn compound is added in an amount of 0.5% by mass or more in terms of ZnO to silica gel having an average particle size of 0.1 to 20 μm, and this mixture is heat-treated at 900 to 1100 ° C. A method for producing a porous powder in which the main crystal phase is quartz is described. There is a description that the obtained porous powder has fine pores and is useful for aggregates for lowering the dielectric constant, but the fine pores here are open pores and closed pores. Is not listed.
特許文献2には、球状の非晶質シリカからなる粒子材料を加熱し(加熱工程)、結晶化する製造方法が記載されているが、得られた樹脂組成物添加用球状結晶質シリカ粉体は、気孔を有していない。 Patent Document 2 describes a production method of heating a particle material made of spherical amorphous silica (heating step) to crystallize it. The obtained spherical crystalline silica powder for adding a resin composition is described. Has no pores.
本発明者らは、周波数が60GHz〜80GHzのミリ波帯域において優れた誘電特性を有する複数の閉気孔を有する中空のシリカ粒子の探求と、それらを樹脂に混合した高周波デバイス用途の樹脂複合体の作製を目指した。 The present inventors have been searching for hollow silica particles having a plurality of closed pores having excellent dielectric properties in the millimeter wave band having a frequency of 60 GHz to 80 GHz, and a resin composite for high frequency devices in which they are mixed with a resin. I aimed to make it.
本願発明者は上記課題を解決することを目的とし鋭意研究しその結果、低誘電正接の樹脂複合体を得るには、先ず、球状の溶融(非晶質)シリカを、熱処理し結晶化させることが有効であることを見出した。すなわち結晶質シリカは、ミリ波帯域(60GHz〜80GHZ)での誘電正接が、従来広く使用されてきた非晶質シリカに比べて大幅に低下することを初めて確認した。この結果、球状の結晶質シリカ粒子は、高周波デバイス用途として優れた誘電特性を示すシリカ粒子となる。 The inventor of the present application has conducted intensive research for the purpose of solving the above problems, and as a result, in order to obtain a resin composite having a low dielectric loss tangent, first, spherical molten (amorphous) silica is heat-treated and crystallized. Found to be valid. That is, it was confirmed for the first time that the dielectric loss tangent in the millimeter wave band (60 GHz to 80 GHz) of crystalline silica is significantly lower than that of amorphous silica which has been widely used in the past. As a result, the spherical crystalline silica particles become silica particles exhibiting excellent dielectric properties for high-frequency device applications.
本願発明者らは更に高周波デバイス用途の優れたシリカ粒子を得るべく検討を行った。空気は誘電正接の小さい物質として知られている。このためシリカ粒子へ空気相を導入することが有効である。しかし、溶射法で製造される結晶質シリカ粒子に空気相を導入することは不可能であった。本発明者らは、シリカ造粒粉末を熱処理して、シリカ造粒粉末の焼結挙動と結晶化挙動を制御することで、複数の閉気孔を有する中空の球状結晶質シリカ粒子を製造できることを見出し本発明に至った。 The inventors of the present application further studied to obtain excellent silica particles for high-frequency device applications. Air is known as a substance with a small dielectric loss tangent. Therefore, it is effective to introduce an air phase into the silica particles. However, it has been impossible to introduce an air phase into the crystalline silica particles produced by the thermal spraying method. The present inventors have stated that hollow spherical crystalline silica particles having a plurality of closed pores can be produced by heat-treating the silica granulated powder to control the sintering behavior and crystallization behavior of the silica granulated powder. Findings have led to the present invention.
かくして、本発明によれば、下記を提供する:
(1)閉気孔率が1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含むことを特徴とする複数の閉気孔を有する中空のシリカ粒子。
(2)前記閉気孔率が2.0%以上70.0%である前記(1)に記載の中空のシリカ粒子。
(3)結晶質シリカを80質量%以上含む前記(1)または(2)に記載の中空のシリカ粒子。
(4)前記結晶質シリカが、クリストバライトまたは石英の少なくとも1種である前記(1)〜(3)のいずれか1つに記載の中空のシリカ粒子。
(5)前記中空のシリカ粒子の平均粒径(D50)が3〜100μmである前記(1)〜(4)のいずれか1つに記載の中空のシリカ粒子。
(6)前記中空のシリカ粒子の円形度が、0.8以上である前記(1)〜(5)のいずれか1つに記載の中空のシリカ粒子。
(7)前記中空のシリカ粒子の周波数70GHzにおける誘電正接が、0.0042以下である(1)〜(6)のいずれか1つに記載の中空のシリカ粒子。
(8)原料粒子としてシリカ微粉末を造粒し、または原料粒子として前記シリカ微粉末と黒鉛微粉末からなる混合微粉末を造粒して、造粒粉末を得る工程、そして
前記造粒粉末を1200℃〜1600℃で熱処理して、閉気孔率1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含む複数の閉気孔を有する中空のシリカ粒子を得る工程
を含むことを特徴とする複数の閉気孔を有する中空のシリカ粒子の製造方法。
(9)前記結晶質シリカ微粉末が、天然石英微粉末である前記(8)に記載の製造方法。
(10)前記シリカ微粉末が、天然石英微粉末と非晶質シリカ微粉末の混合物である前記(8)に記載の製造方法。
(11)前記造粒粉末の平均粒径(D50)が3〜100μmである前記(8)〜(10)に記載の製造方法。
(12)樹脂と、前記(1)〜(7)のいずれか1つに記載の中空のシリカ粒子とを少なくとも含む樹脂複合組成物。
(13)前記(12)に記載の樹脂複合組成物を硬化して得られる樹脂複合体。
Thus, according to the present invention, the following is provided:
(1) Hollow silica particles having a plurality of closed pores having a closed porosity of 1.0% or more and 70.0% or less and containing 50% by mass or more of crystalline silica.
(2) The hollow silica particles according to (1) above, wherein the closed porosity is 2.0% or more and 70.0%.
(3) The hollow silica particles according to (1) or (2) above, which contain 80% by mass or more of crystalline silica.
(4) The hollow silica particles according to any one of (1) to (3) above, wherein the crystalline silica is at least one of cristobalite and quartz.
(5) The hollow silica particles according to any one of (1) to (4) above, wherein the average particle size (D50) of the hollow silica particles is 3 to 100 μm.
(6) The hollow silica particles according to any one of (1) to (5) above, wherein the circularity of the hollow silica particles is 0.8 or more.
(7) The hollow silica particle according to any one of (1) to (6), wherein the dielectric loss tangent of the hollow silica particle at a frequency of 70 GHz is 0.0042 or less.
(8) A step of granulating silica fine powder as raw material particles or granulating a mixed fine powder composed of the silica fine powder and graphite fine powder as raw material particles to obtain a granulated powder, and the granulated powder. A step of heat-treating at 1200 ° C. to 1600 ° C. to obtain hollow silica particles having a closed pore ratio of 1.0% or more and 70.0% or less and having a plurality of closed pores containing 50% by mass or more of crystalline silica. A method for producing hollow silica particles having a plurality of closed pores, which comprises.
(9) The production method according to (8) above, wherein the crystalline silica fine powder is a natural quartz fine powder.
(10) The production method according to (8) above, wherein the silica fine powder is a mixture of natural quartz fine powder and amorphous silica fine powder.
(11) The production method according to (8) to (10) above, wherein the average particle size (D50) of the granulated powder is 3 to 100 μm.
(12) A resin composite composition containing at least the resin and the hollow silica particles according to any one of (1) to (7) above.
(13) A resin composite obtained by curing the resin composite composition according to (12) above.
本発明によれば、樹脂複合体は、結晶質シリカを含有するために低い誘電正接を有する。また本発明の中空の球状シリカは、誘電正接の低い空気相を含む気孔を、閉気孔率1%以上含むことから、従来の非晶質シリカ粒子に比べて誘電特性が優れ高周波デバイス向けの半導体分野に好適なシリカ粒子となる。 According to the present invention, the resin complex has a low dielectric loss tangent due to the inclusion of crystalline silica. Further, the hollow spherical silica of the present invention contains pores containing an air phase having a low dielectric loss tangent with a closed porosity of 1% or more, and therefore has excellent dielectric properties as compared with conventional amorphous silica particles and is a semiconductor for high frequency devices. It becomes silica particles suitable for the field.
本発明のシリカ粒子は、閉気孔率が1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含むことを特徴とする複数の閉気孔を有する中空のシリカ粒子である。 The silica particles of the present invention are hollow silica particles having a plurality of closed pores, characterized by having a closed porosity of 1.0% or more and 70.0% or less and containing 50% by mass or more of crystalline silica. is there.
シリカ(SiO2)の結晶構造としては、クリストバライト、石英等がある。これらの結晶構造を有するシリカは非晶質シリカと比べると、高い熱膨張率および熱伝導率を有する。このため、溶融(非晶質)シリカを、結晶質シリカに適切な量、置き換えることで、ICチップ等との熱膨張差異を抑制しつつ、熱伝導率を向上させることができる。結晶質シリカはミリ波帯域での誘電特性が優れる。さらに結晶シリカに空気相を導入することで、高周波デバイス用途のシリカ粒子として適する。 The crystal structure of silica (SiO 2 ) includes cristobalite, quartz and the like. Silica having these crystal structures has a higher coefficient of thermal expansion and thermal conductivity than amorphous silica. Therefore, by replacing the molten (amorphous) silica with crystalline silica in an appropriate amount, it is possible to improve the thermal conductivity while suppressing the difference in thermal expansion from the IC chip or the like. Crystalline silica has excellent dielectric properties in the millimeter wave band. Furthermore, by introducing an air phase into crystalline silica, it is suitable as silica particles for high-frequency device applications.
結晶質シリカへの空気相の導入は、多ければ多いほど、誘電特性は優れるが、一方で、熱伝導の低下や、機械的特性低下のため閉気孔率は70%以下、より好ましくは50%以下である。閉気孔率は1.0%未満となると、空気相導入による誘電特性の改善効果が小さく期待できなくなるため、1.0%以上である。閉気孔率は好ましくは2.0%以上である。気孔には、外気と接続している開気孔と粒子内部に孤立している閉気孔とがある。本発明で規定する空気相の含有量は閉気孔に含まれる空気である。 The more the air phase is introduced into the crystalline silica, the better the dielectric properties, but on the other hand, the porosity is 70% or less, more preferably 50% due to the decrease in heat conduction and the decrease in mechanical properties. It is as follows. If the closed porosity is less than 1.0%, the effect of improving the dielectric characteristics by introducing the air phase is small and cannot be expected, so it is 1.0% or more. The closed porosity is preferably 2.0% or more. The pores include open pores that are connected to the outside air and closed pores that are isolated inside the particles. The content of the air phase specified in the present invention is the air contained in the closed pores.
本発明のシリカ粒子の誘電正接の測定方法を以下に示す。シリカ粒子に対して直接、誘電正接を測定することができないため本発明では、樹脂との複合体を作製し当該樹脂複合体の誘電正接を測定した。シリカ粒子の誘電正接は、樹脂に対するシリカ粒子の含有量を変動させてシリカ粒子含有率と誘電正接との関係を求めた後、シリカ粒子が含有率100%の誘電正接を外挿して求めることができる。本発明では、樹脂複合体を、遮断円筒導波管法(JIS R1660−1:2004)に基づき、ネットワークアナライザー「N5227A(キーサイト・テクノロジー社製)」を用いて70GHz周波数で測定した。エポキシ樹脂に対して0および80質量%のシリカ粒子との複合化体と誘電正接との関係から、シリカ粒子100%の数値を外挿し、得られた数値をシリカ粒子の誘電正接とした。 The method for measuring the dielectric loss tangent of the silica particles of the present invention is shown below. Since the dielectric loss tangent cannot be measured directly with respect to the silica particles, in the present invention, a composite with a resin was prepared and the dielectric loss tangent of the resin composite was measured. The dielectric loss tangent of the silica particles can be obtained by varying the content of the silica particles with respect to the resin to determine the relationship between the silica particle content and the dielectric loss tangent, and then extrapolating the dielectric loss tangent of the silica particles having a content of 100%. it can. In the present invention, the resin composite was measured at a frequency of 70 GHz using a network analyzer "N5227A (manufactured by Keysight Technology Co., Ltd.)" based on the blocking cylindrical waveguide method (JIS R1660-1: 2004). From the relationship between the composite with 0 and 80% by mass of silica particles and the dielectric loss tangent with respect to the epoxy resin, the numerical value of 100% of the silica particles was extrapolated, and the obtained numerical value was defined as the dielectric loss tangent of the silica particles.
本発明の複数の閉気孔を有する中空のシリカ粒子の70GHz周波数での誘電正接は、閉気孔率が1.0%を超える0.0042以下が好ましく、また0.0013未満であると、閉気孔率が70%を超え、機械的強度が低下する可能性があるため、0.0013〜0.0042であることが好ましい。誘電正接が0.0013〜0.0040の範囲が、より好ましく、0.0013〜0.0037の範囲がさらに好ましい。 The dielectric loss tangent of the hollow silica particles having a plurality of closed pores of the present invention at a frequency of 70 GHz is preferably 0.0042 or less having a closed porosity of more than 1.0% and less than 0.0013. The rate is preferably 0.0013 to 0.0042 because the rate may exceed 70% and the mechanical strength may decrease. The dielectric loss tangent is more preferably in the range of 0.0013 to 0.0040, and even more preferably in the range of 0.0013 to 0.0037.
本発明のシリカ粒子は複数の閉気孔を有する中空のシリカ粒子である。シリカ粒子内の閉気孔が単一である場合、不可避的に気孔は粒子内で偏在する。その結果、粒子の機械的強度に不均一性が生じる。閉気孔率が高くなると強度低下部を起点として閉気孔が潰れる不具合が生じることから、閉気孔が単一で存在することは好ましくない。一方、複数の閉気孔を有するシリカ粒子では機械的強度は平準化されるので上述する不具合は生じることがない。 The silica particles of the present invention are hollow silica particles having a plurality of closed pores. When there is a single closed pore in the silica particle, the pores are inevitably unevenly distributed in the particle. As a result, the mechanical strength of the particles becomes non-uniform. It is not preferable that a single closed pore exists because a problem occurs in which the closed pore is crushed starting from the strength lowering portion when the closed pore ratio becomes high. On the other hand, in the case of silica particles having a plurality of closed pores, the mechanical strength is leveled, so that the above-mentioned problems do not occur.
本発明のシリカ粒子が複数の閉気孔を有することは、シリカ粒子の断面組織観察を行えばよい。断面組織の観察は、例えば、複数のシリカ粒子を、エポキシ樹脂に埋め込んだのちシリカ断面が観察面に露出するようにダイヤモンドスラリーで研磨を施し、当該断面を走査型電子顕微鏡(SEM)で観察すればよい。 For the silica particles of the present invention to have a plurality of closed pores, the cross-sectional structure of the silica particles may be observed. For observation of the cross-sectional structure, for example, after embedding a plurality of silica particles in an epoxy resin, polishing is performed with a diamond slurry so that the silica cross section is exposed on the observation surface, and the cross section is observed with a scanning electron microscope (SEM). Just do it.
閉気孔率の計算方法を以下に示す。シリカ粒子内に存在する気孔は、閉気孔である。シリカ粒子の密度を、アルキメデス法を用いて求める場合、得られる密度は開気孔を考慮せず、閉気孔のみを考慮しており、「見かけ密度」と呼ばれる。アルキメデス法とは、液体中に固体が同体積の液体の質量と同じだけ浮力を受けることを用いて試料の密度を求める方法である。シリカ粒子の見かけ密度を実在の材料に対する理想的な密度である真密度で除することで閉気孔率を求めることができる。本発明の複数の閉気孔を有する中空のシリカ粒子の閉気孔率は液体に水を用いたアルキメデス法によって測定した。
閉気孔率=100×{1−(見かけ密度/真密度)}(%)
The calculation method of the closed porosity is shown below. The pores existing in the silica particles are closed pores. When the density of silica particles is determined by using the Archimedes method, the obtained density does not consider open pores, but only closed pores, and is called "apparent density". The Archimedes method is a method for determining the density of a sample by using the fact that a solid in a liquid receives the same amount of buoyancy as the mass of the same volume of liquid. The closed porosity can be determined by dividing the apparent density of silica particles by the true density, which is the ideal density for a real material. The porosity of the hollow silica particles having a plurality of closed pores of the present invention was measured by the Archimedes method using water as a liquid.
Porosity = 100 x {1- (apparent density / true density)} (%)
シリカ粒子の真密度は、粒子が非晶質シリカおよび結晶質シリカから構成される場合、それぞれのシリカの真密度に存在割合を乗じることで求めることができる。例えば、非晶質シリカが66.2%であり、結晶質シリカ33.2%(クリストバライト32.0%、石英1.8%)である場合、このシリカ粒子の真密度は、非晶質シリカ真密度×0.662+クリストバライト真密度×0.320+石英真密度×0.018で求めることができる。非晶質シリカ、クリストバライト、石英の真密度は、25℃、常圧において、それぞれ、2.196g/cm3、2.334g/cm3、2.648g/cm3である。シリカ粒子が非晶質および結晶質から構成される場合の存在割合は、XRDで求めることができる。 When the particles are composed of amorphous silica and crystalline silica, the true density of the silica particles can be obtained by multiplying the true density of each silica by the abundance ratio. For example, when amorphous silica is 66.2% and crystalline silica is 33.2% (cristobalite 32.0%, quartz 1.8%), the true density of the silica particles is amorphous silica. It can be obtained by true density × 0.662 + cristobalite true density × 0.320 + quartz true density × 0.018. True density of amorphous silica, cristobalite, quartz, 25 ° C., at atmospheric pressure, respectively, 2.196g / cm 3, 2.334g / cm 3, a 2.648g / cm 3. The abundance ratio when the silica particles are composed of amorphous and crystalline can be determined by XRD.
本発明の構成は、クリストバライトまたは石英の少なくとも1種類の結晶質シリカを含む複数の閉気孔を有する中空の球状シリカ粒子である。球状シリカ粒子中の結晶質シリカの含有量は、50%以上である。50%以上であれば、閉気孔を有しない非晶質シリカに比べて優れた誘電特性が発現する。より好ましくは80%以上の結晶質シリカを含有するとよい。結晶質シリカの割合は多ければ多いほど誘電特性は向上する。 The constitution of the present invention is hollow spherical silica particles having a plurality of closed pores containing at least one kind of crystalline silica of cristobalite or quartz. The content of crystalline silica in the spherical silica particles is 50% or more. When it is 50% or more, excellent dielectric properties are exhibited as compared with amorphous silica having no closed pores. More preferably, it contains 80% or more of crystalline silica. The higher the proportion of crystalline silica, the better the dielectric properties.
結晶相の割合は、X線回折(XRD)により測定した。XRDで測定では、結晶性ピークの積分強度の和(Ic)と非晶質のハロー部分の積分強度(Ia)から、以下の式で計算することにより結晶相の割合を求めた。
X(結晶相割合)=Ic/(Ic+Ia)×100 (%)
さらに、クリストバライト、石英等の結晶相の含有量は、X線回折により定量分析することで求めた。X線回折による定量分析では、リートベルト法などの解析方法を用い、標準試料を用いずに定量分析を行った。本発明では、X線回折装置「D2 PHASER」(ブルカー社製)を用いた。リードベルト法による結晶相の定量分析は、結晶構造解析ソフトウエア「TOPAS」(ブルカー社製)にて行った。
The proportion of crystal phases was measured by X-ray diffraction (XRD). In the measurement by XRD, the ratio of the crystal phase was obtained by calculating from the sum of the integral strengths of the crystalline peaks (Ic) and the integral strengths of the amorphous halo portion (Ia) by the following formula.
X (crystal phase ratio) = Ic / (Ic + Ia) x 100 (%)
Furthermore, the content of crystal phases such as cristobalite and quartz was determined by quantitative analysis by X-ray diffraction. In the quantitative analysis by X-ray diffraction, an analysis method such as the Rietveld method was used, and the quantitative analysis was performed without using a standard sample. In the present invention, an X-ray diffractometer "D2 PHASER" (manufactured by Bruker) was used. The quantitative analysis of the crystal phase by the lead belt method was performed by the crystal structure analysis software "TOPAS" (manufactured by Bruker).
本発明の複数の閉気孔を有する中空のシリカ粒子の平均粒径(D50)は、3〜100μmであることが好ましい。平均粒径が3μm未満であると、粒子の凝集性が大きくなり流動性が著しく低下するため、好ましくない。平均粒径が100μmを超えると粒子間の空隙が残存しやすく充填性を上げることが困難となり、好ましくない。平均粒径が10〜80μmの範囲が、より好ましい。 The average particle size (D50) of the hollow silica particles having a plurality of closed pores of the present invention is preferably 3 to 100 μm. If the average particle size is less than 3 μm, the cohesiveness of the particles becomes large and the fluidity is remarkably lowered, which is not preferable. If the average particle size exceeds 100 μm, voids between the particles tend to remain and it becomes difficult to improve the filling property, which is not preferable. More preferably, the average particle size is in the range of 10 to 80 μm.
平均粒子径(D50)は、レーザー回折・散乱式粒度分布測定法により測定した、体積基準の粒度分布において、累積体積が50%のメジアン径D50を求めた。なお、レーザー回折・散乱式粒度分布測定法は、シリカ粒子を分散させた分散液にレーザー光を照射し、分散液から発せられる回折・散乱光の強度分布パターンから粒度分布を求める方法である。本発明では、レーザー回折・散乱式粒度分布測定装置「CILAS920」(シーラス社製)を用いた。 For the average particle size (D50), a median size D50 having a cumulative volume of 50% was determined in a volume-based particle size distribution measured by a laser diffraction / scattering particle size distribution measurement method. The laser diffraction / scattering type particle size distribution measurement method is a method in which a dispersion liquid in which silica particles are dispersed is irradiated with laser light, and the particle size distribution is obtained from an intensity distribution pattern of the diffraction / scattering light emitted from the dispersion liquid. In the present invention, a laser diffraction / scattering type particle size distribution measuring device "CILAS920" (manufactured by Cirrus) was used.
本発明の中空の球状シリカ粒子は、円形度が0.80以上であることが好ましい。円形度が0.80未満であると、半導体封止材用の樹脂複合組成物のシリカ粒子等として利用する場合に、流動性、分散性、充填性が十分でなく、また封止材作製用機器の摩耗が促進される場合がある。 The hollow spherical silica particles of the present invention preferably have a circularity of 0.80 or more. If the circularity is less than 0.80, the fluidity, dispersibility, and packing property are not sufficient when used as silica particles or the like of a resin composite composition for a semiconductor encapsulant, and the encapsulant is produced. Equipment wear may be accelerated.
円形度は、「撮影粒子投影面積相当円の周囲長÷撮影粒子像の周囲長」で求められ、この値が1に近づくほど真球に近づくことを意味する。本発明の円形度はフロー式粒子像分析法により求めた。フロー式粒子像分析法では、シリカ粒子を液体に流して粒子の静止画像として撮像し、得られた粒子像を基に画像解析を行い、シリカ粒子の円形度を求める。これら複数の円形度の平均値を平均円形度とした。フロー式粒子像分析法により平均円形度を測定する際の粒子個数は、少なすぎると正しく平均値を得ることができない。少なくとも粒子100個以上は必要で、好ましくは500個以上、よりこの好ましくは、1000個以上である。本発明では、フロー式粒子像分析装置「FPIA−3000」(スペクトリス社製)を用いて、約500個の粒子を用いた。 The circularity is obtained by "perimeter of the circle corresponding to the projected area of the photographed particle ÷ perimeter of the photographed particle image", and the closer this value is to 1, the closer to a true sphere. The circularity of the present invention was determined by a flow-type particle image analysis method. In the flow-type particle image analysis method, silica particles are flowed into a liquid and imaged as a still image of the particles, and image analysis is performed based on the obtained particle image to determine the circularity of the silica particles. The average value of these plurality of circularities was defined as the average circularity. If the number of particles when measuring the average circularity by the flow type particle image analysis method is too small, the average value cannot be obtained correctly. At least 100 or more particles are required, preferably 500 or more, and more preferably 1000 or more. In the present invention, about 500 particles were used by using the flow type particle image analyzer "FPIA-3000" (manufactured by Spectris).
本発明の複数の閉気孔を有する中空のシリカ粒子は、原料粒子としてシリカ微粉末を造粒するか、または原料粒子として前記シリカ微粉末と黒鉛微粉末からなる混合微粉末を造粒して、造粒粉末を得る工程と、前記造粒粉末を1200℃〜1600℃で熱処理する工程を含む。 For the hollow silica particles having a plurality of closed pores of the present invention, silica fine powder is granulated as raw material particles, or a mixed fine powder composed of the silica fine powder and graphite fine powder is granulated as raw material particles. The step of obtaining the granulated powder and the step of heat-treating the granulated powder at 1200 ° C. to 1600 ° C. are included.
結晶質シリカは、通常、球状の非晶質シリカを大気雰囲気下で熱処理を行い、結晶化させることで得られる。熱処理温度、時間を変えることで、結晶質シリカの含有量を変動・制御させることが可能である。
本発明の複数の閉気孔を有する中空のシリカ粒子は、閉気孔率が1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含むことを特徴とする。シリカ粒子に空気相を導入するために、原料粒子としてシリカ微粉末またはシリカ微粉末と黒鉛微粉末からなる混合微粉末を造粒する。
Crystalline silica is usually obtained by heat-treating spherical amorphous silica in an air atmosphere to crystallize it. By changing the heat treatment temperature and time, it is possible to change and control the content of crystalline silica.
The hollow silica particles having a plurality of closed pores of the present invention are characterized in that the closed pore ratio is 1.0% or more and 70.0% or less, and the crystalline silica is contained in an amount of 50% by mass or more. In order to introduce the air phase into the silica particles, silica fine powder or a mixed fine powder composed of silica fine powder and graphite fine powder is granulated as raw material particles.
結晶質シリカへの空気相導入は、原料粒子として、平均粒径がサブミクロン〜数ミクロンのシリカ微粉末を球状に造粒し、その後、造粒粉末を容器に充填し熱処理することで行われる。容器は、熱処理温度で安定な酸化物系の材質であれば良く、例えばアルミナを用いることができる。造粒方法には、流動層造粒、撹拌造粒、スプレードライ、押し出し造粒等がある。本発明の製造方法では、球形に近い造粒粉末が得られれば特に、造粒方法は問わない。図1は、平均粒径が3μm未満のシリカ微粉末を、スプレードライヤーを用いて造粒した造粒粉末の断面SEM像である。 The introduction of the air phase into crystalline silica is performed by spherically granulating silica fine powder having an average particle size of submicron to several microns as raw material particles, and then filling the container with the granulated powder and heat-treating it. .. The container may be an oxide-based material that is stable at the heat treatment temperature, and for example, alumina can be used. Granulation methods include fluidized bed granulation, stirring granulation, spray drying, extruded granulation and the like. In the production method of the present invention, the granulation method is not particularly limited as long as a granulation powder having a nearly spherical shape can be obtained. FIG. 1 is a cross-sectional SEM image of a granulated powder obtained by granulating silica fine powder having an average particle size of less than 3 μm using a spray dryer.
使用するシリカの原料粒子の大きさ、および造粒条件により平均粒径3μm〜100μmの造粒粉を作り分けることができる。原料粒子には、結晶質シリカ微粉末の他に、非晶質の微粉末、またその混合物の微粉末を使用することもできる。天然石英の微粉末と非晶質シリカの微粉末の混合微粉末から造粒粉末を作製すると、天然石英微粉末のみから成る原料粒子を用いる場合に比べて閉気孔を多く導入することができる。 Granulated powder having an average particle size of 3 μm to 100 μm can be produced separately depending on the size of the raw material particles of silica used and the granulation conditions. As the raw material particles, in addition to the crystalline silica fine powder, an amorphous fine powder or a fine powder of a mixture thereof can also be used. When the granulated powder is prepared from the mixed fine powder of the fine powder of natural quartz and the fine powder of amorphous silica, more closed pores can be introduced as compared with the case of using the raw material particles consisting of only the fine powder of natural quartz.
この理由は、次のように考えられる。例えば、天然石英微粉末のみからなる原料粒子を、1200℃以上の熱処理でクリストバライトに相転移させる場合、空気相は、原料粒子である造粒粉末中の空隙が合体しながら形成される。この際、石英と相転移したクリストバライトの真密度の違いから、得られる複数の閉気孔を有する中空のシリカ粒子は、粒子全体としては、膨張しながら、空隙の合体と気孔の形成が進む。図2は、図1に示す造粒粉末を大気雰囲気で、1500℃で熱処理して得られた本発明の複数の閉気孔を有する中空のシリカ粒子の断面SEM像である。
一方、天然石英微粉末以外に非晶質シリカ微粉末が原料粒子内に存在する場合は、相転移したクリストバライトと非晶質シリカは真密度がほぼ同じであるため、非晶質シリカ部分は膨張せずに結晶化が進行する。造粒粉末全体として膨張するなかで、非晶質シリカ原料粒子部分は膨張しないので、非晶質シリカ原料粒子部分の周辺には新たな空隙が生成する。
The reason for this can be considered as follows. For example, when a raw material particle composed of only natural quartz fine powder is undergoing a phase transition to Christovalite by a heat treatment at 1200 ° C. or higher, an air phase is formed while the voids in the granulated powder which is the raw material particle are coalesced. At this time, due to the difference in the true density of the cristobalite phase-transitioned with quartz, the hollow silica particles having a plurality of closed pores obtained are expanded as a whole, and the coalescence of voids and the formation of pores proceed. FIG. 2 is a cross-sectional SEM image of hollow silica particles having a plurality of closed pores of the present invention obtained by heat-treating the granulated powder shown in FIG. 1 in an air atmosphere at 1500 ° C.
On the other hand, when amorphous silica fine powder is present in the raw material particles other than natural quartz fine powder, the phase-transitioned cristobalite and amorphous silica have almost the same true density, so that the amorphous silica portion expands. Crystallization proceeds without doing so. Since the amorphous silica raw material particle portion does not expand while the granulated powder as a whole expands, new voids are generated around the amorphous silica raw material particle portion.
原料粒子としてシリカ微粉末と同様の平均粒径を有する黒鉛微粉末を添加し造粒する場合、この造粒粉末を熱処理すると、黒鉛微粉末が燃焼しガス化するので、黒鉛微粉末が存在していた箇所に新たな空間が形成される。黒鉛微粉末の燃焼により導入される空隙量は大きく、これにより最大70%程度の閉気孔率の複数の閉気孔を有する中空のシリカ粒子を得ることができる。 When graphite fine powder having the same average particle size as silica fine powder is added as raw material particles for granulation, when the granulated powder is heat-treated, the graphite fine powder burns and gasifies, so that the graphite fine powder exists. A new space is formed in the place where it was. The amount of voids introduced by the combustion of the graphite fine powder is large, whereby hollow silica particles having a plurality of closed pores having a maximum closed porosity of about 70% can be obtained.
造粒粉末を1200℃〜1600℃で熱処理することで、閉気孔率1%以上の中空の球状結晶質シリカを得ることができる。黒鉛微粉末を含んだシリカ造粒粉末を用いる場合、黒鉛は、熱処理工程において700℃以上の温度で酸素と反応し燃焼してCO2となり、放出されて無くなる。このため、シリカ粒子内に気孔を多く導入することができる。熱処理工程で、結晶化挙動とともに焼結挙動を制御することにより、黒鉛のガス化により作られた粒子表面の穴は、熱処理中に閉じることができ、閉気孔を生成させることができる。後述する樹脂との混練時にシリカ粒子に開気孔が残存していると、開気孔内に樹脂が侵入してしまうので、シリカ粒子への空気導入が妨げられる。またシリカ粒子と樹脂との相互作用が強くなりすぎるため樹脂複合組成物の流動性が低下することから好ましくない。 By heat-treating the granulated powder at 1200 ° C. to 1600 ° C., hollow spherical crystalline silica having a closed porosity of 1% or more can be obtained. When silica granulated powder containing graphite fine powder is used, graphite reacts with oxygen at a temperature of 700 ° C. or higher in the heat treatment step and burns to become CO 2 , which is released and disappears. Therefore, many pores can be introduced into the silica particles. By controlling the sintering behavior as well as the crystallization behavior in the heat treatment step, the holes on the particle surface created by gasification of graphite can be closed during the heat treatment, and closed pores can be generated. If open pores remain in the silica particles during kneading with the resin described later, the resin invades the open pores, which hinders the introduction of air into the silica particles. Further, the interaction between the silica particles and the resin becomes too strong, which reduces the fluidity of the resin composite composition, which is not preferable.
本発明では、最終的に得られた複数の閉気孔を有する中空のシリカ粒子と樹脂との複合組成物、さらには樹脂複合組成物を硬化した樹脂複合体を製造することができる。樹脂複合組成物の組成について、以下に説明する。 In the present invention, it is possible to produce a finally obtained composite composition of hollow silica particles having a plurality of closed pores and a resin, and further a resin composite obtained by curing the resin composite composition. The composition of the resin composite composition will be described below.
複数の閉気孔を有する中空のシリカ粒子と樹脂とを含むスラリー組成物を用いて、半導体封止材(特に固形封止材)、層間絶縁フィルム等の樹脂複合組成物を得ることができる。さらには、これらの樹脂複合体組成物を硬化させることで、封止材(硬化体)、半導体パッケージ用基板等の樹脂複合体を得ることができる。
前記樹脂複合組成物を製造する場合、例えば、複数の閉気孔を有する中空のシリカ粒子及び樹脂の他に、硬化剤、硬化促進剤、難燃剤等を必要により配合し、混錬等の公知の方法で複合化する。そして、ペレット状、フィルム状等、用途に応じて成型する。
さらに、前記樹脂複合組成物を硬化して樹脂複合体を製造する場合、例えば、樹脂複合組成物に熱を加えて溶融して、用途に応じた形状に加工し、溶融時よりも高い熱を加えて完全に硬化させる。この場合、トランスファーモールド法等の公知の方法を使用することができる。
A resin composite composition such as a semiconductor encapsulant (particularly a solid encapsulant) or an interlayer insulating film can be obtained by using a slurry composition containing hollow silica particles having a plurality of closed pores and a resin. Further, by curing these resin complex compositions, a resin complex such as a sealing material (cured body) and a substrate for a semiconductor package can be obtained.
When producing the resin composite composition, for example, in addition to hollow silica particles having a plurality of closed pores and a resin, a curing agent, a curing accelerator, a flame retardant and the like are blended as necessary, and known kneading and the like are performed. Complex by method. Then, it is molded according to the application such as pellet form or film form.
Further, when the resin composite composition is cured to produce a resin composite, for example, the resin composite composition is melted by applying heat to be processed into a shape suitable for the intended use, and heat is higher than that at the time of melting. In addition, it is completely cured. In this case, a known method such as a transfer molding method can be used.
パッケージ用基板や層間絶縁フィルム等の半導体関連材料を製造する場合には、樹脂複合組成物に使用する樹脂組成物として、エポキシ樹脂を採用することが好ましい。エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等を用いることができる。これらの中の1種類を単独で用いることもできるし、異なる分子量を有する2種類以上を併用することもできる。これらのエポキシ樹脂中でも特にビスフェノールA型エポキシ樹脂が好ましい。 When manufacturing semiconductor-related materials such as packaging substrates and interlayer insulating films, it is preferable to use an epoxy resin as the resin composition used for the resin composite composition. The epoxy resin is not particularly limited, and for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a biphenyl type epoxy resin, a phenol novolac type epoxy resin, a naphthalene type epoxy resin, a phenoxy type epoxy resin and the like can be used. One of these can be used alone, or two or more having different molecular weights can be used in combination. Among these epoxy resins, bisphenol A type epoxy resin is particularly preferable.
前記硬化剤としては、例えば、フェノール系硬化剤を使用することができる。フェノール系硬化剤としては、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類等を、単独あるいは2種以上組み合わせて使用することができる。 As the curing agent, for example, a phenolic curing agent can be used. As the phenolic curing agent, a phenol novolac resin, an alkylphenol novolak resin, polyvinylphenols and the like can be used alone or in combination of two or more.
前記フェノール硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が0.1以上、1.0未満が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。 The compounding amount of the phenol curing agent is preferably 0.1 or more and less than 1.0 in the equivalent ratio with the epoxy resin (phenolic hydroxyl group equivalent / epoxy group equivalent). As a result, the unreacted phenol curing agent does not remain, and the hygroscopic heat resistance is improved.
樹脂組成物に配合される本発明の複数の閉気孔を有する中空のシリカ粒子の量は、耐熱性、熱膨張率の観点から、多いことが好ましい。樹脂組成物の全体質量に対して、一般に80質量%以上95質量%未満であることが好ましい。 The amount of hollow silica particles having a plurality of closed pores of the present invention to be blended in the resin composition is preferably large from the viewpoint of heat resistance and coefficient of thermal expansion. Generally, it is preferably 80% by mass or more and less than 95% by mass with respect to the total mass of the resin composition.
以下の実施例・比較例を通じて、本発明について説明する。ただし、本発明は、以下の実施例に限定して解釈されるものではない。 The present invention will be described with reference to the following examples and comparative examples. However, the present invention is not construed as being limited to the following examples.
以下の実施例、比較例で作製された複数の閉気孔を有する中空のシリカ粒子の閉気孔率、円形度、平均粒径および結晶質シリカ割合(%)は、上述の説明にしたがって測定した。誘電正接の値が0.0042以下のものを合格とした。 The porosity, circularity, average particle size and crystalline silica ratio (%) of the hollow silica particles having a plurality of closed pores produced in the following Examples and Comparative Examples were measured according to the above description. Those having a dielectric loss tangent value of 0.0042 or less were regarded as acceptable.
(シリカ粒子と樹脂との複合体作製)
シリカ粒子とエポキシ樹脂(三菱化学製YX−4000H)を用い、エポキシ樹脂に対して0質量%(無添加)および80質量%のシリカ粒子を、温度100℃、二本ロールミルで混練した。混練後の試料を乳鉢・乳棒で粉砕した。金型(50φ)に粉砕後の試料を充填しプレス機にセットした。成形温度175℃で約1分間1MPaにて加圧した後、5MPaで9分間保持した。その後、金型を水冷プレスに移し、約10分間冷却した後、硬化したシリカ粒子−樹脂板を金型から取り出した。作製したシリカ粒子−樹脂板を外周刃切断し、約10mm×10mmに加工した。硬化したシリカ粒子−樹脂板の厚みを変えるために、高精度平面研削(秀和工業製SGM−5000)で研削し、厚みを0.2mm〜1.0mmの間で変動させた。
(Making a complex of silica particles and resin)
Using silica particles and an epoxy resin (YX-4000H manufactured by Mitsubishi Chemical Co., Ltd.), 0% by mass (no additives) and 80% by mass of silica particles were kneaded with respect to the epoxy resin at a temperature of 100 ° C. using a two-roll mill. The kneaded sample was crushed with a mortar and pestle. The crushed sample was filled in a mold (50φ) and set in a press. After pressurizing at a molding temperature of 175 ° C. for about 1 minute at 1 MPa, the pressure was maintained at 5 MPa for 9 minutes. Then, the mold was transferred to a water-cooled press, cooled for about 10 minutes, and then the cured silica particle-resin plate was taken out from the mold. The produced silica particle-resin plate was cut with an outer peripheral blade and processed to a size of about 10 mm × 10 mm. In order to change the thickness of the cured silica particles-resin plate, it was ground by high-precision surface grinding (SGM-5000 manufactured by Hidewa Kogyo Co., Ltd.), and the thickness was varied between 0.2 mm and 1.0 mm.
(実施例1〜4)
平均粒径2μmの破砕状シリカ(石英)微粉末をスプレードライヤー(大川原化工機株式会社製CL−8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER−BURN(株式会社モトヤマ社製)を用いて熱処理温度が1400℃(実施例1)、1450℃(実施例2)、1500℃(実施例3)、1550℃(実施例4)で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。平均粒径はそれぞれ84μmであった。得られた複数の閉気孔を有する中空のシリカ粒子を使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 1 to 4)
Crushed silica (quartz) fine powder with an average particle size of 2 μm is granulated with a spray dryer (CL-8 manufactured by Ohkawara Kakohki Co., Ltd.), filled in an alumina container, and electric furnace SUPER-BURN (Motoyama Co., Ltd.) The heat treatment temperature was 1400 ° C. (Example 1), 1450 ° C. (Example 2), 1500 ° C. (Example 3), 1550 ° C. (Example 4), and the treatment was performed in an air atmosphere for 6 hours. .. As a result of SEM observation, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. The average particle size was 84 μm, respectively. A composite with a resin was prepared using the obtained hollow silica particles having a plurality of closed pores. The proportion of crystalline silica is shown in Table 1.
(実施例5〜7)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末を質量比75:25で混合しスプレードライヤー(大川原化工機株式会社製CL−8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER−BURN(株式会社モトヤマ社製)を用いて熱処理温度をそれぞれ表1に示す1450℃〜1550℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。平均粒径はそれぞれ78μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 5 to 7)
Crushed silica (quartz) fine powder with an average particle size of 2 μm and spherical amorphous silica fine powder with an average particle size of 2 μm are mixed at a mass ratio of 75:25 and manufactured with a spray dryer (CL-8 manufactured by Ohkawara Kakohki Co., Ltd.). The particles were granulated, filled in an alumina container, and treated using an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at 1450 ° C. to 1550 ° C. shown in Table 1 for 6 hours in an air atmosphere. .. As a result of SEM observation, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. The average particle size was 78 μm, respectively. A composite with a resin was prepared using the obtained silica containing crystalline material. The proportion of crystalline silica is shown in Table 1.
(実施例8〜10)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末を質量比65:35で混合しスプレードライヤー(大川原化工機株式会社製CL−8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER−BURN(株式会社モトヤマ社製)を用いて熱処理温度をそれぞれ表1に示す1450℃〜1550℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られたシリカ粒子を、XRDを用いて結晶性シリカの含有量を定量化した。平均粒径はそれぞれ75μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 8 to 10)
Crushed silica (quartz) fine powder with an average particle size of 2 μm and spherical amorphous silica fine powder with an average particle size of 2 μm are mixed at a mass ratio of 65:35 and manufactured with a spray dryer (CL-8 manufactured by Ohkawara Kakohki Co., Ltd.). The particles were granulated, filled in an alumina container, and treated using an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at 1450 ° C. to 1550 ° C. shown in Table 1 for 6 hours in an air atmosphere. .. As a result of SEM observation, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. The obtained silica particles were quantified for the content of crystalline silica using XRD. The average particle size was 75 μm each. A composite with a resin was prepared using the obtained silica containing crystalline material. The proportion of crystalline silica is shown in Table 1.
(実施例11〜13)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末を質量比45:55で混合しスプレードライヤー(大川原化工機株式会社製CL−8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER−BURN(株式会社モトヤマ社製)を用いて熱処理温度をそれぞれ表1に示す1450℃〜1550℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られたシリカ粒子を、XRDを用いて結晶性シリカの含有量を定量化した。平均粒径はそれぞれ76μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 11 to 13)
Crushed silica (quartz) fine powder with an average particle size of 2 μm and spherical amorphous silica fine powder with an average particle size of 2 μm are mixed at a mass ratio of 45:55 and manufactured with a spray dryer (CL-8 manufactured by Ohkawara Kakohki Co., Ltd.). The particles were granulated, filled in an alumina container, and treated using an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at 1450 ° C. to 1550 ° C. shown in Table 1 for 6 hours in an air atmosphere. .. As a result of SEM observation, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. The obtained silica particles were quantified for the content of crystalline silica using XRD. The average particle size was 76 μm, respectively. A composite with a resin was prepared using the obtained silica containing crystalline material. The proportion of crystalline silica is shown in Table 1.
(実施例14)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末を質量比25:75で混合しスプレードライヤー(大川原化工機株式会社製CL−8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER−BURN(株式会社モトヤマ社製)を用いて熱処理温度をそれぞれ表1に示す1450℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られたシリカ粒子を、XRDを用いて結晶性シリカの含有量を定量化した。平均粒径は77μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Example 14)
Crushed silica (quartz) fine powder with an average particle size of 2 μm and spherical amorphous silica fine powder with an average particle size of 2 μm are mixed at a mass ratio of 25:75 and manufactured with a spray dryer (CL-8 manufactured by Ohkawara Kakohki Co., Ltd.). The particles were granulated, filled in an alumina container, and treated using an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at 1450 ° C. shown in Table 1 for 6 hours in an air atmosphere. As a result of SEM observation, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. The obtained silica particles were quantified for the content of crystalline silica using XRD. The average particle size was 77 μm. A composite with a resin was prepared using the obtained silica containing crystalline material. The proportion of crystalline silica is shown in Table 1.
(実施例15〜18)
平均粒径2μmの破砕状シリカ(石英)微粉末と平均粒径2μmの球状非晶質シリカ微粉末と平均粒径が2μmの黒鉛微粉末を質量比で59:32:9(実施例15)、54:29:17(実施例16)、46:25:29(実施例17)、40:22:38(実施例18)で混合し、スプレードライヤー(大川原化工機株式会社製CL−8)で造粒し、アルミナ製の容器に充填し、電気炉SUPER−BURN(株式会社モトヤマ社製)を用いて熱処理温度が1500℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、得られたシリカ粒子は、複数の閉気孔を有していた。また、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られたシリカ粒子を、XRDを用いて結晶質シリカの含有量を定量化した。平均粒径はそれぞれ、82μm、84μm、79μm、80μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 15 to 18)
Crushed silica (quartz) fine powder with an average particle size of 2 μm, spherical amorphous silica fine powder with an average particle size of 2 μm, and graphite fine powder with an average particle size of 2 μm in a mass ratio of 59:32: 9 (Example 15). , 54: 29: 17 (Example 16), 46:25: 29 (Example 17), 40:22:38 (Example 18), and spray dryer (CL-8 manufactured by Ohkawara Kakohki Co., Ltd.). The mixture was granulated in, filled in an alumina container, and treated in an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at a heat treatment temperature of 1500 ° C. for 6 hours in an air atmosphere. As a result of SEM observation, the obtained silica particles had a plurality of closed pores. In addition, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. The obtained silica particles were quantified for the content of crystalline silica using XRD. The average particle size was 82 μm, 84 μm, 79 μm, and 80 μm, respectively. A composite with a resin was prepared using the obtained silica containing crystalline material. The proportion of crystalline silica is shown in Table 1.
(実施例19〜21)
平均粒径2μmの破砕状シリカ(石英)微粉末をスプレードライヤーで造粒し、アルミナ製の容器に充填し、電気炉SUPER−BURN(株式会社モトヤマ社製)を用いて熱処理温度が1500℃(実施例19,20)、1400℃(実施例21)で、6時間、大気雰囲気下で処理した。SEM観察の結果、得られた各シリカ粒子は、複数の閉気孔を有していた。また、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。平均粒径はそれぞれ、21μm、98μm、11μmであった。得られた複数の閉気孔を有する中空のシリカ粒子を使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Examples 19 to 21)
Crushed silica (quartz) fine powder with an average particle size of 2 μm is granulated with a spray dryer, filled in an alumina container, and the heat treatment temperature is 1500 ° C. using an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.). Examples 19, 20) and 1400 ° C. (Example 21) were treated in an air atmosphere for 6 hours. As a result of SEM observation, each silica particle obtained had a plurality of closed pores. In addition, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. The average particle size was 21 μm, 98 μm, and 11 μm, respectively. A composite with a resin was prepared using the obtained hollow silica particles having a plurality of closed pores. The proportion of crystalline silica is shown in Table 1.
(比較例1〜比較例3)
比較例1〜比較例3では、球状の非晶質シリカ微粉末を、アルミナ容器に入れ、1400℃(比較例1)、1450℃(比較例2)、1100℃(比較例3)で)6時間、大気雰囲気で熱処理した。SEM観察の結果、得られた各シリカ粒子は、複数の閉気孔を有していた。また、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られた球状シリカ粒子を、XRDを用いて結晶性シリカの含有量を定量化した。平均粒径はそれぞれ35μmであった。得られた結晶質を含むシリカを使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Comparative Examples 1 to 3)
In Comparative Examples 1 to 3, spherical amorphous silica fine powder was placed in an alumina container at 1400 ° C. (Comparative Example 1), 1450 ° C. (Comparative Example 2), and 1100 ° C. (Comparative Example 3) 6 Heat-treated in an atmospheric atmosphere for hours. As a result of SEM observation, each silica particle obtained had a plurality of closed pores. In addition, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. The content of crystalline silica in the obtained spherical silica particles was quantified using XRD. The average particle size was 35 μm, respectively. A composite with a resin was prepared using the obtained silica containing crystalline material. The proportion of crystalline silica is shown in Table 1.
(比較例4)
平均粒径2μmの破砕状シリカ(石英)微粉末をスプレードライヤー(大川原化工機株式会社製CL−8)で造粒した。この後、アルミナ製の容器に充填し、電気炉SUPER−BURN(株式会社モトヤマ社製)を用いて熱処理温度が1200℃で、6時間、大気雰囲気下で処理した。SEM観察の結果、得られた各シリカ粒子は、複数の閉気孔を有していた。また、熱処理に伴う、融着によるシリカ粒子同士の固着や形状の変化は見られなかった。得られた球状シリカは、XRDで結晶質シリカの含有量を定量化した。平均粒径は84μmであった。また、得られたシリカ粒子を使用して樹脂との複合体を作製した。結晶質シリカの割合を表1に示す。
(Comparative Example 4)
Crushed silica (quartz) fine powder having an average particle size of 2 μm was granulated with a spray dryer (CL-8 manufactured by Ohkawara Kakohki Co., Ltd.). After that, the container was filled with alumina and treated in an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.) at a heat treatment temperature of 1200 ° C. for 6 hours in an air atmosphere. As a result of SEM observation, each silica particle obtained had a plurality of closed pores. In addition, no adhesion or change in shape of silica particles due to fusion was observed due to heat treatment. In the obtained spherical silica, the content of crystalline silica was quantified by XRD. The average particle size was 84 μm. Moreover, the obtained silica particles were used to prepare a complex with a resin. The proportion of crystalline silica is shown in Table 1.
実施例、比較例で得られたシリカ粒子の閉気孔率、円形度、および誘電正接の値を表1に示す。 Table 1 shows the porosity, circularity, and dielectric loss tangent values of the silica particles obtained in Examples and Comparative Examples.
比較例1、2では、得られたシリカ粒子は、結晶質シリカを50質量%以上含むが、閉気孔率が0.0%であったため誘電正接の値が0.0042を超過した。比較例3、4では、閉気孔率が1.0%未満であることに加えて、結晶質シリカの含有量が50質量%未満であったため、誘電正接の値は0.0050を超過していることが分かる。
一方、本発明の実施例では、得られたシリカ粒子は、結晶質シリカが50質量%以上、閉気孔率が1.0%以上とであったために誘電正接の値が0.0042以下となりミリ波帯域において優れた誘電特性を有することが分かる。
In Comparative Examples 1 and 2, the obtained silica particles contained 50% by mass or more of crystalline silica, but the closed porosity was 0.0%, so that the value of dielectric loss tangent exceeded 0.0042. In Comparative Examples 3 and 4, in addition to the closed porosity being less than 1.0%, the content of crystalline silica was less than 50% by mass, so that the value of dielectric loss tangent exceeded 0.0050. You can see that there is.
On the other hand, in the examples of the present invention, the obtained silica particles had a crystalline silica of 50% by mass or more and a closed porosity of 1.0% or more, so that the dielectric loss tangent value was 0.0042 or less. It can be seen that it has excellent dielectric properties in the wave band.
結晶質シリカを50質量%以上含み、閉気孔率が1.0%以上2.0%未満である実施例1〜4および実施例19〜21では、誘電正接の値は0.0041〜0.0042であった。
特に、原料粒子として結晶質シリカ微粉末と非晶質シリカ微粉末の混合物を造粒した実施例5〜14、原料粒子として前記シリカ微粉末と黒鉛粉末からなる混合微粉末を造粒した実施例17〜20では、これらの造粒粉末を1200〜1600℃で熱処理することで、複数の閉気孔を有する閉気孔率が2.0%以上の中空粒子が得られ、誘電正接の値は0.0040以下であり、誘電特性が更に優れることが分かる。黒鉛粉末を用いて造粒すると、気孔率は8%を上回り70%まで増加させることができた。この結果、誘電正接の値が0.0037以下となり、誘電特性としてさらに好ましいことが分かった。
In Examples 1 to 4 and Examples 19 to 21, which contain 50% by mass or more of crystalline silica and have a closed porosity of 1.0% or more and less than 2.0%, the value of the dielectric loss tangent is 0.0041 to 0. It was 0042.
In particular, Examples 5 to 14 in which a mixture of crystalline silica fine powder and amorphous silica fine powder was granulated as raw material particles, and Examples in which a mixed fine powder composed of the silica fine powder and graphite powder was granulated as raw material particles. In Nos. 17 to 20, by heat-treating these granulated powders at 1200 to 1600 ° C., hollow particles having a plurality of closed pores and having a closed pore ratio of 2.0% or more were obtained, and the dielectric positive contact value was 0. It is 0040 or less, and it can be seen that the dielectric properties are further excellent. Granulation using graphite powder allowed the porosity to exceed 8% and increase to 70%. As a result, the value of the dielectric loss tangent was 0.0037 or less, which was found to be more preferable as the dielectric property.
Claims (13)
前記造粒粉末を1200℃〜1600℃で熱処理して、閉気孔率1.0%以上70.0%以下であり、かつ結晶質シリカを50質量%以上含む複数の閉気孔を有する中空のシリカ粒子を得る工程と、
を含むことを特徴とする複数の閉気孔を有する中空のシリカ粒子の製造方法。 A step of granulating silica fine powder as raw material particles or granulating a mixed fine powder composed of the silica fine powder and graphite fine powder as raw material particles to obtain granulated powder.
The granulated powder is heat-treated at 1200 ° C. to 1600 ° C. to provide hollow silica having a plurality of closed pores having a porosity of 1.0% or more and 70.0% or less and containing 50% by mass or more of crystalline silica. The process of obtaining particles and
A method for producing hollow silica particles having a plurality of closed pores, which comprises.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019205597A JP7433022B2 (en) | 2019-11-13 | 2019-11-13 | Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019205597A JP7433022B2 (en) | 2019-11-13 | 2019-11-13 | Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021075438A true JP2021075438A (en) | 2021-05-20 |
JP7433022B2 JP7433022B2 (en) | 2024-02-19 |
Family
ID=75899369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019205597A Active JP7433022B2 (en) | 2019-11-13 | 2019-11-13 | Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7433022B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023282158A1 (en) * | 2021-07-07 | 2023-01-12 | Agc株式会社 | Light scattering silica particles and method for producing light scattering silica particles |
WO2023182511A1 (en) * | 2022-03-25 | 2023-09-28 | 日鉄ケミカル&マテリアル株式会社 | Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same |
KR20240037979A (en) | 2021-07-28 | 2024-03-22 | 에이지씨 가부시키가이샤 | Globular silica powder and method for producing spherical silica powder |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001342010A (en) * | 2000-05-30 | 2001-12-11 | Kyocera Corp | Inorganic hollow particle and its manufacturing method |
JP2006062902A (en) * | 2004-08-26 | 2006-03-09 | Denki Kagaku Kogyo Kk | Spherical inorganic hollow powder and method for producing the same, and resin composition |
JP2012136363A (en) * | 2010-12-24 | 2012-07-19 | Kao Corp | Hollow silica particle |
JP2014009146A (en) * | 2012-07-02 | 2014-01-20 | Sakai Chem Ind Co Ltd | Particle having voids therein and manufacturing method of the same |
JP2017193462A (en) * | 2016-04-20 | 2017-10-26 | 花王株式会社 | Hollow silica particle and method for producing the same |
JP2019043825A (en) * | 2017-09-06 | 2019-03-22 | 太平洋セメント株式会社 | Inorganic particle |
JP2019077586A (en) * | 2017-10-24 | 2019-05-23 | 花王株式会社 | Method for producing hollow silica particles |
-
2019
- 2019-11-13 JP JP2019205597A patent/JP7433022B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001342010A (en) * | 2000-05-30 | 2001-12-11 | Kyocera Corp | Inorganic hollow particle and its manufacturing method |
JP2006062902A (en) * | 2004-08-26 | 2006-03-09 | Denki Kagaku Kogyo Kk | Spherical inorganic hollow powder and method for producing the same, and resin composition |
JP2012136363A (en) * | 2010-12-24 | 2012-07-19 | Kao Corp | Hollow silica particle |
JP2014009146A (en) * | 2012-07-02 | 2014-01-20 | Sakai Chem Ind Co Ltd | Particle having voids therein and manufacturing method of the same |
JP2017193462A (en) * | 2016-04-20 | 2017-10-26 | 花王株式会社 | Hollow silica particle and method for producing the same |
JP2019043825A (en) * | 2017-09-06 | 2019-03-22 | 太平洋セメント株式会社 | Inorganic particle |
JP2019077586A (en) * | 2017-10-24 | 2019-05-23 | 花王株式会社 | Method for producing hollow silica particles |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023282158A1 (en) * | 2021-07-07 | 2023-01-12 | Agc株式会社 | Light scattering silica particles and method for producing light scattering silica particles |
KR20240037979A (en) | 2021-07-28 | 2024-03-22 | 에이지씨 가부시키가이샤 | Globular silica powder and method for producing spherical silica powder |
WO2023182511A1 (en) * | 2022-03-25 | 2023-09-28 | 日鉄ケミカル&マテリアル株式会社 | Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same |
Also Published As
Publication number | Publication date |
---|---|
JP7433022B2 (en) | 2024-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7433022B2 (en) | Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same | |
WO2020241902A1 (en) | Spherical crystalline silica particles, spherical silica particle mixture, and composite material | |
US5340781A (en) | Spherical corundum particles, process for preparation thereof and rubber or plastic composition having high thermal conductivity and having spherical corundum paticles incorporated therein | |
CN110636989A (en) | Spherical crystalline silica particles and method for producing same | |
WO2014003193A1 (en) | Sintered spherical bn particles with concave part, method for producing same, and polymer material | |
KR102646023B1 (en) | Spherical alumina particle mixture and method for producing the same, and resin composite composition and resin composite containing the spherical alumina particle mixture | |
EP0276321B1 (en) | Spherical corundum particles, process for their production, and highly heat-conductive rubber or plastic composition containing them | |
KR20180116379A (en) | Spherical eucryptite particles and method for producing the same | |
TW200540137A (en) | Method for producing dielectric ceramic powder and method for producing composite dielectric material | |
KR20010100875A (en) | Epoxy resin composition for encapsulating semiconductor and semiconductor device using the same | |
JP6056716B2 (en) | Granule, method for producing the same, and method for producing glass article | |
JPWO2018180123A1 (en) | Coated magnesium oxide particles, method for producing the same, and thermally conductive resin composition | |
WO2021235530A1 (en) | Spherical crystalline silica particles and method for producing same | |
JP2004224983A (en) | Composite dielectric material and substrate | |
JP2001122615A (en) | Boron nitride coated spherical borate particle,, mixed powder containing the same and method for manufacture thereof | |
WO2022210920A1 (en) | Powder, production method therefor, and resin composition production method | |
CN107572827A (en) | A kind of crystallite glass substrate material and preparation method thereof | |
CN115697907B (en) | Spherical crystalline silica particles and process for producing the same | |
WO2024004738A1 (en) | Magnesium oxide powder and resin composition using same | |
WO2024004736A1 (en) | Magnesium oxide powder and resin composition which uses same | |
JP7557633B2 (en) | Spherical crystalline silica powder and its manufacturing method | |
WO2023182511A1 (en) | Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same | |
US20240351893A1 (en) | Spherical crystalline silica powder and method for producing same | |
JP2023166202A (en) | Particle and method for producing the same | |
JP2009215134A (en) | Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7433022 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |