WO2020241902A1 - Spherical crystalline silica particles, spherical silica particle mixture, and composite material - Google Patents

Spherical crystalline silica particles, spherical silica particle mixture, and composite material Download PDF

Info

Publication number
WO2020241902A1
WO2020241902A1 PCT/JP2020/021662 JP2020021662W WO2020241902A1 WO 2020241902 A1 WO2020241902 A1 WO 2020241902A1 JP 2020021662 W JP2020021662 W JP 2020021662W WO 2020241902 A1 WO2020241902 A1 WO 2020241902A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
spherical silica
mass
spherical
crystalline
Prior art date
Application number
PCT/JP2020/021662
Other languages
French (fr)
Japanese (ja)
Inventor
克昌 矢木
睦人 田中
正徳 阿江
泰宏 青山
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to JP2021521923A priority Critical patent/JPWO2020241902A1/ja
Priority to SG11202113322TA priority patent/SG11202113322TA/en
Priority to CN202080040363.1A priority patent/CN113905984A/en
Priority to KR1020217039161A priority patent/KR102644020B1/en
Publication of WO2020241902A1 publication Critical patent/WO2020241902A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/062Microsilica, e.g. colloïdal silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • the present invention comprises spherical crystalline silica particles having excellent dielectric properties, which are suitable for forming a semiconductor encapsulant for high frequencies corresponding to a high frequency signal having a frequency of 3 GHz or more, and a wiring substrate, and spherical silica containing the same. It relates to a particle mixture and a composite material obtained by combining this with a resin.
  • the frequency is increasing due to the increase in the amount of information due to the sophistication of communication technology and the rapid expansion of the use of millimeter wave bands such as millimeter wave radar.
  • Semiconductors that handle these high-frequency signals and circuit boards that transmit them are composed of electrodes and dielectrics that form a circuit pattern. Since suppression of signal propagation delay is important for high-speed signal transmission, a low relative permittivity ( ⁇ r) is required.
  • ⁇ r relative permittivity
  • the dielectric loss tangent (tan ⁇ ) of the dielectric material is small. For low dielectric loss, the dielectric material must have low polarity and low dipole moments.
  • thermal characteristics such as thermal conductivity and coefficient of thermal expansion from suppression of mismatch of thermal expansion with the electrode material, high bending strength, etc. Therefore, mechanical properties are also important.
  • ceramic fillers, resins, and composites obtained by combining them are mainly used.
  • ceramic fillers and resins having even lower ⁇ r and lower tan ⁇ are required.
  • the resin has a relatively small ⁇ r and is suitable for high frequencies, but has a tan ⁇ and a coefficient of thermal expansion larger than those of the ceramic filler. Therefore, in the composite in which the filler for the millimeter wave band and the resin are combined, (1) the ceramic filler itself has a low ⁇ r and low tan ⁇ , and (2) the ceramic filler is highly filled and the amount of the resin showing a large tan ⁇ is increased. It is suitable to reduce.
  • Silica (SiO 2 ) particles have been conventionally used as ceramic fillers. If the shape of the silica particles is angular, the fluidity, dispersibility, and filling property in the resin are deteriorated, and the manufacturing equipment is also worn. In order to improve these, spherical silica particles are widely used. It is considered that the closer the spherical silica filler is to a true sphere, the better the filling property, fluidity, and mold wear resistance, and a filler having a high circularity has been pursued. Furthermore, further improvement of filling property has been studied by optimizing the particle size distribution of the filler.
  • the filling rate is increased too much by spheroidizing the filler shape and optimizing the particle size distribution, the fluidity of the composite as a sealing material is lowered, and the moldability is deteriorated.
  • Thermal spraying is known as a method for producing spherical silica.
  • crushed silica particles as a raw material are passed through a flame of 2000 ° C. or higher to melt the particles, and the shape of the particles becomes spherical due to surface tension.
  • the molten spheroidized particles are transported by air flow so as not to fuse with each other and collected, and the particles after thermal spraying are rapidly cooled.
  • This silica (molten silica) has an amorphous structure because it is rapidly cooled from the molten state.
  • this spherical molten silica is amorphous, its coefficient of thermal expansion and thermal conductivity are low.
  • the coefficient of thermal expansion of amorphous silica is 0.5 ppm / K, and the thermal conductivity is 1.4 W / mK.
  • These physical properties are substantially the same as the coefficient of thermal expansion of quartz glass, which has an amorphous structure and does not have a crystal structure. Therefore, by mixing with a resin having a high coefficient of thermal expansion, the effect of lowering the thermal expansion of the sealing material itself can be obtained.
  • the coefficient of thermal expansion of the composite as a sealing material to a value close to Si, it is possible to suppress deformation due to thermal expansion behavior when sealing an IC chip.
  • the encapsulant (composite) filled with amorphous silica which has a low coefficient of thermal expansion, may have a smaller coefficient of thermal expansion than Si, and the heating temperature during reflow and the operating temperature of the semiconductor device. This may cause warpage or cracks. Further, due to the low thermal conductivity, the dissipation of heat generated from the semiconductor device is also a problem.
  • the characteristics required for a silica filler compatible with high frequencies of 3 GHz or higher include excellent dielectric properties, and fillability and fluidity that can be blended in a large amount with a resin to maintain the performance as a sealing material. All requirements such as thermal properties, mechanical strength performance and mold wear resistance had to be met, but such silica fillers and silica-resin composites did not exist.
  • the present inventors are excellent in devices and substrates for 5G (fifth generation mobile communication system) having a frequency of 3 GHz or more, and in-vehicle radars using a millimeter wave band of 60 GHz or more.
  • 5G next generation mobile communication system
  • An object of the present invention is to provide a spherical silica particle, a spherical silica particle mixture, and a composite material, which have excellent dielectric properties and can also have excellent thermal properties and fluidity.
  • spherical molten (amorphous) silica is required. It was found that it is effective to heat-treat and crystallize to obtain a specific crystal structure. That is, it was confirmed for the first time that the spherical silica particles of the present invention had a dielectric loss tangent at a high frequency of 3 GHz or higher significantly lower than that of amorphous particles and exhibited high thermal conductivity, and the present invention was completed.
  • the spherical silica particles according to the present invention have a specific crystal structure, they have excellent dielectric properties (low dielectric constant and dielectric loss tangent), and have excellent thermal properties () as compared with conventional spherical crystalline silica particles. Shown. Further, since it is spherical, has a narrow particle size distribution, and can have a high circularity, both high flow / high dispersibility and high filling property are achieved. Therefore, high-frequency signal transmission is performed as a filler. It can be suitably used for semiconductors, substrates, etc.
  • FIG. 1 is a diagram for explaining the calculation of the photographing area and the peripheral length of the particles.
  • the present invention provides the following aspects.
  • a total of 60% or more of a crystalline cristobalite phase and a crystalline quartz phase is contained, and the average diameter of the polycrystalline grains constituting the crystalline cristobalite phase or the quartz phase is 2 ⁇ m or more, and the blocking cylindrical waveguide method (JIS R1660-).
  • the spherical silica particles according to [1] which contains aluminum in an amount of more than 0.5% by mass and 2.0% by mass or less in terms of oxide.
  • the crystal structure of silica includes cristobalite, quartz, tridymite and the like. Silica having these crystal structures has a higher coefficient of thermal expansion and thermal conductivity than amorphous silica. Therefore, by replacing the molten (amorphous) silica with crystalline silica in an appropriate amount, it is possible to improve the thermal conductivity while suppressing the difference in thermal expansion from the IC chip. Further, by optimizing the particle size distribution of the molten (amorphous) silica and the crystalline silica, a silica filler (spherical silica particles) exhibiting higher filling property can be obtained.
  • the spherical silica particles of the present invention contain a total of 60% or more of a crystalline cristobalite phase and a crystalline quartz phase (hereinafter, collectively referred to as “crystalline phase”). That is, the content of the crystalline phase in the spherical silica particles is 60% or more. If it is 60% or more, excellent dielectric properties are exhibited. In general, the higher the proportion of crystalline silica, the better the dielectric properties. Silica other than crystalline silica is amorphous.
  • the crystalline phase may be either a crystalline cristobalite phase or a crystalline quartz phase, or the crystalline cristobalite phase and the crystalline quartz phase may coexist.
  • the spherical silica particles of the present invention may contain crystalline tridymite in addition to the crystalline cristobalite phase and the crystalline quartz phase.
  • the abundance ratio of crystalline phases such as cristobalite and quartz can be measured by, for example, X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • it can be calculated by the following formula from the sum of the integrated intensities of the crystalline peak (Ic) and the integrated intensities of the amorphous halo portion (Ia).
  • the ratio of various crystal phases in the crystal phase contained in the spherical silica particles according to the present invention is measured by XRD as described below.
  • XRD X-ray diffraction
  • the crystalline cristobalite phase and the crystalline quartz phase are composed of a large number of microcrystals, that is, polycrystalline grains.
  • the average diameter of polycrystalline grains is 2 ⁇ m or more.
  • the average diameter was obtained by cutting the cross section after filling the sample with resin and averaging the area of the polycrystalline grain appearing on the cross section by area weighting.
  • Crystalline silica can be expected to have higher thermal conductivity than amorphous silica, but if the grain size of the polycrystal is too small, sufficient thermal conductivity cannot be obtained due to scattering due to grain boundaries. .. Therefore, in order to obtain sufficient thermal conductivity, the average diameter of the polycrystalline grain size needs to be 2 ⁇ m or more.
  • the polycrystalline grain size (average diameter) is measured by dispersion-filling crystalline powder in an epoxy resin, cutting out a cross section thereof, and measuring it by an EBSD method (Electron Backscatter Diffraction Pattern).
  • a heat conductive sheet can be prepared by kneading the resin and the spherical silica particles of the present invention, and the thermal conductivity can be measured.
  • the spherical silica particles are mixed with a silicone resin (CY52-276A / B manufactured by Dow Corning Co., Ltd.) at a filler ratio of 80% by mass, vacuum degassed to 5 Torr or less, and kneaded. Then, it is molded with a mold. The mold is heated to 120 ° C., molded at 6 to 7 MPa, and molded for 40 minutes.
  • the resin composition is taken out from the mold and cured at 140 ° C. for 1 hour. After cooling to room temperature, the resin composition is sliced to a thickness of 1.5, 2.5, 4.5, 6.5, 7.5, 8.5 mm, respectively, and processed into a 2 cm square sheet-shaped sample.
  • the thermal resistance of each sample was measured according to ASTM D5470. The sample is sandwiched between blocks made of SUS304, compressed at 0.123 MPa, and the thickness after compression is recorded. The relationship between the thermal resistance value obtained in this way and the thickness after compression can be linearly approximated, and the thermal conductivity can be derived from the slope.
  • the spherical silica particles of the present invention have a dielectric loss tangent of 0.0020 or less at 10 GHz obtained by the blocking cylindrical waveguide method (JIS R1660-1: 2004).
  • the spherical silica particles of the present invention have the above-mentioned crystal structure (crystal phase ratio and polycrystalline grain size), so that the dielectric is significantly lower than that of amorphous particles. It is considered that it has a normal contact and a high thermal conductivity can be obtained.
  • a method for measuring the dielectric constant and the dielectric loss tangent of the spherical silica particles of the present invention will be described.
  • the measurement is performed using a composite material.
  • the composite material is prepared by using a powder of spherical silica particles and an epoxy resin (YX-4000H manufactured by Mitsubishi Chemical Corporation), and using spherical silica particles at a temperature of 100 ° C. , Kneaded with two roll mills.
  • the sample after kneading was crushed with a mortar and pestle.
  • the crushed sample was filled in a mold (50 ⁇ ) and set in a press. After pressurizing at a molding temperature of 175 ° C. for about 1 minute at 1 MPa, the mixture was held at 5 MPa for 9 minutes.
  • silica-resin plate was taken out from the mold.
  • the produced silica-resin plate was cut with an outer peripheral blade and processed to a size of about 10 mm ⁇ 10 mm.
  • it was ground by high-precision surface grinding (SGM-5000 manufactured by Hidewa Kogyo), and the thickness was varied between 0.2 mm and 1.0 mm.
  • the silica-resin composite was measured in the 10 GHz frequency band based on the blocking cylindrical waveguide method (JIS R1660-1: 2004). From the relationship between the composite with spherical silica particles of 0, 30, 50, 83 to 89% by mass with respect to the epoxy resin and the dielectric loss tangent, the numerical value of 100% spherical silica particles is externalized, and the obtained numerical value is spherical. The dielectric loss tangent of the silica particles was used.
  • the spherical silica particles according to the present invention are prepared by filling an alumina container with silica particle powder (amorphous) produced by an atmospheric spraying method and heat-treating time in a temperature range of 800 ° C to 1600 ° C. Can be produced by processing in an air atmosphere for 50 minutes to 16 hours.
  • the preferred heat treatment time is 1-12 hours. Crystallization may not be sufficient if it is less than 1 hour, and if the heat treatment time exceeds 12 hours, the burden of manufacturing cost becomes large.
  • the amount of Al added is preferably more than 0.5% by mass and 2.0% by mass or less in terms of oxide. Within this range, a sufficient crystallinity can be obtained, and spherical silica particles in which an increase in alkali content and an increase in specific gravity due to Al are suppressed can be obtained. If it is 0.5% by mass or less, the crystallinity tends to decrease, and if it exceeds 2.0% by mass, the alkali component and the specific gravity increase remarkably, and as a result, the resin curing characteristics are adversely affected. In addition, it tends to be difficult to apply to mobile devices and in-vehicle applications that require weight reduction.
  • Patent Document 1 and Patent Document 2 the amount of aluminum added is limited to 5000 mass ppm (0.5 mass%) or less in terms of oxide, and heat treatment at a higher temperature for a longer period of time is required to achieve sufficient crystallization. Was required, and the particles were sometimes easily fused to each other.
  • alkali metal or alkaline earth metal is added and treated at 800 to 1150 ° C, which is lower than the cristobalite crystallization temperature, and quartz appears as the main phase.
  • the amount of the alkali metal or alkaline earth metal added may be 0.1 to 3% by mass in terms of oxide. If it is too small, quartzization will not be promoted, and if it is too large, the purity of silica particles will decrease.
  • alkali metals and alkaline earth metals include lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, and radium.
  • Li and Ca are more preferable.
  • the contents of aluminum, alkali metal and alkaline earth metal can be measured by, for example, atomic absorption spectrometry or ICP mass spectrometry (ICP-MS).
  • the ratio of the crystalline quartz phase in the spherical silica particles may be 30% by mass or more. Since cristobalite has a phase transition point between a low temperature phase and a high temperature phase at 200 to 250 ° C., it is effectively accompanied by a large thermal expansion, which may be an obstacle depending on the intended use. When emphasizing such a point, it is desirable that the quartz phase is 30% by mass or more. Quartz does not pose a practical obstacle because the phase transition point between the low temperature phase and the high temperature phase is 500 ° C. or higher. Within this range, spherical silica particles having thermal expansion characteristics suitable for a semiconductor package can be obtained. If it is less than 30% by mass, the thermal expansion due to the phase transition of the cristobalite phase becomes too large.
  • the spherical silica particles (amorphous) powder which is the raw material of the spherical silica particles of the present invention, can be produced by a thermal spraying method. Specifically, a burner with a tubular structure consisting of a flammable gas supply pipe, a flammable gas supply pipe, and a crushed high-purity silica (quartz) supply pipe is installed at the top of the manufacturing furnace, while the lower part of the manufacturing furnace.
  • Spherical silica particle (amorphous) powder was produced by thermal spraying using a device connected to a collection system (the produced powder was sucked with a blower and collected with a bag filter).
  • LPG was supplied from the flammable gas supply pipe and oxygen was supplied from the flammable gas supply pipe to form a high-temperature flame in the production furnace.
  • the crushed silica powder (quartz) was supplied from the silica supply pipe, and the spherical silica powder was collected by a bag filter.
  • the spherical silica particles obtained by thermal spraying can have a circularity of 0.83 or more. The higher the circularity, the higher the fluidity. Therefore, the circularity is preferably 0.83 or more. If it is a thermal spraying means, particles having a high circularity can be easily obtained.
  • the temperature of the flame at the time of thermal spraying is silica. Must be higher than the melting temperature.
  • the flame temperature is 2000 ° C. or higher.
  • silica particles in thermal spraying come into contact with each other, the particles tend to bond with each other to form a distorted shape. Therefore, when supplying the raw material into the flame, the raw material is dispersed in the gas stream or supplied. It is desirable to adjust the supply amount.
  • the spherical silica particles of the present invention maintain the circularity of the spherical silica particles (amorphous) obtained by thermal spraying without decreasing the circularity of most of the circularity before and after the heat treatment for crystallization described above. can do.
  • the circularity is measured for 6000 pieces of 10 um or more in size using FPIA-3000 manufactured by Malvern PANalytical.
  • the resolution of the measuring device is generally insufficient, and the circularity may be calculated higher. In that case, the circularity cannot be adopted as an index of liquidity. Therefore, the circularity is measured for a size of 10 ⁇ m or more.
  • 10 g of a powder sample such as silica particles to be measured and 200 ml of distilled water are placed in a beaker, and ultrasonic waves are set to 150 to 500 W at a frequency of 20 to 30 kHz by an ultrasonic homogenizer, and dispersion treatment is performed for 30 seconds or more.
  • the required amount is taken out from here with a pipette or the like and measured with an optical measuring device.
  • the particle size is defined as the equivalent diameter of a circle. This is a circular diameter with an area equal to the projected area on the measured image, Calculated by.
  • the projected area is calculated by image processing, but as shown in FIG. 1, the particles are image-processed such as binary imaging, and the center of each pixel cell in the outline of the particle is connected by a straight line and surrounded. Defined as area.
  • the objective lens of the measuring device was selected to be about 0.5-1 ⁇ m / pixel according to the number of pixels.
  • the spherical silica particles include 95% by mass or more and 99.9% by mass or less of the spherical silica particles and 0.1% by mass or more and 5% by mass or less of ultrafine particles having an average particle size of 0.1 ⁇ m or less.
  • a mixture is provided.
  • the blending ratio of the spherical silica particles and the ultrafine particles is preferably 95% by mass or more and 99.9% by mass or less for the spherical silica particles, and 0.1% by mass or more and 5% by mass or less for the ultrafine particles. If the ratio of the ultrafine particles is too low, the gaps between the spherical silica particles will not be filled and the filling rate will not be improved. If the ratio of ultrafine particles is too high, the gaps between the spherical silica particles will overflow and the total volume will increase.
  • the ultrafine particles refer to spherical silica particles having a particle size of 0.1 ⁇ m or less.
  • spherical silica particles those having a particle size of 0.1 ⁇ m or less (ultrafine particles) can be separated, and a predetermined amount of ultrafine particles can be blended at the time of final product production. It is also possible to adjust the particle size distribution of the spherical silica particles. By adjusting the particle size distribution of the crushed silica powder (quartz) used as the thermal spraying raw material, the particle size distribution of the spherical silica particles (amorphous) after thermal spraying can be adjusted.
  • the spherical silica particles obtained by the heat treatment for crystallization may have a particle size distribution slightly different from that of the spherical silica particles (amorphous), but the amount of change in the particle size distribution can be predicted, and later. It is also possible to adjust the particle size distribution of the spherical silica particles of the present invention by sieving in the process.
  • the silica particles of the present invention may have an average particle size (D50) of 1 to 100 ⁇ m. If the average particle size exceeds 100 ⁇ m, when used as a filler for semiconductor encapsulants, the particle size may become too coarse and cause gate clogging or mold wear, and the average particle size is less than 1 ⁇ m.
  • a more preferable upper limit of the average particle size is 50 ⁇ m, and even more preferably 40 ⁇ m.
  • the more preferable lower limit of the average particle size is 3 ⁇ m, and more preferably 5 ⁇ m.
  • the average particle size here can be obtained by measuring the particle size distribution by a wet laser diffraction method (laser diffraction / scattering method).
  • the average particle size referred to here is called the median diameter, and the particle size distribution is measured by a laser diffraction method, and the particle size at which the cumulative frequency of particle sizes is 50% is defined as the average particle size (D50).
  • the average particle size related to the particle size distribution of spherical silica particles, ultrafine particles, etc. is determined by measuring the particle size distribution by a laser diffraction method or the like.
  • the particle size distribution by the laser diffraction method can be measured by, for example, CILAS 920 manufactured by CILAS.
  • the average particle size referred to here is called the median diameter, and the particle size at which the cumulative frequency of particle sizes is 50% by measuring the particle size distribution by a method such as laser diffraction is the average particle size (D50).
  • D50 average particle size
  • a composite material of the spherical silica particles and a resin is provided.
  • the filling rate (filler filling rate) of the silica filler in the resin composite it is necessary to increase the filling rate (filler filling rate) of the silica filler in the resin composite to reduce the amount of the resin having a low dielectric constant property (for example, epoxy resin). It is valid.
  • a filler filling rate of 85% by mass or more and less than 95% by mass can be achieved while maintaining high fluidity.
  • the silica particles of the present invention have a filling rate of 0.1 ⁇ m.
  • the filling rate can be further increased.
  • the filler filling rate is increased, the fluidity decreases, but when the addition amount of ultrafine particles of 0.1 ⁇ m or less is 0.1% by mass or more and 5% by mass or less, both high filling property and high fluidity are realized. it can.
  • the composite material of the spherical silica particles and the resin is included.
  • the composition of the composite material will be described.
  • an epoxy resin is not particularly limited, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, and phenoxy type epoxy resin.
  • bisphenol A type epoxy resin is particularly preferable from the viewpoint of availability and handleability.
  • a known resin when manufacturing a semiconductor-related material such as a packaging substrate or an interlayer insulating film, a known resin can be applied as the resin used in the resin composite composition, but it is preferable to use an epoxy resin.
  • the epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin and the like. Can be used. One of these types can be used alone, or two or more types having different molecular weights can be used in combination. Among these, an epoxy resin having two or more epoxy groups in one molecule is preferable from the viewpoint of curability, heat resistance and the like.
  • biphenyl type epoxy resin phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, epoxyized phenols and aldehydes novolak resin, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, Glycydyl esteric acid epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, alkyl-modified polyfunctional Epoxy resin, ⁇ -naphthol novolac type epoxy resin, 1,6-dihydroxynaphthalene type epoxy resin, 2,7-dihydroxynaphthalene type epoxy resin, bishydroxybiphenyl type epoxy resin, and bromine to impart flame retardancy, etc.
  • examples thereof include an epoxy resin into which the halogen of the above is introduced.
  • the bisphenol A type epoxy resin is particularly preferable.
  • a resin used for a resin composite composition such as a prepreg for a printed circuit board and various engineering plastics for applications other than a composite material for a semiconductor encapsulant
  • a resin other than an epoxy-based resin can also be applied.
  • polyamide such as silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, etc .; polybutylene terephthalate, polyethylene terephthalate, etc.
  • Polyester Polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber-styrene) ) Resin can be mentioned.
  • AAS acrylonitrile-acrylic rubber / styrene
  • AES acrylonitrile / ethylene / propylene / diene rubber-styrene
  • a known curing agent may be used to cure the resin, but a phenolic curing agent can be used.
  • a phenol novolak resin, an alkylphenol novolak resin, polyvinylphenols and the like can be used alone or in combination of two or more.
  • the amount of the phenolic curing agent blended is preferably less than 1.0 and 0.1 or more in equivalent ratio with the epoxy resin (phenolic hydroxyl group equivalent / epoxy group equivalent). As a result, the unreacted phenol curing agent does not remain, and the hygroscopic heat resistance is improved.
  • the amount of spherical silica particles blended in the composite material is preferably large from the viewpoint of heat resistance and coefficient of thermal expansion. It is usually suitable to be 70% by mass or more and 95% by mass or less, preferably 80% by mass or more and 95% by mass or less, and more preferably 85% by mass or more and 95% by mass or less with respect to the total mass of the composite material. This is because if the blending amount of the silica powder is too small, it is difficult to obtain effects such as improving the strength of the sealing material and suppressing thermal expansion, and conversely, if it is too large, it is related to the surface treatment of the silica powder. This is because segregation due to aggregation of silica powder is likely to occur in the composite material, and the viscosity of the composite material becomes too large, which makes it difficult to put it into practical use as a sealing material.
  • silane coupling agent a known coupling agent may be used, but one having an epoxy-based functional group is preferable.
  • Example 1-4 Spherical molten (amorphous) silica particles having an average particle size of 29 ⁇ m were prepared by a thermal spraying method. Calcium oxide and alumina were added to the raw material powder at the time of spraying so that the calcium concentration and the aluminum concentration in the silica particles were 1% by mass and 0.6% by mass in terms of oxides, respectively. The prepared silica particles were placed in an alumina container and heat-treated at 1400-900 ° C. The conditions of each example and the measurement results obtained are shown in detail in Table 1.
  • Example 5-8 Spherical molten (amorphous) silica particles having an average particle size of 9 ⁇ m (the amount of ultrafine particles added of 0.1 ⁇ m or less is 3.0 mass) were prepared in the same manner as in Example 1-4 except that they were prepared by the spraying method. The silica particles were placed in an alumina container and heat-treated at 1400-900 ° C. The conditions of each example and the measurement results obtained are shown in detail in Table 1.
  • Examples 3, 9-10, Comparative Example 9 Spherical silica particles were prepared under the same conditions as in Example 3 except for the heat treatment time. Further, the prepared spherical silica particles were filled in silicone resin in an amount of 80% by mass as described above, and the polycrystalline grain size distribution was measured by EBSD of the cross-sectional sample. Moreover, the thermal conductivity was measured from the sample cut out from the same sample. Under the conditions of Comparative Example 9, the growth of crystal grains was insufficient, resulting in a slightly inferior thermal conductivity, but in Examples 3, 9 and 10, sufficient thermal conductivity was obtained. Table 3 summarizes these conditions and measurement results.

Abstract

[Problem] To provide: spherical silica particles that have excellent dielectric properties and can have both excellent thermal properties and excellent fluidity; a spherical silica particle mixture; and a composite material. [Solution] Provided are: spherical silica particles characterized by containing at least 60% in total of crystalline cristobalite phase and crystalline quartz phase in which the average size of the polycrystalline grains constituting the crystalline cristobalite phase or quartz phase is 2 μm or more and a dielectric loss tangent at 10 GHz is 0.0020 or less as determined by the cut-off circular waveguide method (JIS R1660-1:2004); a spherical silica particle mixture containing the same; and a composite material.

Description

球状結晶性シリカ粒子、球状シリカ粒子混合物およびコンポジット材料Spherical crystalline silica particles, spherical silica particle mixture and composite material
 本発明は、周波数3GHz以上の高周波信号に対応した高周波用の半導体封止材、ならびに配線基板を形成するために好適な、誘電特性に優れた、球状結晶性シリカ粒子と、これを含む球状シリカ粒子混合物、およびこれと樹脂との複合化したコンポジット材料に関するものである。 The present invention comprises spherical crystalline silica particles having excellent dielectric properties, which are suitable for forming a semiconductor encapsulant for high frequencies corresponding to a high frequency signal having a frequency of 3 GHz or more, and a wiring substrate, and spherical silica containing the same. It relates to a particle mixture and a composite material obtained by combining this with a resin.
 通信技術の高度化に伴う情報量の増大、ミリ波レーダ等のミリ波帯域の急速な利用拡大により、周波数の高周波数化が進行している。これらの高周波信号を扱う半導体や、伝送する回路基板は、回路パターンとなる電極と誘電体から構成される。信号の高速伝送には、信号の伝播遅延の抑制が重要であるので、低い比誘電率(εr)が求められる。加えて、信号の伝送の際のエネルギー損失を抑えるには、誘電体材料の誘電正接(tanδ)が小さいことが必要となる。低誘電損とするには、誘電性材料は低極性および低双極子モーメントを有していなければならない。これらの誘電特性に加え、基板の実装の際には、ICチップからの発熱、電極材料との熱膨張のミスマッチ抑制から熱伝導率や熱膨張係数といった熱的特性、また、高抗折強度等のため機械的特性も重要となる。 The frequency is increasing due to the increase in the amount of information due to the sophistication of communication technology and the rapid expansion of the use of millimeter wave bands such as millimeter wave radar. Semiconductors that handle these high-frequency signals and circuit boards that transmit them are composed of electrodes and dielectrics that form a circuit pattern. Since suppression of signal propagation delay is important for high-speed signal transmission, a low relative permittivity (εr) is required. In addition, in order to suppress energy loss during signal transmission, it is necessary that the dielectric loss tangent (tan δ) of the dielectric material is small. For low dielectric loss, the dielectric material must have low polarity and low dipole moments. In addition to these dielectric characteristics, when mounting the substrate, heat generation from the IC chip, thermal characteristics such as thermal conductivity and coefficient of thermal expansion from suppression of mismatch of thermal expansion with the electrode material, high bending strength, etc. Therefore, mechanical properties are also important.
 誘電体材料としては、主にセラミックスフィラー、樹脂およびそれらを複合させたコンポジットが用いられている。特に、近年のミリ波帯域の利用拡大に伴い、より一層の低εr、低tanδのセラミックスフィラー、樹脂が求められている。樹脂は、εrは比較的小さく高周波に適しているが、tanδや熱膨張係数がセラミックスフィラーより大きい。このため、ミリ波帯域用のフィラーと樹脂を複合させたコンポジットには、(1)セラミックスフィラー自体の低εr、低tanδ化、(2)セラミックスフィラーを高充填し大きなtanδを示す樹脂の量を減らすことが適している。 As the dielectric material, ceramic fillers, resins, and composites obtained by combining them are mainly used. In particular, with the recent expansion of the use of the millimeter wave band, ceramic fillers and resins having even lower εr and lower tan δ are required. The resin has a relatively small εr and is suitable for high frequencies, but has a tan δ and a coefficient of thermal expansion larger than those of the ceramic filler. Therefore, in the composite in which the filler for the millimeter wave band and the resin are combined, (1) the ceramic filler itself has a low εr and low tan δ, and (2) the ceramic filler is highly filled and the amount of the resin showing a large tan δ is increased. It is suitable to reduce.
 セラミックスフィラーとしてシリカ(SiO)粒子が従来から用いられている。シリカ粒子の形状が、角張った形状であると樹脂中での流動性、分散性、充填性が悪くなり、また製造装置の摩耗も進む。これらを改善するため、球状のシリカ粒子が広く用いられている。球状シリカフィラーは真球に近いほど充填性、流動性、耐金型磨耗性が向上すると考えられ、円形度の高いフィラーが追求されてきた。さらに、フィラーの粒度分布の適正化を図ることによる一層の充填性の向上も検討されてきた。しかし、フィラー形状の球状化、粒度分布の適正化によって充填率を高めすぎると、封止材としてコンポジットの流動性が低下し、成形性が悪化してしまう。高い流動性を確保するには、シリカフィラー充填率は85質量%以上にすることが困難であり、従来は85質量%未満に限られていた。  Silica (SiO 2 ) particles have been conventionally used as ceramic fillers. If the shape of the silica particles is angular, the fluidity, dispersibility, and filling property in the resin are deteriorated, and the manufacturing equipment is also worn. In order to improve these, spherical silica particles are widely used. It is considered that the closer the spherical silica filler is to a true sphere, the better the filling property, fluidity, and mold wear resistance, and a filler having a high circularity has been pursued. Furthermore, further improvement of filling property has been studied by optimizing the particle size distribution of the filler. However, if the filling rate is increased too much by spheroidizing the filler shape and optimizing the particle size distribution, the fluidity of the composite as a sealing material is lowered, and the moldability is deteriorated. In order to secure high fluidity, it is difficult to make the silica filler filling rate 85% by mass or more, and conventionally, it has been limited to less than 85% by mass.
 球状シリカの製法として溶射が知られている。溶射では、原料となる破砕シリカ粒子を2000℃以上の火炎中に通すことにより、粒子が溶融し、粒子の形状は表面張力により球状となる。溶融球状化された粒子どうしが融着しないように気流搬送して回収させて、溶射後の粒子は急冷される。溶融状態から急冷されるため、このシリカ(溶融シリカ)は、非晶質(アモルファス)構造を有する。 Thermal spraying is known as a method for producing spherical silica. In thermal spraying, crushed silica particles as a raw material are passed through a flame of 2000 ° C. or higher to melt the particles, and the shape of the particles becomes spherical due to surface tension. The molten spheroidized particles are transported by air flow so as not to fuse with each other and collected, and the particles after thermal spraying are rapidly cooled. This silica (molten silica) has an amorphous structure because it is rapidly cooled from the molten state.
 この球状の溶融シリカは非晶質であるため、その熱膨張率および熱伝導率が低い。非晶質シリカの熱膨張率は、0.5ppm/Kであり、熱伝導率は1.4W/mKである。これらの物性は、結晶構造を有さず非晶質(アモルファス)構造を有する、石英ガラスの熱膨張率と概ね同等である。このため、高熱膨張率の樹脂に混合することで封止材自体の熱膨張を下げる効果が得られる。封止材としてコンポジットの熱膨張率はSiに近い値とすることで、ICチップを封止する場合に、熱膨張挙動に起因する変形を抑えることができる。 Since this spherical molten silica is amorphous, its coefficient of thermal expansion and thermal conductivity are low. The coefficient of thermal expansion of amorphous silica is 0.5 ppm / K, and the thermal conductivity is 1.4 W / mK. These physical properties are substantially the same as the coefficient of thermal expansion of quartz glass, which has an amorphous structure and does not have a crystal structure. Therefore, by mixing with a resin having a high coefficient of thermal expansion, the effect of lowering the thermal expansion of the sealing material itself can be obtained. By setting the coefficient of thermal expansion of the composite as a sealing material to a value close to Si, it is possible to suppress deformation due to thermal expansion behavior when sealing an IC chip.
 しかし、熱膨張率が低い非晶質シリカを過度に高充填した封止材(コンポジット)は、熱膨張率がSiに比べて小さくなることがあり、リフロー時の加熱温度や半導体デバイスの作動温度により、反りやクラックが生じることがある。また、熱伝導率が低いことにより、半導体デバイスから発生する熱の放散も問題となっている。 However, the encapsulant (composite) filled with amorphous silica, which has a low coefficient of thermal expansion, may have a smaller coefficient of thermal expansion than Si, and the heating temperature during reflow and the operating temperature of the semiconductor device. This may cause warpage or cracks. Further, due to the low thermal conductivity, the dissipation of heat generated from the semiconductor device is also a problem.
 以上述べてきたとおり、3GHz以上の高周波対応シリカフィラーに求められる特性としては、優れた誘電特性を示すとともに、樹脂に大量に配合して封止材としての性能を維持できる充填性、流動性、熱的特性、機械的強度性能及び耐金型磨耗性等のすべての要求を満たす必要があるが、そのようなシリカフィラーおよびシリカ-樹脂コンポジットは存在しなかった。 As described above, the characteristics required for a silica filler compatible with high frequencies of 3 GHz or higher include excellent dielectric properties, and fillability and fluidity that can be blended in a large amount with a resin to maintain the performance as a sealing material. All requirements such as thermal properties, mechanical strength performance and mold wear resistance had to be met, but such silica fillers and silica-resin composites did not exist.
 このような状況に鑑みて、本発明者らは、周波数が3GHz以上となる5G(第5世代移動通信方式)用のデバイス・基板、並びに60GHz以上のミリ波帯域を使用する車載レーダ等において優れた誘電特性のセラミックスフィラー(球状シリカ粒子)を提供することを目指した。 In view of these circumstances, the present inventors are excellent in devices and substrates for 5G (fifth generation mobile communication system) having a frequency of 3 GHz or more, and in-vehicle radars using a millimeter wave band of 60 GHz or more. We aimed to provide ceramic fillers (spherical silica particles) with dielectric properties.
国際公開第2016/031823号International Publication No. 2016/031823 国際公開第2018/186308号International Publication No. 2018/186308
 本発明は、優れた誘電特性を有し、また優れた熱特性や流動性を兼ね備えることもできる、球状シリカ粒子、球状シリカ粒子混合物、およびコンポジット材料を提供することを目的とする。 An object of the present invention is to provide a spherical silica particle, a spherical silica particle mixture, and a composite material, which have excellent dielectric properties and can also have excellent thermal properties and fluidity.
 本発明者らは上記課題を解決することを目的とし鋭意研究した。その結果、低誘電率、低誘電正接等の優れた誘電特性、高熱伝導率、高熱膨張率等の優れた熱特性、を兼ね備えたシリカ粒子を得るには、球状の溶融(非晶質)シリカを、熱処理し結晶化させ、特定の結晶構造とすることが有効であることを見出した。すなわち本発明の球状シリカ粒子は、3GHz以上の高周波における誘電正接が、非晶質に比べて大幅に低下し、かつ高熱伝導率を示すことが初めて確認され、本発明が完成された。 The present inventors have studied diligently for the purpose of solving the above problems. As a result, in order to obtain silica particles having excellent dielectric properties such as low dielectric constant and low dielectric loss tangent, and excellent thermal characteristics such as high thermal conductivity and high thermal expansion coefficient, spherical molten (amorphous) silica is required. It was found that it is effective to heat-treat and crystallize to obtain a specific crystal structure. That is, it was confirmed for the first time that the spherical silica particles of the present invention had a dielectric loss tangent at a high frequency of 3 GHz or higher significantly lower than that of amorphous particles and exhibited high thermal conductivity, and the present invention was completed.
 本発明による球状シリカ粒子は、特定の結晶構造を有するため、誘電特性が優れており(誘電率、誘電正接が低い)、また従来の球状結晶性シリカ粒子に比べて優れた熱特性()を示す。また、球状であり、さらに粒度分布が狭く、円形度を高くすることができるために、高流動・高分散性と高充填性の両立がなされている、そのため、フィラーとして、高周波信号伝送を行うための半導体、基板等に好適に使用できる。 Since the spherical silica particles according to the present invention have a specific crystal structure, they have excellent dielectric properties (low dielectric constant and dielectric loss tangent), and have excellent thermal properties () as compared with conventional spherical crystalline silica particles. Shown. Further, since it is spherical, has a narrow particle size distribution, and can have a high circularity, both high flow / high dispersibility and high filling property are achieved. Therefore, high-frequency signal transmission is performed as a filler. It can be suitably used for semiconductors, substrates, etc.
図1は、粒子の撮影面積と周囲長の算出について説明する図である。FIG. 1 is a diagram for explaining the calculation of the photographing area and the peripheral length of the particles.
 本発明明により、以下の態様が提供される。
[1]
 結晶性クリストバライト相及び結晶性石英相を合計で60%以上含み、前記結晶性クリストバライト相または石英相を構成する多結晶グレインの平均径が2μm以上であり、遮断円筒導波管方法(JIS R1660-1:2004)によって求められる10GHzにおける誘電正接が0.0020以下であることを特徴とする、球状シリカ粒子。
[2]
 アルミニウムを酸化物換算で0.5質量%を上回り2.0質量%以下含む、[1]に記載の球状シリカ粒子。
[3]
 前記球状シリカ粒子中の結晶性石英相の比率が30%以上である、[1]または[2]に記載の球状シリカ粒子。
[4]
 前記球状シリカ粒子中の粒径10μm以上の粒子の円形度が0.83以上である、[1]~[3]のいずれか1項に記載の球状シリカ粒子。
[5]
 [1]~[4]のいずれか1項に記載の球状シリカ粒子95質量%以上99.9質量%以下と、平均粒径0.1μm以下の超微粒子0.1質量%以上5質量%以下を含むことを特徴とする、球状シリカ粒子混合物。
[6]
 樹脂中に、[1]~[4]のいずれか1項に記載の球状シリカ粒子を85質量%以上95質量%以下含有することを特徴とする、コンポジット材料。
The present invention provides the following aspects.
[1]
A total of 60% or more of a crystalline cristobalite phase and a crystalline quartz phase is contained, and the average diameter of the polycrystalline grains constituting the crystalline cristobalite phase or the quartz phase is 2 μm or more, and the blocking cylindrical waveguide method (JIS R1660-). A spherical silica crystal having a dielectric positive contact at 10 GHz obtained by 1: 2004) of 0.0020 or less.
[2]
The spherical silica particles according to [1], which contains aluminum in an amount of more than 0.5% by mass and 2.0% by mass or less in terms of oxide.
[3]
The spherical silica particles according to [1] or [2], wherein the ratio of the crystalline quartz phase in the spherical silica particles is 30% or more.
[4]
The spherical silica particles according to any one of [1] to [3], wherein the particles having a particle size of 10 μm or more in the spherical silica particles have a circularity of 0.83 or more.
[5]
Spherical silica particles according to any one of [1] to [4] 95% by mass or more and 99.9% by mass or less, and ultrafine particles 0.1% by mass or more and 5% by mass or less with an average particle size of 0.1 μm or less. Spherical silica particle mixture comprising.
[6]
A composite material, which comprises 85% by mass or more and 95% by mass or less of the spherical silica particles according to any one of [1] to [4] in the resin.
 シリカ(SiO)の結晶構造として、クリストバライト、石英、トリディマイト等がある。これらの結晶構造を有するシリカは非晶質シリカと比べると、高い熱膨張率および熱伝導率を有する。このため、溶融(非晶質)シリカを、結晶性シリカに適切な量、置き換えることで、ICチップとの熱膨張差異を抑制しつつ、熱伝導率を向上させることができる。さらに、溶融(非晶質)シリカおよび結晶性シリカの粒度分布を適正化することで、さらに高充填性を示すシリカフィラー(球状シリカ粒子)を得ることでできる。 The crystal structure of silica (SiO 2 ) includes cristobalite, quartz, tridymite and the like. Silica having these crystal structures has a higher coefficient of thermal expansion and thermal conductivity than amorphous silica. Therefore, by replacing the molten (amorphous) silica with crystalline silica in an appropriate amount, it is possible to improve the thermal conductivity while suppressing the difference in thermal expansion from the IC chip. Further, by optimizing the particle size distribution of the molten (amorphous) silica and the crystalline silica, a silica filler (spherical silica particles) exhibiting higher filling property can be obtained.
 本発明の球状シリカ粒子は、結晶性クリストバライト相及び結晶性石英相(以下、合わせて「結晶性相」ということがある。)を合計で60%以上含む。すなわち、球状シリカ粒子中の結晶性相の含有量は、60%以上である。60%以上であれば優れた誘電特性が発現する。概して、結晶性シリカの割合は多ければ多いほど誘電特性は向上する。結晶性シリカ以外のシリカは、非晶質である。結晶性相は、結晶性クリストバライト相あるいは、結晶性石英相の一方でも良いし、結晶性クリストバライト相と結晶性石英相が共存していてもよい。なお、本発明の球状シリカ粒子は、結晶性クリストバライト相及び結晶性石英相の他に、結晶性トリディマイトを含んでもよい。 The spherical silica particles of the present invention contain a total of 60% or more of a crystalline cristobalite phase and a crystalline quartz phase (hereinafter, collectively referred to as “crystalline phase”). That is, the content of the crystalline phase in the spherical silica particles is 60% or more. If it is 60% or more, excellent dielectric properties are exhibited. In general, the higher the proportion of crystalline silica, the better the dielectric properties. Silica other than crystalline silica is amorphous. The crystalline phase may be either a crystalline cristobalite phase or a crystalline quartz phase, or the crystalline cristobalite phase and the crystalline quartz phase may coexist. The spherical silica particles of the present invention may contain crystalline tridymite in addition to the crystalline cristobalite phase and the crystalline quartz phase.
 クリストバライトや石英等の結晶性相の存在比は、例えばX線回折(XRD)により測定することができる。XRDで測定する場合、結晶性ピークの積分強度の和(Ic)と非晶質のハロー部分の積分強度(Ia)から、以下の式で計算することができる。 The abundance ratio of crystalline phases such as cristobalite and quartz can be measured by, for example, X-ray diffraction (XRD). When measuring by XRD, it can be calculated by the following formula from the sum of the integrated intensities of the crystalline peak (Ic) and the integrated intensities of the amorphous halo portion (Ia).
     X(結晶相割合)=Ic/(Ic+Ia)×100   (%) X (crystal phase ratio) = Ic / (Ic + Ia) x 100 (%)
 本発明に係る球状シリカ粒子に含まれる結晶相中における各種結晶相の割合は、特に断りの無い限り、以下記載の要領でXRDにより測定したものである。結晶性石英相はPDF 33-1161、結晶性クリストバライト相はPDF11-695、結晶性トリディマイト相はPDF18-1170のピークのデータを用いて、それぞれのピークの積分強度の和の比率から、それぞれの結晶相の割合を質量比率で算出する。また、クリストバライト相由来とトリディマイト相由来の最大強度のピーク位置は近接しているため、それぞれのピークをピーク分離して強度を算出するか、2番目以降の強度のピークをpdfデータの強度比を元に補正して計算に用いることができる。 Unless otherwise specified, the ratio of various crystal phases in the crystal phase contained in the spherical silica particles according to the present invention is measured by XRD as described below. Using the peak data of PDF33-161 for the crystalline quartz phase, PDF11-695 for the crystalline cristobalite phase, and PDF18-1170 for the crystalline tridymite phase, each crystal is obtained from the ratio of the sum of the integrated intensities of each peak. The ratio of phases is calculated by mass ratio. In addition, since the peak positions of the maximum intensities derived from the cristobalite phase and the tridymite phase are close to each other, the intensities are calculated by separating each peak, or the intensity ratio of the second and subsequent intensities is used as the intensity ratio of the pdf data. It can be corrected and used in the calculation.
 前記結晶性クリストバライト相と結晶性石英相は、多数の微結晶、すなわち多結晶グレインから構成されている。本発明の球状シリカ粒子において、多結晶グレインの平均径は2μm以上である。ここで平均径は試料を樹脂詰めした後に断面を切断し、その断面に現れた多結晶グレインの面積から、面積加重で平均して求めた。結晶性シリカは、非晶質シリカに比して熱伝導率が高いことが期待できるが、多結晶のグレインサイズが小さすぎる場合、粒界に起因する散乱によって十分な熱伝導率が得られない。従って、十分な熱伝導率を得るためには多結晶グレインサイズの平均径は2μm以上であることが必要である。 The crystalline cristobalite phase and the crystalline quartz phase are composed of a large number of microcrystals, that is, polycrystalline grains. In the spherical silica particles of the present invention, the average diameter of polycrystalline grains is 2 μm or more. Here, the average diameter was obtained by cutting the cross section after filling the sample with resin and averaging the area of the polycrystalline grain appearing on the cross section by area weighting. Crystalline silica can be expected to have higher thermal conductivity than amorphous silica, but if the grain size of the polycrystal is too small, sufficient thermal conductivity cannot be obtained due to scattering due to grain boundaries. .. Therefore, in order to obtain sufficient thermal conductivity, the average diameter of the polycrystalline grain size needs to be 2 μm or more.
 本発明の球状シリカ粒子において、多結晶グレインサイズ(平均径)はエポキシ樹脂中に結晶粉末を分散充填して、その断面を切り出し、EBSD法(Electron Back Scatter Diffraction Pattern)によって測定する。 In the spherical silica particles of the present invention, the polycrystalline grain size (average diameter) is measured by dispersion-filling crystalline powder in an epoxy resin, cutting out a cross section thereof, and measuring it by an EBSD method (Electron Backscatter Diffraction Pattern).
 また本発明の球状シリカ粒子による熱伝導率向上効果を検証するため、樹脂と本発明の球状シリカ粒子を混練して熱伝導シートを作製して、その熱伝導率を測定することができる。まず球状シリカ粒子はシリコーン樹脂(ダウコーニング社製CY52-276A/B)とフィラー率80質量%で混合し、5Torr以下まで真空脱気して混練する。続いて金型にて成型する。金型は120℃に加熱し、6~7MPaで型締めし、40分成型する。金型から樹脂組成物を取り出し、140℃で1時間の硬化を施す。室温まで冷却後、樹脂組成物を厚み1.5,2.5,4.5,6.5,7.5,8.5mmにそれぞれスライスし、2cm角のシート状サンプルに加工する。それぞれのサンプルはASTM D5470に準じて熱抵抗を測定した。サンプルはSUS304製ブロックで挟み込み0.123MPaで圧縮し、圧縮後の厚みを記録する。このようにして得た熱抵抗値と圧縮後の厚みの関係を線形近似して、その傾きから熱伝導率を導出することができる。 Further, in order to verify the effect of improving the thermal conductivity of the spherical silica particles of the present invention, a heat conductive sheet can be prepared by kneading the resin and the spherical silica particles of the present invention, and the thermal conductivity can be measured. First, the spherical silica particles are mixed with a silicone resin (CY52-276A / B manufactured by Dow Corning Co., Ltd.) at a filler ratio of 80% by mass, vacuum degassed to 5 Torr or less, and kneaded. Then, it is molded with a mold. The mold is heated to 120 ° C., molded at 6 to 7 MPa, and molded for 40 minutes. The resin composition is taken out from the mold and cured at 140 ° C. for 1 hour. After cooling to room temperature, the resin composition is sliced to a thickness of 1.5, 2.5, 4.5, 6.5, 7.5, 8.5 mm, respectively, and processed into a 2 cm square sheet-shaped sample. The thermal resistance of each sample was measured according to ASTM D5470. The sample is sandwiched between blocks made of SUS304, compressed at 0.123 MPa, and the thickness after compression is recorded. The relationship between the thermal resistance value obtained in this way and the thickness after compression can be linearly approximated, and the thermal conductivity can be derived from the slope.
 本発明の球状シリカ粒子は、遮断円筒導波管方法(JIS R1660-1:2004)によって求められる10GHzにおける誘電正接が0.0020以下である。特定の理論に拘束されることは望まないが、本発明の球状シリカ粒子は、上記の結晶構造(結晶相比率および多結晶グレインサイズ)を有することにより、非晶質に比べて大幅に低い誘電正接を備え、かつ高い熱伝導率が得られると考えられる。 The spherical silica particles of the present invention have a dielectric loss tangent of 0.0020 or less at 10 GHz obtained by the blocking cylindrical waveguide method (JIS R1660-1: 2004). Although not bound by a particular theory, the spherical silica particles of the present invention have the above-mentioned crystal structure (crystal phase ratio and polycrystalline grain size), so that the dielectric is significantly lower than that of amorphous particles. It is considered that it has a normal contact and a high thermal conductivity can be obtained.
 本発明の球状シリカ粒子に関する、誘電率、誘電正接を測定する方法について説明する。測定は、コンポジット材料を用いて行う。コンポジット材料の作製は、球状シリカ粒子の粉末とエポキシ樹脂(三菱化学製YX-4000H)を用い、エポキシ樹脂に対して0,30,50,83~89質量%の球状シリカ粒子を、温度100℃、二本ロールミルで混練した。混練後のサンプルは乳鉢・乳棒で粉砕した。金型(50φ)に粉砕後のサンプルを充填しプレス機にセットした。成形温度175℃で約1分間1MPaにて加圧した後、5MPaで9分間保持した。その後、金型を水冷プレスに移し、約10分間冷却した後、硬化した球状シリカ粒子-エポキシ樹脂板(シリカ-樹脂板)を金型から取り出した。作製したシリカ-樹脂板を外周刃切断し、約10mm×10mmに加工した。硬化したシリカ-樹脂板の厚みを変えるために、高精度平面研削(秀和工業製SGM-5000)で研削し、厚みを0.2mm~1.0mmの間で変動させた。
 誘電特性の測定は、上記、シリカ-樹脂複合体を、遮断円筒導波管法(JIS R1660-1:2004)に基づき、10GHz周波数帯で測定した。エポキシ樹脂に対して0,30,50,83~89質量%の球状シリカ粒子との複合化体と誘電正接との関係から、球状シリカ粒子100%の数値を外装し、得られた数値を球状シリカ粒子の誘電正接とした。
A method for measuring the dielectric constant and the dielectric loss tangent of the spherical silica particles of the present invention will be described. The measurement is performed using a composite material. The composite material is prepared by using a powder of spherical silica particles and an epoxy resin (YX-4000H manufactured by Mitsubishi Chemical Corporation), and using spherical silica particles at a temperature of 100 ° C. , Kneaded with two roll mills. The sample after kneading was crushed with a mortar and pestle. The crushed sample was filled in a mold (50φ) and set in a press. After pressurizing at a molding temperature of 175 ° C. for about 1 minute at 1 MPa, the mixture was held at 5 MPa for 9 minutes. Then, the mold was transferred to a water-cooled press, cooled for about 10 minutes, and then the cured spherical silica particles-epoxy resin plate (silica-resin plate) was taken out from the mold. The produced silica-resin plate was cut with an outer peripheral blade and processed to a size of about 10 mm × 10 mm. In order to change the thickness of the cured silica-resin plate, it was ground by high-precision surface grinding (SGM-5000 manufactured by Hidewa Kogyo), and the thickness was varied between 0.2 mm and 1.0 mm.
For the measurement of the dielectric property, the silica-resin composite was measured in the 10 GHz frequency band based on the blocking cylindrical waveguide method (JIS R1660-1: 2004). From the relationship between the composite with spherical silica particles of 0, 30, 50, 83 to 89% by mass with respect to the epoxy resin and the dielectric loss tangent, the numerical value of 100% spherical silica particles is externalized, and the obtained numerical value is spherical. The dielectric loss tangent of the silica particles was used.
 本発明に係る球状シリカ粒子の製造方法について説明する。 The method for producing spherical silica particles according to the present invention will be described.
 本発明に係る球状シリカ粒子は、大気中の溶射法にて製造したシリカ粒子粉末(非晶質)を、アルミナ製の容器に充填し熱処理温度が800℃~1600℃の温度域で、熱処理時間が50分~16時間、大気雰囲気下で処理して製造することができる。好ましい熱処理時間は1~12時間である。1時間未満では結晶化が十分ではない場合があり、12時間を超える熱処理時間を要すると製造コストの負担が大きくなる。クリストバライトの結晶化を促進させる場合、微量のAlを添加し、900℃~1600℃で処理するとよい。処理温度、時間を調整することで、非晶質と結晶性シリカ(クリストバライト相及び石英相)の存在比を制御することができる。 The spherical silica particles according to the present invention are prepared by filling an alumina container with silica particle powder (amorphous) produced by an atmospheric spraying method and heat-treating time in a temperature range of 800 ° C to 1600 ° C. Can be produced by processing in an air atmosphere for 50 minutes to 16 hours. The preferred heat treatment time is 1-12 hours. Crystallization may not be sufficient if it is less than 1 hour, and if the heat treatment time exceeds 12 hours, the burden of manufacturing cost becomes large. When accelerating the crystallization of cristobalite, it is advisable to add a small amount of Al and treat at 900 ° C to 1600 ° C. By adjusting the treatment temperature and time, the abundance ratio of amorphous and crystalline silica (cristobalite phase and quartz phase) can be controlled.
 ここで、Alの添加量は、酸化物換算で0.5質量%を超え2.0質量%以下であることが好ましい。この範囲であれば、十分な結晶化度が得られ、またAlに起因するアルカリ分の上昇や比重の上昇などを抑制した球状シリカ粒子を得ることができる。0.5質量量%以下であると結晶化度が低下傾向にあり、2.0質量%を超えるとアルカリ成分の上昇・比重の上昇が顕著になり、その結果、樹脂硬化特性に悪影響を与え、また軽量化が求められるモバイル機器や車載用途に適用しにくくなる傾向にある。 Here, the amount of Al added is preferably more than 0.5% by mass and 2.0% by mass or less in terms of oxide. Within this range, a sufficient crystallinity can be obtained, and spherical silica particles in which an increase in alkali content and an increase in specific gravity due to Al are suppressed can be obtained. If it is 0.5% by mass or less, the crystallinity tends to decrease, and if it exceeds 2.0% by mass, the alkali component and the specific gravity increase remarkably, and as a result, the resin curing characteristics are adversely affected. In addition, it tends to be difficult to apply to mobile devices and in-vehicle applications that require weight reduction.
 なお、特許文献1、特許文献2ではアルミニウム添加量を酸化物換算で5000質量ppm(0.5質量%)以下に制限しており、十分な結晶化を実現するにはより高温長時間の熱処理が必要になり、粒子同士が融着しやすくなることがあった。 In Patent Document 1 and Patent Document 2, the amount of aluminum added is limited to 5000 mass ppm (0.5 mass%) or less in terms of oxide, and heat treatment at a higher temperature for a longer period of time is required to achieve sufficient crystallization. Was required, and the particles were sometimes easily fused to each other.
 石英の結晶化を促進させる場合は、アルカリ金属やアルカリ土類金属を微量添加し、クリストバライト結晶化温度に比べると低温である800~1150℃で処理すると石英が主相として出現する。アルカリ金属やアルカリ土類金属の添加量は、酸化物換算で0.1~3質量%であってよい。少なすぎると石英化が促進されず、多すぎるとシリカ粒子の純度が低下する。アルカリ金属及びアルカリ土類金属は、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムが挙げられる。石英化促進の効率の観点から、より好ましくはLi、Caである。なお、アルミニウム、アルカリ金属およびアルカリ土類金属の含有量は、例えば原子吸光法、ICP質量分析(ICP-MS) により測定することができる。 To promote the crystallization of quartz, a small amount of alkali metal or alkaline earth metal is added and treated at 800 to 1150 ° C, which is lower than the cristobalite crystallization temperature, and quartz appears as the main phase. The amount of the alkali metal or alkaline earth metal added may be 0.1 to 3% by mass in terms of oxide. If it is too small, quartzization will not be promoted, and if it is too large, the purity of silica particles will decrease. Examples of alkali metals and alkaline earth metals include lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, and radium. From the viewpoint of the efficiency of promoting quartzization, Li and Ca are more preferable. The contents of aluminum, alkali metal and alkaline earth metal can be measured by, for example, atomic absorption spectrometry or ICP mass spectrometry (ICP-MS).
 本発明の一態様では、球状シリカ粒子中の結晶性石英相の比率が30質量%以上であってもよい。クリストバライトは200-250℃において低温相と高温相の相転移点を持つため、実効的に大きな熱膨張を伴い、使用する用途によっては障害となる場合がある。このような点を重視する場合、石英相を30質量%以上とすることが望ましい。石英は低温相と高温相の相転移点は500℃以上であるため、実用上の障害にはならない。この範囲であれば、半導体パッケージに好適な熱膨張特性を備えた球状シリカ粒子を得ることができる。30質量%未満であるとクリストバライト相の相転移に起因する熱膨張が大きくなりすぎる。 In one aspect of the present invention, the ratio of the crystalline quartz phase in the spherical silica particles may be 30% by mass or more. Since cristobalite has a phase transition point between a low temperature phase and a high temperature phase at 200 to 250 ° C., it is effectively accompanied by a large thermal expansion, which may be an obstacle depending on the intended use. When emphasizing such a point, it is desirable that the quartz phase is 30% by mass or more. Quartz does not pose a practical obstacle because the phase transition point between the low temperature phase and the high temperature phase is 500 ° C. or higher. Within this range, spherical silica particles having thermal expansion characteristics suitable for a semiconductor package can be obtained. If it is less than 30% by mass, the thermal expansion due to the phase transition of the cristobalite phase becomes too large.
 本発明の球状シリカ粒子の原料となる、球状シリカ粒子(非晶質)粉末の製造は、溶射法で製造することができる。具体的には、可燃性ガス供給管、助燃性ガス供給管、破砕状の高純度シリカ(石英)供給管で組まれた管構造のバーナーを製造炉の頂部に設置する一方、製造炉の下部を捕集系(生成粉末をブロワーで吸引しバッグフィルターにて捕集)に接続されてなる装置を用い、溶射により球状シリカ粒子(非晶質)粉末を製造した。なお、可燃性ガス供給管からLPGを、助燃性ガス供給管から酸素を供給して、製造炉内に高温火炎を形成した。破砕状シリカ粉末(石英)をシリカ供給管から供給し、球状シリカ粉末をバグフィルターにて捕集した。溶射して得られた球状シリカ粒子は、円形度が0.83以上とすることができる。円形度が高いほど流動性は向上するので、円形度が0.83以上であることが好ましい。溶射手段であれば、容易に円形度の高い粒子を得ることができる。溶射して得られる球状シリカ粒子の円形度を0.83以上にするためには、原料のシリカ粉末を溶融状態にして球状にすることが必要であるため、溶射する際の火炎の温度はシリカが溶融する温度より高くする必要がある。より円形度の高い球状シリカを得るためには、火炎の温度が2000℃以上であることが望ましい。
 また、溶射の際のシリカ粒子同士が接触すると、粒子同士が結合して、いびつな形状になりやすいため、火炎中への原料の供給は、ガス気流中に原料を分散させて供給したり、供給量を調整することが望ましい。
The spherical silica particles (amorphous) powder, which is the raw material of the spherical silica particles of the present invention, can be produced by a thermal spraying method. Specifically, a burner with a tubular structure consisting of a flammable gas supply pipe, a flammable gas supply pipe, and a crushed high-purity silica (quartz) supply pipe is installed at the top of the manufacturing furnace, while the lower part of the manufacturing furnace. Spherical silica particle (amorphous) powder was produced by thermal spraying using a device connected to a collection system (the produced powder was sucked with a blower and collected with a bag filter). In addition, LPG was supplied from the flammable gas supply pipe and oxygen was supplied from the flammable gas supply pipe to form a high-temperature flame in the production furnace. The crushed silica powder (quartz) was supplied from the silica supply pipe, and the spherical silica powder was collected by a bag filter. The spherical silica particles obtained by thermal spraying can have a circularity of 0.83 or more. The higher the circularity, the higher the fluidity. Therefore, the circularity is preferably 0.83 or more. If it is a thermal spraying means, particles having a high circularity can be easily obtained. In order to make the circularity of the spherical silica particles obtained by thermal spraying 0.83 or more, it is necessary to melt the raw material silica powder to make it spherical, so the temperature of the flame at the time of thermal spraying is silica. Must be higher than the melting temperature. In order to obtain spherical silica having a higher circularity, it is desirable that the flame temperature is 2000 ° C. or higher.
In addition, when silica particles in thermal spraying come into contact with each other, the particles tend to bond with each other to form a distorted shape. Therefore, when supplying the raw material into the flame, the raw material is dispersed in the gas stream or supplied. It is desirable to adjust the supply amount.
 また、本発明の球状シリカ粒子は、上述した結晶化のための加熱処理の前後で、ほとんどの円形度が低下せず、溶射で得られた球状シリカ粒子(非晶質)の円形度を維持することができる。 In addition, the spherical silica particles of the present invention maintain the circularity of the spherical silica particles (amorphous) obtained by thermal spraying without decreasing the circularity of most of the circularity before and after the heat treatment for crystallization described above. can do.
 本明細書において、特に断りのない限り、円形度はマルバーンパナリティカル社製のFPIA-3000を用いて、6000個の10um以上サイズについて測定する。10um以下のサイズを含めて測定すると、概して測定装置の解像度が不足し、円形度が高めに算出されることがある。その場合、円形度を流動性の指標として採用することができない。そのため、10μm以上のサイズについて円形度の測定を行う。まず測定対象となるシリカ粒子等の粉末試料10gと蒸留水200mlをビーカに入れ、超音波ホモジナイザーによって、超音波を、周波数20~30kHzで150~500Wとし、30秒以上分散処理を行って、十分に分散する。分散後のビーカを1分間静止させて、上澄み側180mlを捨て、新たに蒸留水を加えて200mlにする。ここから必要量をピペット等で取り出して光学測定装置で測定する。粒径は円相当径で定義する。これは測定画像上の投影面積に等しい面積を持つ円形の直径であって、
Figure JPOXMLDOC01-appb-M000001
によって計算される。
 投影面積は画像処理して計算されるが、図1のように、粒子を2値画像化等の画像処理をして、粒子の輪郭部の各画素セルの中央を直線で結んで、囲まれる面積と定義する。測定装置の対物レンズは画素数に応じて0.5-1μm/pixel程度になるよう選定した。
In the present specification, unless otherwise specified, the circularity is measured for 6000 pieces of 10 um or more in size using FPIA-3000 manufactured by Malvern PANalytical. When measuring including a size of 10 um or less, the resolution of the measuring device is generally insufficient, and the circularity may be calculated higher. In that case, the circularity cannot be adopted as an index of liquidity. Therefore, the circularity is measured for a size of 10 μm or more. First, 10 g of a powder sample such as silica particles to be measured and 200 ml of distilled water are placed in a beaker, and ultrasonic waves are set to 150 to 500 W at a frequency of 20 to 30 kHz by an ultrasonic homogenizer, and dispersion treatment is performed for 30 seconds or more. Disperse in. Allow the dispersed beaker to stand still for 1 minute, discard 180 ml on the supernatant side, and add fresh distilled water to make 200 ml. The required amount is taken out from here with a pipette or the like and measured with an optical measuring device. The particle size is defined as the equivalent diameter of a circle. This is a circular diameter with an area equal to the projected area on the measured image,
Figure JPOXMLDOC01-appb-M000001
Calculated by.
The projected area is calculated by image processing, but as shown in FIG. 1, the particles are image-processed such as binary imaging, and the center of each pixel cell in the outline of the particle is connected by a straight line and surrounded. Defined as area. The objective lens of the measuring device was selected to be about 0.5-1 μm / pixel according to the number of pixels.
 本発明の一態様では、前記の球状シリカ粒子95質量%以上99.9質量%以下と、平均粒径0.1μm以下の超微粒子0.1質量%以上5質量%以下を含む、球状シリカ粒子混合物が提供される。
 本発明の球状シリカ粒子に、0.1μm以下の超微粒子を適切に配合すると、球状シリカ粒子を充填材として用いたときにその充填率を向上することが可能となる。これは、球状シリカ粒子どうしの間隙に、超微粒子が入り込み、間隙の占める体積が減少することにより、充填率が向上するためである。球状シリカ粒子と超微粒子の配合比率は、球状シリカ粒子を95質量%以上99.9質量%以下、超微粒子0.1質量%以上5質量%以下とすることが好ましい。超微粒子の比率が低すぎると、球状シリカ粒子間の間隙が埋まらず、充填率が向上しない。超微粒子の比率が高すぎると、球状シリカ粒子間の間隙から溢れて、全体の体積が増加する。
 ここで、超微粒子とは、球状シリカ粒子であって、粒径が0.1μm以下のものを指す。球状シリカ粒子の製造工程で、粒径が0.1μm以下のもの(超微粒子)を分離しておき、最終製品化の際に、超微粒子を所定の量、配合することが可能である。
 また、球状シリカ粒子の粒度分布を調整することもできる。溶射原料に用いる破砕状シリカ粉末(石英)の粒度分布を調整することで、溶射後の球状シリカ粒子(非晶質)の粒度分布を調整できる。結晶化のための熱処理により、得られた球状シリカ粒子は、球状シリカ粒子(非晶質)とは若干異なる粒度分布と異なることがあるが、その粒度分布の変化量を予測することや、後工程での篩分け等によって、本発明の球状シリカ粒子の粒度分布の調整も可能である。本発明のシリカ粒子は、平均粒径(D50)が1~100μmであってもよい。平均粒径が100μmを超えると、半導体封止材用のフィラー等として利用する場合に、粒径が粗くなりすぎてゲートづまりや金型摩耗を引き起こしやすくなることがあり、平均粒径が1μm未満では粒子が細かくなりすぎて多量に充填することができなくなることがある。平均粒径のより好ましい上限は50μmであり、さらに好ましくは40μmである。一方、平均粒径のより好ましい下限は3μmであり、さらに好ましくは5μmである。なお、ここでの平均粒径は、湿式のレーザー回折法(レーザー回折散乱法)による粒度分布測定により求めることができる。
ここで言う平均粒径は、メディアン径と呼ばれるもので、レーザー回折法で粒径分布を測定して、粒径の頻度の累積が50%となる粒径を平均粒径(D50)とする。
In one aspect of the present invention, the spherical silica particles include 95% by mass or more and 99.9% by mass or less of the spherical silica particles and 0.1% by mass or more and 5% by mass or less of ultrafine particles having an average particle size of 0.1 μm or less. A mixture is provided.
When ultrafine particles of 0.1 μm or less are appropriately blended with the spherical silica particles of the present invention, it is possible to improve the filling rate when the spherical silica particles are used as a filler. This is because the ultrafine particles enter the gaps between the spherical silica particles and the volume occupied by the gaps is reduced, so that the filling rate is improved. The blending ratio of the spherical silica particles and the ultrafine particles is preferably 95% by mass or more and 99.9% by mass or less for the spherical silica particles, and 0.1% by mass or more and 5% by mass or less for the ultrafine particles. If the ratio of the ultrafine particles is too low, the gaps between the spherical silica particles will not be filled and the filling rate will not be improved. If the ratio of ultrafine particles is too high, the gaps between the spherical silica particles will overflow and the total volume will increase.
Here, the ultrafine particles refer to spherical silica particles having a particle size of 0.1 μm or less. In the process of manufacturing spherical silica particles, those having a particle size of 0.1 μm or less (ultrafine particles) can be separated, and a predetermined amount of ultrafine particles can be blended at the time of final product production.
It is also possible to adjust the particle size distribution of the spherical silica particles. By adjusting the particle size distribution of the crushed silica powder (quartz) used as the thermal spraying raw material, the particle size distribution of the spherical silica particles (amorphous) after thermal spraying can be adjusted. The spherical silica particles obtained by the heat treatment for crystallization may have a particle size distribution slightly different from that of the spherical silica particles (amorphous), but the amount of change in the particle size distribution can be predicted, and later. It is also possible to adjust the particle size distribution of the spherical silica particles of the present invention by sieving in the process. The silica particles of the present invention may have an average particle size (D50) of 1 to 100 μm. If the average particle size exceeds 100 μm, when used as a filler for semiconductor encapsulants, the particle size may become too coarse and cause gate clogging or mold wear, and the average particle size is less than 1 μm. Then, the particles may become too fine to be filled in a large amount. A more preferable upper limit of the average particle size is 50 μm, and even more preferably 40 μm. On the other hand, the more preferable lower limit of the average particle size is 3 μm, and more preferably 5 μm. The average particle size here can be obtained by measuring the particle size distribution by a wet laser diffraction method (laser diffraction / scattering method).
The average particle size referred to here is called the median diameter, and the particle size distribution is measured by a laser diffraction method, and the particle size at which the cumulative frequency of particle sizes is 50% is defined as the average particle size (D50).
 本明細書において、特に断りのない限り、球状シリカ粒子や超微粒子等の粒度分布に関わる平均粒径は、レーザー回折法による粒度分布測定等により求める。レーザー回折法による粒度分布は、例えばCILAS社製CILAS920で測定することができる。ここで言う平均粒径は、メディアン径と呼ばれるもので、レーザー回折法等の方法で粒径分布を測定して、粒径の頻度の累積が50%となる粒径を平均粒径(D50)とする。 In the present specification, unless otherwise specified, the average particle size related to the particle size distribution of spherical silica particles, ultrafine particles, etc. is determined by measuring the particle size distribution by a laser diffraction method or the like. The particle size distribution by the laser diffraction method can be measured by, for example, CILAS 920 manufactured by CILAS. The average particle size referred to here is called the median diameter, and the particle size at which the cumulative frequency of particle sizes is 50% by measuring the particle size distribution by a method such as laser diffraction is the average particle size (D50). And.
 また、本発明の一態様では、前記球状シリカ粒子と樹脂のコンポジット材料が提供される。
 コンポジット材料の誘電特性を向上させるためには、シリカフィラーの樹脂コンポジット内での充填率(フィラー充填率)をあげて、低誘電率特性の劣る樹脂(例えば、エポキシ樹脂)の量を減らすことが有効である。本発明のコンポジット材料では、高い流動性を維持しつつ、85質量%以上95質量%未満のフィラー充填率を達成できる。高い流動性を確保するには、シリカフィラー充填率は、従来85質量%以上にすることが困難であり、従来は85質量%未満に限られていたが、本発明のシリカ粒子に0.1μm以下の超微粒子を適切に配合すると更に、充填率を更に上げることが可能となる。一般に、フィラー充填率を上げると流動性が低下するが、0.1μm以下の超微粒子の添加量を0.1質量%以上5質量%以下にすると、高充填性と高流動性の両立が実現できる。これにより、周波数の高周波化に適した誘電率、誘電正接の低いシリカフィラーと樹脂との複合体を得ることができる。ただし、シリカフィラー充填率が95質量%を越えると、相対的に樹脂の量が少なくなり、樹脂コンポジットを得ることが困難になる。
Further, in one aspect of the present invention, a composite material of the spherical silica particles and a resin is provided.
In order to improve the dielectric properties of the composite material, it is necessary to increase the filling rate (filler filling rate) of the silica filler in the resin composite to reduce the amount of the resin having a low dielectric constant property (for example, epoxy resin). It is valid. In the composite material of the present invention, a filler filling rate of 85% by mass or more and less than 95% by mass can be achieved while maintaining high fluidity. In order to ensure high fluidity, it is difficult to make the silica filler filling rate more than 85% by mass in the past, and conventionally it was limited to less than 85% by mass, but the silica particles of the present invention have a filling rate of 0.1 μm. When the following ultrafine particles are appropriately blended, the filling rate can be further increased. Generally, when the filler filling rate is increased, the fluidity decreases, but when the addition amount of ultrafine particles of 0.1 μm or less is 0.1% by mass or more and 5% by mass or less, both high filling property and high fluidity are realized. it can. This makes it possible to obtain a composite of a silica filler and a resin having a low dielectric constant and low dielectric loss tangent suitable for increasing the frequency. However, when the silica filler filling rate exceeds 95% by mass, the amount of resin is relatively small, and it becomes difficult to obtain a resin composite.
 本発明の一態様では、前記球状シリカ粒子と樹脂のコンポジット材料を含む。コンポジット材料の組成について、説明する。スラリー組成物を用いて、パッケージ用基板や層間絶縁フィルム等の樹脂基板を製造する場合には、樹脂としてエポキシ樹脂を採用することが好ましい。エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等が挙げられる。これらの中の1種類を単独で用いることもできるし、異なる重要分子量を有する2種類以上を併用もでき、1種類または2種類以上することもできる。これらエポキシ樹脂中でも、入手性や取扱性の観点から、特にビスフェノールA型エポキシ樹脂が好ましい。 In one aspect of the present invention, the composite material of the spherical silica particles and the resin is included. The composition of the composite material will be described. When a resin substrate such as a packaging substrate or an interlayer insulating film is manufactured using the slurry composition, it is preferable to use an epoxy resin as the resin. The epoxy resin is not particularly limited, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, and phenoxy type epoxy resin. One of these types can be used alone, two or more types having different important molecular weights can be used in combination, or one type or two or more types can be used. Among these epoxy resins, the bisphenol A type epoxy resin is particularly preferable from the viewpoint of availability and handleability.
 例えば、パッケージ用基板や層間絶縁フィルム等の半導体関連材料を製造する場合には、樹脂複合組成物に使用する樹脂として、公知の樹脂が適用できるが、エポキシ樹脂を採用することが好ましい。エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等を用いることができる。これらの中の1種類を単独で用いることもできるし、異なる分子量を有する2種類以上を併用することもできる。これらの中でも、硬化性、耐熱性等の観点から、1分子中にエポキシ基を2個以上有するエポキシ樹脂が好ましい。具体的には、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF及びビスフェノールS等のグリシジルエーテル、フタル酸やダイマー酸等の多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、β-ナフトールノボラック型エポキシ樹脂、1,6-ジヒドロキシナフタレン型エポキシ樹脂、2,7-ジヒドロキシナフタレン型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素等のハロゲンを導入したエポキシ樹脂等が挙げられる。これら1分子中にエポキシ基を2個以上有するエポキシ樹脂中でも特にビスフェノールA型エポキシ樹脂が好ましい。 For example, when manufacturing a semiconductor-related material such as a packaging substrate or an interlayer insulating film, a known resin can be applied as the resin used in the resin composite composition, but it is preferable to use an epoxy resin. The epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin and the like. Can be used. One of these types can be used alone, or two or more types having different molecular weights can be used in combination. Among these, an epoxy resin having two or more epoxy groups in one molecule is preferable from the viewpoint of curability, heat resistance and the like. Specifically, biphenyl type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, epoxyized phenols and aldehydes novolak resin, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, Glycydyl esteric acid epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, alkyl-modified polyfunctional Epoxy resin, β-naphthol novolac type epoxy resin, 1,6-dihydroxynaphthalene type epoxy resin, 2,7-dihydroxynaphthalene type epoxy resin, bishydroxybiphenyl type epoxy resin, and bromine to impart flame retardancy, etc. Examples thereof include an epoxy resin into which the halogen of the above is introduced. Among the epoxy resins having two or more epoxy groups in one molecule, the bisphenol A type epoxy resin is particularly preferable.
 また、半導体封止材用複合材料以外の用途、例えば、プリント基板用のプリプレグ、各種エンジニアプラスチックス等の樹脂複合組成物に使用する樹脂としては、エポキシ系以外の樹脂も適用できる。具体的には、エポキシ樹脂の他には、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂が挙げられる。 Further, as a resin used for a resin composite composition such as a prepreg for a printed circuit board and various engineering plastics for applications other than a composite material for a semiconductor encapsulant, a resin other than an epoxy-based resin can also be applied. Specifically, in addition to epoxy resin, polyamide such as silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, etc .; polybutylene terephthalate, polyethylene terephthalate, etc. Polyester; Polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber-styrene) ) Resin can be mentioned.
 前記樹脂を硬化するために、公知の硬化剤を用いればよいが、フェノール系硬化剤を使用することができる。フェノール系硬化剤としてはフェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類などを単独あるいは2種以上組み合わせて使用することができる。 A known curing agent may be used to cure the resin, but a phenolic curing agent can be used. As the phenolic curing agent, a phenol novolak resin, an alkylphenol novolak resin, polyvinylphenols and the like can be used alone or in combination of two or more.
 前記フェノール系硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が1.0未満、0.1以上が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。 The amount of the phenolic curing agent blended is preferably less than 1.0 and 0.1 or more in equivalent ratio with the epoxy resin (phenolic hydroxyl group equivalent / epoxy group equivalent). As a result, the unreacted phenol curing agent does not remain, and the hygroscopic heat resistance is improved.
 コンポジット材料に配合される球状シリカ粒子の量は、耐熱性、熱膨張率の観点から、多いことが好ましい。コンポジット材料の全体質量に対して、通常、70質量%以上95質量%以下、好ましくは80質量%以上95質量%以下、更に好ましくは85質量%以上95質量%以下であるのが適当である。これは、シリカ粉体の配合量が少なすぎると、封止材料の強度向上や熱膨張抑制などの効果が得られにくいためであり、また逆に多すぎると、シリカ粉体の表面処理に関わらず複合材料においてシリカ粉の凝集による偏析が起きやすく、複合材料の粘度も大きくなりすぎるなどの問題から、封止材料として実用が困難となるためである。 The amount of spherical silica particles blended in the composite material is preferably large from the viewpoint of heat resistance and coefficient of thermal expansion. It is usually suitable to be 70% by mass or more and 95% by mass or less, preferably 80% by mass or more and 95% by mass or less, and more preferably 85% by mass or more and 95% by mass or less with respect to the total mass of the composite material. This is because if the blending amount of the silica powder is too small, it is difficult to obtain effects such as improving the strength of the sealing material and suppressing thermal expansion, and conversely, if it is too large, it is related to the surface treatment of the silica powder. This is because segregation due to aggregation of silica powder is likely to occur in the composite material, and the viscosity of the composite material becomes too large, which makes it difficult to put it into practical use as a sealing material.
 また、シランカップリング剤については、公知のカップリング剤を用いればよいが、エポキシ系官能基を有するものが好ましい。 As the silane coupling agent, a known coupling agent may be used, but one having an epoxy-based functional group is preferable.
 以下の実施例・比較例を通じて、本発明について説明する。ただし、本発明は、以下の実施例に限定して解釈されるものではない。 The present invention will be described through the following examples and comparative examples. However, the present invention is not construed as being limited to the following examples.
[実施例1-4]
 平均粒径29μmの球状溶融(非晶質)シリカ粒子を溶射法によって作成した。シリカ粒子中のカルシウム濃度、およびアルミニウム濃度を酸化物換算でそれぞれ1質量%,0.6質量%となるように、溶射時の原料粉末に酸化カルシム、アルミナを配合した。作成したシリカ粒子をアルミナ容器に入れ、1400-900℃の熱処理を実施した。各実施例の条件および得られた測定結果は表1に詳細に示す。
[Example 1-4]
Spherical molten (amorphous) silica particles having an average particle size of 29 μm were prepared by a thermal spraying method. Calcium oxide and alumina were added to the raw material powder at the time of spraying so that the calcium concentration and the aluminum concentration in the silica particles were 1% by mass and 0.6% by mass in terms of oxides, respectively. The prepared silica particles were placed in an alumina container and heat-treated at 1400-900 ° C. The conditions of each example and the measurement results obtained are shown in detail in Table 1.
[実施例5-8]
 平均粒径9μmの球状溶融(非晶質)シリカ粒子(0.1μm以下の超微粒子の添加量は3.0質量)を溶射法によって作成したこと以外は実施例1-4と同様に、作成したシリカ粒子をアルミナ容器に入れ、1400-900℃の熱処理を実施した。各実施例の条件および得られた測定結果は表1に詳細に示す。
[Example 5-8]
Spherical molten (amorphous) silica particles having an average particle size of 9 μm (the amount of ultrafine particles added of 0.1 μm or less is 3.0 mass) were prepared in the same manner as in Example 1-4 except that they were prepared by the spraying method. The silica particles were placed in an alumina container and heat-treated at 1400-900 ° C. The conditions of each example and the measurement results obtained are shown in detail in Table 1.
[比較例1-4]
 平均粒径29μmの球状溶融(非晶質)シリカ粒子を溶射法によって作成した。シリカ粒子中のカルシウム濃度、およびアルミニウム濃度を酸化物換算でそれぞれ<0.01質量%, 0.1質量%となるように、溶射時の原料粉末に酸化カルシム、アルミナを配合した。作成したシリカ粒子をアルミナ容器に入れ、1400-900℃の熱処理を実施した。各比較例の条件および得られた測定結果は表2に詳細に示す。
[Comparative Example 1-4]
Spherical molten (amorphous) silica particles having an average particle size of 29 μm were prepared by a thermal spraying method. Calcium oxide and alumina were added to the raw material powder at the time of spraying so that the calcium concentration and the aluminum concentration in the silica particles were <0.01% by mass and 0.1% by mass, respectively, in terms of oxides. The prepared silica particles were placed in an alumina container and heat-treated at 1400-900 ° C. The conditions of each comparative example and the measurement results obtained are shown in detail in Table 2.
[比較例5-8]
 平均粒径9μmの球状溶融(非晶質)シリカ粒子を溶射法によって作成した。シリカ粒子中のカルシウム濃度、およびアルミニウム濃度を酸化物換算でそれぞれ<0.01質量%, 0.1質量%となるように、溶射時の原料粉末に酸化カルシム、アルミナを配合した。作成したシリカ粒子をアルミナ容器に入れ、1400-900℃の熱処理を実施した。各比較例の条件および得られた測定結果は表2に詳細に示す。
[Comparative Example 5-8]
Spherical molten (amorphous) silica particles having an average particle size of 9 μm were prepared by a thermal spraying method. Calcium oxide and alumina were added to the raw material powder at the time of spraying so that the calcium concentration and the aluminum concentration in the silica particles were <0.01% by mass and 0.1% by mass, respectively, in terms of oxides. The prepared silica particles were placed in an alumina container and heat-treated at 1400-900 ° C. The conditions of each comparative example and the measurement results obtained are shown in detail in Table 2.
[実施例3、9―10、比較例9]
 熱処理時間以外は実施例3と同じ条件によって球状シリカ粒子を作製した。また作製した球状シリカ粒子を前述の通りシリコーン樹脂中に80質量%充填して、その断面サンプルのEBSDによって多結晶粒サイズ分布を測定した。また同じサンプルから切り出したサンプルから熱伝導率を測定した。比較例9の条件では結晶粒の成長が不十分であり、熱伝導率にやや劣る結果となったが、実施例3、9、10では十分な熱伝導率が得られた。表3にこれらの条件および測定結果をまとめて示す。
[Examples 3, 9-10, Comparative Example 9]
Spherical silica particles were prepared under the same conditions as in Example 3 except for the heat treatment time. Further, the prepared spherical silica particles were filled in silicone resin in an amount of 80% by mass as described above, and the polycrystalline grain size distribution was measured by EBSD of the cross-sectional sample. Moreover, the thermal conductivity was measured from the sample cut out from the same sample. Under the conditions of Comparative Example 9, the growth of crystal grains was insufficient, resulting in a slightly inferior thermal conductivity, but in Examples 3, 9 and 10, sufficient thermal conductivity was obtained. Table 3 summarizes these conditions and measurement results.
[比較例10-11]
 実施例3で使用したものと同一の溶射後シリカにアルミニウム濃度を酸化物換算で0.4質量%(比較例10)および0.2質量%(比較例11)に変更して、実施例3と同一の熱処理条件で結晶化を行った。この結果、比較例10,11では非晶質の比率が高い結果となった。
[Comparative Example 10-11]
The aluminum concentration was changed to 0.4% by mass (Comparative Example 10) and 0.2% by mass (Comparative Example 11) in terms of oxides on the same post-spray silica used in Example 3, and Example 3 Crystallization was carried out under the same heat treatment conditions as above. As a result, in Comparative Examples 10 and 11, the ratio of amorphous was high.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (6)

  1.  結晶性クリストバライト相及び結晶性石英相を合計で60%以上含み、前記結晶性クリストバライト相または石英相を構成する多結晶グレインの平均径が2μm以上であり、遮断円筒導波管方法(JIS R1660-1:2004)によって求められる10GHzにおける誘電正接が0.0020以下であることを特徴とする、球状シリカ粒子。 The crystalline cristobalite phase and the crystalline quartz phase are contained in a total of 60% or more, and the average diameter of the polycrystalline grains constituting the crystalline cristobalite phase or the quartz phase is 2 μm or more, and the blocking cylindrical waveguide method (JIS R1660-). A spherical silica crystal having a dielectric positive contact at 10 GHz obtained by 1: 2004) of 0.0020 or less.
  2.  アルミニウムを酸化物換算で0.5質量%を上回り2.0質量%以下含む、請求項1に記載の球状シリカ粒子。 The spherical silica particles according to claim 1, which contain aluminum in an oxide equivalent of more than 0.5% by mass and 2.0% by mass or less.
  3.  前記球状シリカ粒子中の結晶性石英相の比率が30%以上である、請求項1または2に記載の球状シリカ粒子。 The spherical silica particles according to claim 1 or 2, wherein the ratio of the crystalline quartz phase in the spherical silica particles is 30% or more.
  4.  前記球状シリカ粒子中の粒径10μm以上の粒子の円形度が0.83以上である、請求項1~3のいずれか1項に記載の球状シリカ粒子。 The spherical silica particles according to any one of claims 1 to 3, wherein the particles having a particle size of 10 μm or more in the spherical silica particles have a circularity of 0.83 or more.
  5.  請求項1~4のいずれか1項に記載の球状シリカ粒子95質量%以上99.9質量%以下と、平均粒径0.1μm以下の超微粒子0.1質量%以上5質量%以下を含むことを特徴とする、球状シリカ粒子混合物。 The spherical silica particles according to any one of claims 1 to 4 include 95% by mass or more and 99.9% by mass or less, and 0.1% by mass or more and 5% by mass or less of ultrafine particles having an average particle size of 0.1 μm or less. A mixture of spherical silica particles, characterized in that.
  6.  樹脂中に、請求項1~4のいずれか1項に記載の球状シリカ粒子を樹脂中に85質量%以上95質量%以下含有することを特徴とする、コンポジット材料。 A composite material characterized in that the resin contains the spherical silica particles according to any one of claims 1 to 4 in an amount of 85% by mass or more and 95% by mass or less.
PCT/JP2020/021662 2019-05-31 2020-06-01 Spherical crystalline silica particles, spherical silica particle mixture, and composite material WO2020241902A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021521923A JPWO2020241902A1 (en) 2019-05-31 2020-06-01
SG11202113322TA SG11202113322TA (en) 2019-05-31 2020-06-01 Spherical crystalline silica particles, spherical silica particle mixture, and composite material
CN202080040363.1A CN113905984A (en) 2019-05-31 2020-06-01 Spherical crystalline silica particles, spherical silica particle mixture, and composite material
KR1020217039161A KR102644020B1 (en) 2019-05-31 2020-06-01 Spherical crystalline silica particles, spherical silica particle mixtures and composite materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102558 2019-05-31
JP2019-102558 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241902A1 true WO2020241902A1 (en) 2020-12-03

Family

ID=73552800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021662 WO2020241902A1 (en) 2019-05-31 2020-06-01 Spherical crystalline silica particles, spherical silica particle mixture, and composite material

Country Status (6)

Country Link
JP (1) JPWO2020241902A1 (en)
KR (1) KR102644020B1 (en)
CN (1) CN113905984A (en)
SG (1) SG11202113322TA (en)
TW (1) TW202106623A (en)
WO (1) WO2020241902A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022114351A (en) * 2021-01-26 2022-08-05 信越化学工業株式会社 Low-dielectric metal-clad fluororesin substrate and method of manufacturing the same
JP2022117128A (en) * 2021-01-29 2022-08-10 信越化学工業株式会社 High-speed communication low-dielectric constant substrate for millimeter waves
WO2023112928A1 (en) * 2021-12-13 2023-06-22 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
WO2023153357A1 (en) * 2022-02-09 2023-08-17 デンカ株式会社 Spherical silica powder
WO2023189589A1 (en) * 2022-03-28 2023-10-05 デンカ株式会社 Inorganic powder, method for producing same, and resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102016A (en) * 2012-01-23 2012-05-31 Sumitomo Chemical Co Ltd Silica particle and method of manufacturing the same
WO2016031823A1 (en) * 2014-08-25 2016-03-03 新日鉄住金マテリアルズ株式会社 Spherical crystalline silica particles and method for producing same
WO2017188301A1 (en) * 2016-04-28 2017-11-02 株式会社アドマテックス Crystalline silica particle material and method for manufacturing same, slurry composition containing crystalline silica particle material, and resin composition containing crystalline silica particle material
WO2018186308A1 (en) * 2017-04-05 2018-10-11 新日鉄住金マテリアルズ株式会社 Spherical crystalline silica particles and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231973A (en) * 2004-02-23 2005-09-02 Sumitomo Chemical Co Ltd Silica particle and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102016A (en) * 2012-01-23 2012-05-31 Sumitomo Chemical Co Ltd Silica particle and method of manufacturing the same
WO2016031823A1 (en) * 2014-08-25 2016-03-03 新日鉄住金マテリアルズ株式会社 Spherical crystalline silica particles and method for producing same
WO2017188301A1 (en) * 2016-04-28 2017-11-02 株式会社アドマテックス Crystalline silica particle material and method for manufacturing same, slurry composition containing crystalline silica particle material, and resin composition containing crystalline silica particle material
WO2018186308A1 (en) * 2017-04-05 2018-10-11 新日鉄住金マテリアルズ株式会社 Spherical crystalline silica particles and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022114351A (en) * 2021-01-26 2022-08-05 信越化学工業株式会社 Low-dielectric metal-clad fluororesin substrate and method of manufacturing the same
JP2022117128A (en) * 2021-01-29 2022-08-10 信越化学工業株式会社 High-speed communication low-dielectric constant substrate for millimeter waves
WO2023112928A1 (en) * 2021-12-13 2023-06-22 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
WO2023153357A1 (en) * 2022-02-09 2023-08-17 デンカ株式会社 Spherical silica powder
WO2023189589A1 (en) * 2022-03-28 2023-10-05 デンカ株式会社 Inorganic powder, method for producing same, and resin composition

Also Published As

Publication number Publication date
CN113905984A (en) 2022-01-07
TW202106623A (en) 2021-02-16
SG11202113322TA (en) 2021-12-30
JPWO2020241902A1 (en) 2020-12-03
KR102644020B1 (en) 2024-03-07
KR20220003066A (en) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2020241902A1 (en) Spherical crystalline silica particles, spherical silica particle mixture, and composite material
US20220204830A1 (en) Boron nitride powder, method for producing same, composite material, and heat dissipation member
KR102247230B1 (en) Spherical eukryptite particles and manufacturing method thereof
JP2019073409A (en) Method for producing bulk boron nitride powder and heat radiation member using the same
US6383660B2 (en) Epoxy resin composition for encapsulating semiconductor and semiconductor device using the same
JP7273587B2 (en) Boron nitride powder and resin composition
JP2021075438A (en) Hollow silica particle, method for producing the same, resin composite composition using the same, and resin composite
CN113754928A (en) Low dielectric silica powder, resin composition containing the same, and method for producing low dielectric silica powder
KR20230113158A (en) Low Dielectric and Amorphous Silica Powder and Method for Producing the Same, and Surface-Treated Low Dielectric Silica Powder, Silica Slurry, Silica-Containing Resin Composition, Silica-Containing Prepreg and Printed Wiring Board
WO2021235530A1 (en) Spherical crystalline silica particles and method for producing same
WO2022039200A1 (en) Spherical aln particles, production method therefor, and composite material containing same
WO2023182511A1 (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
WO2024071431A1 (en) Spherical alumina particles, production method of same, and resin composite composition comprising same
WO2023112928A1 (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
JP7473726B1 (en) Silica Powder
KR102646023B1 (en) Spherical alumina particle mixture and method for producing the same, and resin composite composition and resin composite containing the spherical alumina particle mixture
JP7478031B2 (en) Manufacturing method of low dielectric silica powder
WO2023189589A1 (en) Inorganic powder, method for producing same, and resin composition
JP7124249B1 (en) Heat-dissipating sheet and method for manufacturing heat-dissipating sheet
JP7473725B1 (en) Silica Powder
WO2023189590A1 (en) Crystalline silica powder and resin composition
JP2003119010A (en) Aluminum nitride powder, production method therefor, and its use
WO2024071434A1 (en) Spherical silica particles, resin composite composition containing same, and production method thereof
CN117794860A (en) Spherical crystalline silica powder and method for producing same
JP2023166202A (en) Particle and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521923

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217039161

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814186

Country of ref document: EP

Kind code of ref document: A1