WO2023112928A1 - Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same - Google Patents

Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same Download PDF

Info

Publication number
WO2023112928A1
WO2023112928A1 PCT/JP2022/045912 JP2022045912W WO2023112928A1 WO 2023112928 A1 WO2023112928 A1 WO 2023112928A1 JP 2022045912 W JP2022045912 W JP 2022045912W WO 2023112928 A1 WO2023112928 A1 WO 2023112928A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
spherical
mass
crystalline silica
particles
Prior art date
Application number
PCT/JP2022/045912
Other languages
French (fr)
Japanese (ja)
Inventor
一彦 楠
睦人 田中
竜太郎 沼尾
良介 坂下
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2023112928A1 publication Critical patent/WO2023112928A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention provides spherical crystalline silica particles, particularly spherical crystalline silica particles having a low lithium content and a high quartz crystallinity, a method for producing the same, and a resin composite composition and a resin containing the spherical crystalline silica particles. Relating to complexes.
  • Silica particles are used as fillers for resins, for example, as fillers for encapsulants for semiconductor devices.
  • shape of the silica particles if the shape is angular, the fluidity, dispersibility and filling properties in the resin will deteriorate. In order to improve these, spherical silica particles are widely used.
  • Thermal spraying is generally used as a method for manufacturing spherical silica.
  • the particles are melted by passing them through a high temperature region such as a flame, and the shape of the particles becomes spherical due to surface tension.
  • the fused and spherical particles are recovered by being conveyed by an air stream so as not to fuse with each other, but the particles after thermal spraying are rapidly cooled. Because it is quenched from the molten state, silica has an amorphous structure with few crystals, resulting in glassy particles commonly referred to as fused silica.
  • the spherical silica obtained by thermal spraying is amorphous, its coefficient of thermal expansion and thermal conductivity are low. These physical properties are considered to be equivalent to the coefficient of thermal expansion of quartz glass, which has an amorphous structure without a crystal structure. The rate is 1.4 W/mK.
  • Spherical silica particles which are generally used for sealing materials, etc., are amorphous and have a low coefficient of thermal expansion. Therefore, it has the effect of lowering the coefficient of thermal expansion of the mixture (resin composition) when mixed with a resin. Thereby, the coefficient of thermal expansion of the resin composition can be brought close to that of the semiconductor element. Moreover, when the resin composition is used as a sealing material or the like, it is possible to suppress deformation that occurs during heating or cooling during the curing process of the resin. However, the thermal conductivity of amorphous silica is not very high. On the other hand, as the amount of heat generated increases as the performance of semiconductors increases, it is required to release the generated heat more efficiently. Therefore, there is a need for spherical silica particles with higher thermal conductivity.
  • crystalline silica Compared to amorphous silica, crystalline silica has a regular and dense structure, so it has high thermal conductivity.
  • Crystal structures of silica include cristobalite, quartz, and tridymite, and silica having these crystal structures is known to have a higher coefficient of thermal expansion and thermal conductivity than amorphous silica.
  • quartz has a denser crystal structure than other crystals, so it has a high thermal conductivity of 12.8 W/mK, and spherical silica particles containing a large amount of quartz are thought to provide a high thermal conductivity.
  • Patent Document 1 a Zn compound is added to an amorphous silica gel produced by a sol-gel method, and heat treatment is performed at 900 to 1100 ° C. to obtain SiO 2 as a main component, a Zn compound, and a main crystal phase. A porous powder made of quartz is obtained. Note that the heat treatment is performed in the atmosphere or the like, and no particular pressure is applied. Moreover, the content ratio of the crystalline phase is not disclosed.
  • the crystal phase is 90% by mass or more of the whole
  • the quartz crystal is 70% by mass or more of the whole
  • It discloses spherical crystalline silica particles containing 1 to 5% by mass in terms of oxide.
  • the spherical crystalline silica particles are obtained by heat-treating the raw material powder at 800 to 1300° C. and cooling it. Note that the heat treatment is performed in an electric furnace, a gas furnace, or the like, and no particular pressure is applied.
  • Patent Document 3 relates to spherical crystalline silica particles, the ratio of the crystalline silica phase in the spherical crystalline silica particles is 40.0% or more, and the quartz occupies the crystalline silica phase.
  • the ratio is 80.0% by mass or more, lithium is contained in an amount of 0.02% by mass or more and less than 0.40% by mass in terms of oxide, and calcium is contained in an amount of 0.004% by mass or more and 1.0% by mass in terms of oxide. % included.
  • the spherical crystalline silica particles are obtained by heat-treating the raw material powder at 850 to 1150°C. Note that the heat treatment can be performed in an inert gas atmosphere such as nitrogen or argon. Moreover, the atmospheric pressure is preferably atmospheric pressure because a large amount of heat treatment is performed industrially, and no particular pressure is applied.
  • Patent Document 4 relates to a dental cured product, and the spherical crystal controlled powder contained in the dental cured product has a silicon dioxide content of 97% by mass or more and 100% by mass, and has an amorphous portion and a crystalline portion are mixed. The ratio of the amorphous portion to the crystalline portion is controlled by heat-treating the amorphous raw material powder at 600°C to 1700°C. Note that no particular pressure is applied in the heat treatment. Patent Document 4 describes that pressure may be applied during curing, but does not describe specific pressure. Also, the type and content of the crystalline are not specified.
  • Patent Document 5 discloses a spherical silica filler powder containing 80% by mass or more of a keatite phase. Keatite is not a common crystalline phase such as quartz or cristobalite, but is mainly synthesized under high temperature, high pressure and high water vapor pressure.
  • spherical amorphous silica particles and a lithium compound are mixed without applying any particular pressure, and the mixture is heated at 650 to 725° C. for 3 to 20 hours to obtain the spherical silica filler powder. It has gained.
  • a method for obtaining spherical crystalline silica As a method for obtaining spherical crystalline silica, a method is disclosed in which an element for promoting crystallization is added to amorphous spherical silica, heat-treated at a high temperature, and crystallized.
  • additive elements may affect the properties of spherical crystalline silica.
  • alkali metals may impair the reliability of electronic devices. Therefore, spherical crystalline silica is required to further reduce lithium.
  • Patent Documents 1 and 4 do not specify the crystalline content or the type of crystalline. Moreover, although the powder for silica filler of Patent Document 5 discloses that the content of the keatite phase is 80% by mass, the content of the crystal phase in the powder is unknown. Therefore, these prior art techniques may not provide sufficient thermal conductivity.
  • the crystal phase accounts for 90% by mass or more of the whole, and the quartz crystal accounts for 70% by mass or more of the whole, so sufficient thermal conductivity can be expected.
  • it contains 0.4 to 5% by mass of lithium in terms of oxide.
  • the spherical crystalline silica particles of Patent Document 3 contain calcium of 0.004% by mass or more and less than 1.0% by mass in terms of oxide, so that lithium is contained in an amount of 0.02% by mass or more and 0.40% by mass in terms of oxide. It is reduced to less than % by mass. However, it is desirable to further reduce lithium.
  • the present invention provides spherical crystal particles having a low lithium content and a high quartz crystallinity, a method for producing the same, and a resin composite composition and a resin composite containing the spherical crystalline silica particles. intended to provide
  • Crystallization into quartz is promoted by adding calcium to amorphous silica particles and heat-treating them. That is, calcium is a crystallization promoting element for quartz.
  • crystallization to quartz occurs only in the vicinity where calcium is present. That is, the effect of calcification by adding calcium is local or limited.
  • heat treatment crystallizes amorphous silica particles
  • crystallization to cristobalite generally also occurs. Therefore, crystallization to cristobalite rather than quartz proceeds within the range where the effect of calcium addition does not reach, typically inside amorphous silica particles.
  • the inventors of the present patent conducted crystallization experiments by varying the type and amount of additive added to amorphous silica particles and the atmospheric pressure during heat treatment.
  • the atmospheric pressure was varied up to a high pressure range using a hot isostatic pressing (HIP) apparatus for high-pressure and high-temperature processing.
  • HIP hot isostatic pressing
  • the gist of the present invention is as follows. [1] Circularity is 0.80 or more, average particle size (D50) is 1.0 ⁇ m or more and 100.0 ⁇ m or less, lithium is 0.05% by mass or less in terms of oxide, and calcium is 0.10 in terms of oxide. Spherical crystalline silica particles containing less than ⁇ 1.00% by mass, 50.0% or more of the whole being crystalline silica, and 90.0% or more of said crystalline silica being quartz. [2] The spherical crystalline silica particles according to [1], containing 0.02% by mass or less of lithium in terms of oxide.
  • [3] The spherical crystalline silica particles according to [1] or [2], wherein cristobalite accounts for 5.0% or less of the whole.
  • [4] The spherical crystalline silica particles according to any one of [1] to [3], containing 90 to 9000 ppm of aluminum.
  • [5] The spherical crystalline silica particles according to any one of [1] to [4], having an average particle diameter (D50) of 10.0 ⁇ m or more.
  • the raw material powder obtained in the raw material powder preparation step is heat-treated at a temperature of 1125° C. or higher and 1300° C. or lower and a pressure of 125 MPa or higher using a hot isostatic pressing apparatus for 1 hour or longer to obtain spherical crystals.
  • a heat treatment step to produce fine silica particles including In the spherical crystalline silica particles generated in the heat treatment step, calcium is 0.10 to 1.00% by mass in terms of oxide, and lithium is 0.05% by mass or less in terms of oxide.
  • a method for producing spherical crystalline silica particles A resin composite composition characterized by containing the spherical crystalline silica particles according to any one of [1] to [5] in a resin.
  • spherical crystal particles with a low lithium content and a high quartz crystallinity a method for producing the same, and a resin composite composition and a resin composite containing the spherical crystalline silica particles.
  • the spherical crystalline silica particles of the present invention are Circularity of 0.80 or more,
  • the average particle diameter (D50) is 1.0 ⁇ m or more and 100.0 ⁇ m or less, Contains 0.05% by mass or less of lithium in terms of oxide, Contains less than 0.10 to less than 1.00% by mass of calcium in terms of oxide, 50.0% or more of the whole is crystalline silica, and 90.0% or more of the crystalline silica is quartz.
  • the spherical crystalline silica particles of the present invention are spherical, and the means for making them spherical is not particularly limited, and means such as pulverization and polishing may be used. In particular, thermal spraying before crystallization is highly productive and enables spheroidization at low cost.
  • Spherical silica particles have high fluidity, dispersibility, and filling properties when used as a filler for a semiconductor encapsulant, and can also suppress abrasion of encapsulant-producing equipment.
  • the spherical crystalline silica particles of the present invention may have an average circularity of 0.80 or more, preferably 0.85, and more preferably 0.90 or more.
  • Circularity can be measured by a commercially available flow-type particle image analyzer. A perfect circle is obtained when the degree of circularity is 1. In other words, the closer the circularity is to 1, the closer to a perfect circle.
  • the average circularity is calculated as the average value of circularities measured for 100 or more particles. If the average circularity is less than 0.80, when used as a filler for a semiconductor encapsulating material, the fluidity, dispersibility, and filling properties are not sufficient, and the wear of the encapsulating material-producing equipment is accelerated.
  • the upper limit of the circularity may be 1.0, it is practically difficult to achieve a circularity of 1.0, and if it is to be achieved, the manufacturing and management costs will increase.
  • the upper limit of circularity may be set to 0.98, preferably 0.95, depending on the application.
  • the silica powder can be easily formed into particles with a high degree of circularity.
  • the average circularity of the spherical crystalline silica particles of the present invention hardly decreases before and after the heat treatment for crystallization. This is because the spherical crystalline silica particles of the present invention are crystalline at 1125 to 1300° C., and the circularity hardly decreases in this temperature range.
  • the average particle size here can be obtained by particle size distribution measurement by a wet laser diffraction method (laser diffraction scattering method).
  • the average particle size referred to here is called a median diameter, and the particle size distribution is measured by a laser diffraction method, and the particle size at which the cumulative particle size frequency is 50% is defined as the average particle size (D50).
  • the above particle size range can be achieved by adjusting the particle size of the raw amorphous spherical silica particles (particles before crystallization). If it is thermal spraying means, the particle size can be easily adjusted. In other words, the average particle size of the spherical crystalline silica particles of the present invention hardly changes before and after the heat treatment for crystallization.
  • Amorphous silica particles may be softened even at about 1125 to 1300° C. and may be bonded by fusion or sintering, but the spherical crystalline silica particles of the present invention are crystalline, Since it does not soften like an amorphous material, bonding by fusion or sintering at about 1125 to 1300° C. is sufficiently suppressed.
  • the spherical crystalline silica particles of the present invention are crystalline, even if the average particle size is 1.0 ⁇ m, they are not bound by fusion or sintering, and are less likely to agglomerate. Therefore, the spherical crystalline silica particles of the present invention can improve fluidity, dispersibility, and filling properties when used as a filler for semiconductor sealing materials.
  • the temperature at which the particles are fused or sintered varies depending on the particle size of the raw material amorphous spherical silica, the type of additive component, and the amount added. It is desirable to carry out the heat treatment at an appropriate temperature at which fusion or sintering does not occur depending on the components and added components.
  • the spherical crystalline silica particles of the present invention contain 0.05% by mass or less of lithium in terms of oxide based on the total mass of the spherical crystalline silica particles.
  • Lithium is one of alkali metals, and alkali metals may impair the reliability of electronic devices. Therefore, the lower the lithium content of the silica particles, the more reliable the electronic device using the silica particles as a filler.
  • the lithium content is preferably as low as possible, and may be 0.03% by mass or less or less, 0.02% by mass or less or less, or 0.01% by mass or less or less in terms of oxide.
  • the lower limit of the lithium content is not limited, and may be zero.
  • Lithium in the present invention is not limited to being positively added, and may be an impurity contained in the raw material such as amorphous silica particles.
  • lithium or a lithium compound may be mixed with the raw material such as amorphous silica particles.
  • the form of the lithium compound to be added is not particularly limited, and may be an oxide, carbonate, hydroxide, nitrate, or the like.
  • lithium can exist in the form of oxides, carbonates, hydroxides, nitrates, etc., or composite oxides with silica within silica particles with enhanced crystallization, and substantially The part is present in oxide form. Therefore, unless otherwise specified, in the present invention, the lithium content is calculated in terms of oxide. Specifically, the content of lithium is obtained by measuring by ICP mass spectrometry (ICP-MS) and converting it to oxide.
  • ICP-MS ICP mass spectrometry
  • the spherical crystalline silica particles of the present invention contain 0.10% by mass or more and less than 1.00% by mass of calcium in terms of oxide based on the total mass of the spherical crystalline silica particles.
  • Calcium promotes crystallization of amorphous silica by heating with amorphous silica. If the calcium content is less than 0.10% by mass, crystallization may not be promoted sufficiently. The higher the calcium content, the higher the effect of promoting crystallization. From that point of view, the calcium content may be 0.20% by mass or more.
  • the calcium content is 1.00% by mass or more and the amorphous silica is heated, the calcium and silica react with each other to easily form a silicic acid compound such as Ca 2 (SiO 4 ). In particular, under high pressure, the possibility of this is further increased. Such compounds are likely to be generated in the outer periphery of silica particles, and the shape of the particles is deformed to reduce the circularity of the particles. There is a risk of reducing fluidity when mixed with resin. Therefore, the upper limit of the calcium content is less than 1.00% by mass, preferably less than or equal to 0.90% by mass, and more preferably less than or equal to 0.80% by mass.
  • calcium or a calcium compound may be mixed with the raw material, such as amorphous silica particles.
  • the form of the calcium compound to be added is not particularly limited, and may be an oxide, carbonate, hydroxide, nitrate, or the like.
  • Silica stone which is the raw material for amorphous silica particles, often contains calcium compounds as impurities. can be adjusted to the preferred range described above.
  • calcium can be present in the form of oxides, carbonates, hydroxides, nitrates, etc., or composite oxides with silica within silica particles with accelerated crystallization, and can be substantially large. The part is present in oxide form. Therefore, unless otherwise specified, in the present invention, the calcium content is calculated in terms of oxide. Specifically, the content of calcium is obtained by measuring by ICP mass spectrometry (ICP-MS) and converting it to oxide.
  • ICP-MS ICP mass spectrometry
  • the aluminum content may be set to 100 ppm or more and may be set to 8200 ppm or less.
  • aluminum or an aluminum compound may be mixed with the raw material amorphous silica particles or the like.
  • aluminum oxide, aluminum hydroxide, or the like may be used as an aluminum compound.
  • the content of aluminum is obtained by measurement by ICP mass spectrometry (ICP-MS).
  • the spherical crystalline silica particles may contain metal impurities within a range that does not affect the degree of crystallinity.
  • Typical metal impurities include alkali metals (potassium, sodium, etc.), alkaline earth metals (magnesium, barium, etc.), and the like.
  • Crystal silica 50.0% or more of spherical crystalline silica particles
  • 50.0% or more of the whole is crystalline silica.
  • the whole refers to the whole spherical crystalline silica particles.
  • the proportion of amorphous silica will be 50.0% or more. Since the thermal conductivity of amorphous silica is as low as 1.4 W/mK, if 50.0% or more of amorphous silica is contained, the thermal conductivity of silica particles may be lowered. The higher the proportion of crystalline silica, the higher the thermal conductivity, which is preferable.
  • the proportion of crystalline silica may be 60.0% or more, preferably 70.0% or more, more preferably 80.0% or more, and still more preferably It may be 90.0% or more.
  • the upper limit of the proportion of crystalline silica is not particularly limited and may be adjusted depending on the application, typically the desired thermal conductivity. Therefore, the upper limit of the proportion of crystalline silica may be 100%, 95% or less, 90% or less, 85% or less, or 80% or less.
  • the crystalline phase and amorphous content can be quantitatively analyzed by X-ray diffraction. Quantitative analysis by X-ray diffraction can be performed without using a standard sample by using an analysis method such as the Rietveld method.
  • Crystalline silica may include cristobalite, tridymite and other crystalline forms as crystalline phases other than quartz.
  • Both crystals have a thermal conductivity of about 10 W/mK, which is lower than the 12.8 W/mK of quartz, but higher than that of amorphous silica.
  • the content of quartz is less than 90.0%, in other words, when the content of cristobalite, tridymite, etc. is 10.0% or more, a phase transition from ⁇ -cristobalite to ⁇ -cristobalite or ⁇ -tridymite ⁇ ⁇ 1-tridymite ⁇
  • a phase transition to ⁇ 2 tridymite occurs, and the volume expansion associated with the phase transition may cause voids between the resin and silica particles when mixed with a resin and cause cracks.
  • the content of cristobalite and tridymite is as low as possible. Therefore, in one aspect of the present invention, the content of cristobalite and/or tridymite may be 5.0% or less of the total spherical crystalline silica particles.
  • the content of quartz, cristobalite, tridymite, and other crystals, as well as the crystalline phase and amorphous content, can be quantitatively analyzed by X-ray diffraction.
  • the ratio of each crystal to crystalline silica is obtained from the ratio of the areas of the crystals obtained by obtaining the integrated area of the peak of each crystal by X-ray diffraction.
  • the ratio of quartz crystals integrated area of quartz peak / (integrated area of quartz peak + integrated area of cristobalite peak + integrated area of tridymite peak + integrated area of peaks of other crystal forms) Calculate as
  • the spherical crystalline silica particles of the present invention can be produced by a method including the following steps. That is, the production method of the present invention is A raw material powder preparation step of mixing spherical amorphous silica particles with a calcium raw material or mixing a calcium raw material and lithium compound particles to obtain a raw material powder; The raw material powder obtained in the raw material powder preparation step is heat-treated at a temperature of 1125° C. or higher and 1300° C. or lower and a pressure of 125 MPa or higher using a hot isostatic pressing apparatus for 1 hour or longer to obtain spherical crystals.
  • a heat treatment step to produce fine silica particles including
  • calcium is 0.10 to 1.00% by mass in terms of oxide, and lithium is 0.05% by mass or less in terms of oxide.
  • a method for producing spherical crystalline silica particles A method for producing spherical crystalline silica particles.
  • the raw material spherical amorphous silica particles can be produced by a method such as thermal spraying.
  • a method such as thermal spraying.
  • the thermal spraying method by passing silica powder pulverized to a desired particle size through a flame, the particles are melted and the shape of the particles becomes spherical due to surface tension.
  • the particles after thermal spraying may be quenched so that the particles that have been melted and sphericalized by thermal spraying do not fuse with each other. In that case, since the molten state is rapidly cooled, the spherical silica particles do not have a crystal structure but have an amorphous structure. Since the spherical silica particles are thermally sprayed, they may be non-porous. Non-porous spherical silica particles are expected to be dense and have high thermal conductivity.
  • the spherical amorphous silica particles can be made to have an average circularity of 0.80 or more by thermal spraying or the like. Since the maximum temperature of the subsequent heat treatment for crystallization is about 1300° C., the circularity of the spherical silica particles hardly changes. Circularity may change due to adhesion during the process from amorphous silica particles to crystalline silica particles. Silica particles can be obtained. That is, when amorphous silica particles having a circularity of 0.80 or more are used, crystalline silica particles obtained by heat treatment also have a circularity of 0.80 or more.
  • Pulverization can be carried out with a general mixer or mill such as a tumbling ball mill, rocking mixer, bead mill, or the like. If the circularity changes due to heat treatment, the rate of change in circularity can be confirmed in a preliminary test or preliminary survey, and the circularity of the spherical amorphous silica particles before heat treatment can be adjusted based on the confirmation results. . Then, if it is a thermal spraying means, it is possible to easily obtain spherical amorphous silica particles having a high average circularity. Therefore, according to the method of the present invention, spherical crystalline silica particles having a circularity of 0.8 or more can be easily obtained. Of course, if spherical amorphous silica particles with an average circularity of less than 0.80 are used, spherical crystalline silica particles with an average circularity of less than 0.80 can be obtained by the method of the present invention.
  • a general mixer or mill such as a
  • the spherical amorphous silica particles obtained by thermal spraying or the like may have an average particle size (D50) of 1.0 to 100.0 ⁇ m, or may be 10.0 ⁇ m or more. Since the maximum temperature of the subsequent heating and cooling steps for crystallization is about 1300° C., the particle size of the spherical silica particles hardly changes.
  • the average particle diameter D50 may change due to adhesion in the process from amorphous silica particles to crystalline silica particles, but if crushed, the average particle diameter is almost the same as that of the original amorphous silica particles. of crystalline silica particles can be obtained.
  • crystalline silica particles obtained by heat treatment also have a D50 of 1.0 ⁇ m or more and 100 ⁇ m or less. Due to the heat treatment, the silica powder may be lightly adhered, but by performing the crushing treatment, it becomes a powder having the same average particle size as the original. Pulverization can be carried out with a general mixer or mill such as a tumbling ball mill, rocking mixer, bead mill, or the like.
  • the change rate of the average particle size (D50) is confirmed in a preliminary test or preliminary survey, and based on the confirmation results, the spherical amorphous silica particles before heat treatment.
  • the average particle size (D50) can be adjusted.
  • the particle size of the spherical amorphous silica particles can be easily adjusted by thermal spraying means. Therefore, the method of the present invention can easily produce spherical crystalline silica particles having an average particle size (D50) of 1.0 to 100.0 ⁇ m.
  • spherical crystalline silica particles having an average particle size (D50) of 10.0 ⁇ m or more can be easily realized.
  • spherical amorphous silica particles with an average particle size (D50) of less than 1.0 ⁇ m are used, the process of the present invention will yield spherical crystalline silica particles with an average particle size (D50) of less than 1.0 ⁇ m. be able to.
  • spherical amorphous silica particles having an average particle diameter (D50) of 10.0 ⁇ m or more are used, spherical crystalline silica particles having an average particle diameter (D50) of 10.0 ⁇ m or more can be obtained by the method of the present invention. can be done.
  • the method of the present invention can obtain spherical crystalline silica particles having an average particle size (D50) of more than 100.0 ⁇ m. can be done.
  • the silica powder may be prepared so that the silica powder before thermal spraying contains 90 to 9000 ppm of aluminum. While not wishing to be bound by any particular theory, it is believed that aluminum acts as a crystal nucleator during heat treatment. Through the thermal spraying process (melting) the aluminum is evenly dispersed in the silica particles. It is thought that aluminum acts as a crystal nucleating agent during the subsequent heat treatment process, and because it is evenly dispersed in the silica particles, the crystals grow evenly at a lower temperature and in a shorter time than before. Realized. In addition, alumina obtained by oxidizing aluminum can be expected to have the effect of enhancing the chemical durability (acid resistance, etc.) of silica particles.
  • the effect of promoting crystallization and the effect of improving chemical durability may not be sufficient.
  • aluminum or alumina is also known to have the effect of lowering the melting point of silica.
  • the melting point of alumina-silica glass is lower than that of pure silica glass. Therefore, when the content of aluminum exceeds 9000 ppm, the melting point of the silica particles is lowered, and the silica particles are likely to bond together by fusion or sintering during heat treatment. If the bonding between the particles progresses, the fluidity, dispersibility and filling properties are insufficient when used as a filler for a semiconductor encapsulant, and wear of encapsulant production equipment is accelerated.
  • semiconductor encapsulants generally require high purity, and it may not be appropriate to add 9000 ppm or more of aluminum.
  • the presence of aluminum has the effect of promoting crystallization when amorphous silica particles are mixed with calcium and crystallized.
  • the content of aluminum can be measured by ICP mass spectrometry (ICP-MS). The content of aluminum remains almost unchanged during the heat treatment stage for crystallization. Moreover, the mass of the silica particles before and after the heat treatment hardly changes. Therefore, by using spherical silica particles containing 90 to 9000 ppm of aluminum, the effect of promoting crystallization can be obtained. If the aluminum content changes due to heat treatment, the rate of change in the aluminum content is confirmed in a preliminary test or survey, and based on the confirmation results, the aluminum content of the spherical amorphous silica particles before heat treatment may be adjusted.
  • the silica powder before thermal spraying may contain metal impurities within a range that does not affect crystallization.
  • Typical metal impurities include alkali metals (potassium, sodium, etc.), alkaline earth metals (magnesium, barium, etc.), and the like.
  • CaCO3 which is a carbonate
  • Ca(OH) 2 which is a hydroxide
  • CaCO 3 and Ca(OH) 2 are chemically more stable than CaO, which is an oxide, and are relatively easy to handle because of their low safety hazards.
  • Ca(OH) 2 decomposes into CaO at a lower temperature of 580° C. compared to 825° C. of CaCO 3 . Therefore, the use of Ca(OH) 2 is considered to be CaO at a low temperature with the effect of promoting crystallization, and it is possible to obtain the effect of crystallization into quartz, which is a low-temperature crystal of silica. .
  • Li 2 CO 3 which is a carbonate, may be used as the lithium compound particles.
  • Li 2 CO 3 is relatively easy to handle when mixed with water because of its low solubility and low safety hazards. Also, Li 2 CO 3 melts at 710° C., but it is thought that it reacts with SiO 2 at a temperature below the melting point and is incorporated into the SiO 2 particles. By incorporating Li into SiO 2 at such a low temperature, an effect of promoting crystallization at a low temperature is expected.
  • lithium is one of alkali metals, and alkali metals may impair the reliability of electronic devices.
  • lithium compound particles do not have to be actively added, and are optionally mixed with spherical amorphous silica particles.
  • the lithium contained in the spherical crystalline silica particles after the heat treatment may be derived from impurities contained in the raw material amorphous silica particles or the like.
  • the spherical amorphous silica particles are mixed with the calcium raw material, or the calcium raw material and the lithium compound particles are mixed to obtain the raw material powder.
  • the calcium raw material and lithium compound particles to be mixed with the spherical amorphous silica particles are not particularly limited in form when added, such as oxides, carbonates, hydroxides, and nitrates. It can be added in the form of powder, aqueous solution, or the like, as long as it can be uniformly mixed with the amorphous spherical silica particles.
  • the method of mixing is not particularly limited as long as each raw material is uniformly dispersed and mixed in the mixture. Mixing may be performed by a powder mixer.
  • the mixing brings the calcium source material and the lithium compound particles into contact with at least a portion of the spherical amorphous silica, and the subsequent heat treatment step promotes crystallization of the spherical amorphous silica, particularly crystallization into quartz.
  • the mixing ratio of the calcium raw material, or the calcium raw material and the lithium compound particles is adjusted.
  • the said mass % makes the total mass of a spherical crystalline silica particle 100 mass %.
  • the mass ratio of the raw material powder obtained by this mixing is generally the same even in the subsequent heat treatment stage for crystallization.
  • the mixing ratio is adjusted in consideration of the yield.
  • the difference in composition is confirmed in a preliminary test or preliminary investigation, and based on the confirmation result, the calcium raw material in the raw material powder before heat treatment, Alternatively, the mixing ratio of the calcium raw material and the lithium compound particles can be adjusted. Note that these adjustments may not be made depending on the results of prior confirmation. As a specific example, the loss of lithium and calcium under the heat treatment conditions for crystallization may be found in advance by testing under the same conditions, and the operation may be performed under those conditions. Therefore, by using the raw material powder, the lithium content and calcium content in the spherical crystalline silica particles of the present invention can be obtained.
  • the raw material powder obtained by mixing is heat-treated at 1125° C. or higher and 1300° C. or lower at an atmospheric pressure of 125 MPa or higher using a hot isostatic pressing apparatus for 1 hour or longer.
  • the calcium raw material and/or lithium compound particles contained in the raw material powder diffuse into the spherical amorphous silica particles, thereby promoting the crystallization of the spherical amorphous silica particles into quartz.
  • the heat treatment temperature is 1125° C. or higher and 1300° C. or lower. If the temperature is lower than 1125°C, crystallization of amorphous silica is not sufficiently promoted, and spherical crystalline silica particles containing 50.0% or more of crystalline silica may not be obtained. In addition, when the temperature exceeds 1300° C., crystallization of amorphous silica is sufficiently promoted, but the resulting crystalline silica may contain a large amount of cristobalite in addition to quartz. That is, it may not be possible to obtain spherical crystalline silica particles in which 90.0% or more of the crystalline silica is quartz.
  • the rate of temperature rise to the heat treatment temperature is not particularly limited, but if the rate of temperature rise is too slow, productivity may decrease, and if the rate of temperature rise is too fast, excessive equipment performance will be required. , 2° C./min to 20° C./min.
  • the atmospheric pressure is 125 MPa or higher. Crystallization of amorphous silica is sufficiently promoted by appropriate heat treatment, but crystalline silica obtained at a low atmospheric pressure may contain a large amount of cristobalite in addition to quartz. That is, when the pressure is less than 125 MPa, spherical crystalline silica particles in which 90.0% or more of the crystalline silica is quartz may not be obtained. It is believed that the higher the pressure, the more the formation of quartz is promoted, and the atmospheric pressure may be 147 MPa or higher. Although the upper limit of the pressure is not particularly limited, there is a limit of capability depending on the device, and typically it may be about 200 MPa or 196 MPa.
  • the heat treatment time is 1 hour or longer. If the heat treatment time is less than 1 hour, crystallization of amorphous silica is not sufficiently promoted, and spherical crystalline silica particles containing 50.0% or more of crystalline silica may not be obtained. In general, longer heat treatment times promote crystallization. On the other hand, crystal forms other than quartz, such as cristobalite, may occur. Therefore, the heat treatment time can be appropriately adjusted so as to obtain the desired crystallinity and silica ratio. Therefore, the upper limit of the heat treatment time is not particularly limited, but it may be 24 hours or less, 20 hours or less, 16 hours or less, or 12 hours or less in consideration of productivity or the like.
  • heat treatment is performed using a hot isostatic pressing device.
  • the hot isostatic pressing apparatus is a pressure treatment apparatus that pressurizes using the synergistic effect of pressure and temperature. It is possible to simultaneously apply pressure to the object to be treated.
  • crystallization (quartzification) inside the amorphous silica particles is less likely to be promoted, while cristobalite formation may be promoted inside the amorphous silica particles due to the influence of heat treatment (temperature).
  • heat treatment under a pressure of 125 MPa or higher facilitates thermal diffusion of calcium into the amorphous silica particles, promoting crystallization (quartzization) even inside the amorphous silica particles. be.
  • spherical crystalline silica particles having a high silicification rate are obtained.
  • the larger the grain size of the particles the smaller the specific surface area and the thermal diffusion of calcium is not promoted, making it difficult to obtain spherical crystalline silica particles with a high silicification rate.
  • a high silica ratio can be obtained even with such particles having a large particle size, typically having an average particle size (D50) of 10.0 ⁇ m or more, a high silica ratio can be obtained.
  • a composite composition of the finally obtained spherical crystalline silica particles and a resin, and further a resin composite obtained by curing the resin composite composition can be produced.
  • the composition and the like of the resin composite composition will be described in more detail below.
  • a resin composite composition such as a semiconductor encapsulating material (especially a solid encapsulating material) and an interlayer insulating film. Further, by curing these resin composite compositions, it is possible to obtain resin composites such as sealing materials (cured bodies) and substrates for semiconductor packages.
  • the resin composite composition for example, in addition to the spherical crystalline silica particles and the resin, a curing agent, a curing accelerator, a flame retardant, a silane coupling agent, etc. are blended as necessary, and kneading or the like is performed. Composite in a way. Then, it is molded into a pellet shape, a film shape, or the like according to the application.
  • the resin composite composition when producing a resin composite by curing the resin composite composition, for example, the resin composite composition is melted by applying heat, processed into a shape according to the application, and subjected to a higher heat than during melting. and let it harden completely.
  • a known method such as a transfer molding method can be used.
  • Epoxy resins are not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin, etc. can be used. One of these may be used alone, or two or more of them having different molecular weights may be used in combination. Among these, epoxy resins having two or more epoxy groups in one molecule are preferable from the viewpoint of curability, heat resistance, and the like.
  • biphenyl-type epoxy resins phenol novolac-type epoxy resins, ortho-cresol novolak-type epoxy resins, epoxidized novolac resins of phenols and aldehydes, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, Glycidyl ester acid epoxy resins, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, alkyl-modified polyfunctionals obtained by the reaction of polybasic acids such as phthalic acid and dimer acid with epochlorhydrin Epoxy resins, ⁇ -naphthol novolak type epoxy resins, 1,6-dihydroxynaphthalene type epoxy resins, 2,7-dihydroxynaphthalene type epoxy resins, bishydroxybiphenyl type epoxy resins, bromine etc. for imparting flame retardancy Epoxy resin into which halogen is introduced.
  • these epoxy resins having two or more epoxy groups in one
  • resins other than epoxy resins can also be used for applications other than composite materials for semiconductor encapsulants, such as prepregs for printed circuit boards and resin composite compositions such as various engineering plastics.
  • polyamides such as silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, and polyetherimides; polybutylene terephthalate, polyethylene terephthalate, etc.
  • polyester polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene ) resins.
  • ABS resin polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene ) resins.
  • AAS acrylonitrile-acrylic rubber/styrene
  • AES acrylonitrile/ethylene/propylene/diene rubber-styrene
  • a known curing agent may be used to cure the resin, and for example, a phenol-based curing agent may be used.
  • Phenol novolak resins, alkylphenol novolak resins, polyvinylphenols, and the like can be used as the phenol-based curing agent either singly or in combination of two or more.
  • the equivalent ratio to the epoxy resin is preferably 0.1 or more and less than 1.0.
  • the amount of the spherical crystalline silica particles of the present invention added to the resin composite composition is preferably large from the viewpoint of heat resistance and coefficient of thermal expansion, but is usually 70% by mass or more and 95% by mass or less, preferably 80% by mass. % or more and 95 mass % or less, more preferably 85 mass % or more and 95 mass % or less. This is because if the amount of the spherical crystalline silica particles is too small, it is difficult to obtain the effects of improving the strength of the sealing material and suppressing thermal expansion.
  • silane coupling agent a known coupling agent may be used, but one having an epoxy-based functional group is preferable.
  • Amorphous silica particles were prepared by thermal spraying.
  • thermal spraying a powder obtained by mixing 0.80% by mass of calcium in terms of oxide with respect to the total mass of the mass of crushed silica and the mass of calcium in terms of oxide was used as a raw material.
  • the spherical amorphous silica particles (average particle diameter d50: 27.8 ⁇ m, circularity 0.92) are filled in a BN (boron nitride) container and subjected to hot isostatic pressing by Kobe Steel, Ltd. (Hot Isostatic Pressing: HIP) apparatus, nitrogen gas was used as a pressure medium, and heat treatment was performed under isostatic pressure.
  • HIP Hot Isostatic Pressing
  • Example 1 (1150 ° C.), Example 2 (1200 ° C.), Example 3 (1250 ° C.), Example 4 (1300 ° C.), Example 1 is 12 hours, Example 2 and Example 3 was held for 8 hours, and Example 4 was held for 1 hour.
  • the temperature increase rate was about 600°C/hour.
  • the nitrogen gas holding pressure under the holding temperature was 196 MPa.
  • Examples 5 to 17 The amorphous spherical silica powder used in Examples 1 to 4 was used. Lithium carbonate powder was mixed with the amorphous spherical silica. With respect to the total mass of the mass of the spherical amorphous silica and the mass of lithium in terms of oxide, the lithium carbonate particles were 0.01 mass% in terms of oxide (Examples 5 to 8) and 0.02 mass. % (Example 9), 0.03% by mass (Examples 10 to 13), and 0.05% by mass (Examples 14 to 17) were mixed. The mixed powder was filled in a BN container and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium.
  • the holding temperature was 1125°C (Example 14), 1150°C (Example 15), 1200°C (Example 5, Example 6, Example 9, Example 10, Example 11, Example 16), 1250°C. (Example 7, Example 12, Example 17) and 1300°C (Example 8, Example 13).
  • the holding time was 1 hour (Example 5, Example 8, Example 9, Example 10, Example 13, Example 17), 8 hours (Example 6, Example 7, Example 11, Example 12). , Example 14, Example 15, and Example 16).
  • the temperature increase rate was about 600°C/hour.
  • the nitrogen gas holding pressure under the holding temperature was 196 MPa.
  • Example 18 The amorphous spherical silica powder used in Examples 1 to 4 was used.
  • the amorphous spherical silica powder was filled in a BN container and heat-treated under isotropic pressure with a HIP apparatus using nitrogen gas as a pressure medium.
  • the holding temperature was 1250° C.
  • the holding time was 8 hours
  • the heating rate was about 600° C./hour.
  • the nitrogen gas holding pressure under the holding temperature was 147 MPa.
  • Example 19 The amorphous spherical silica powder used in Examples 1 to 4 was used. Lithium carbonate powder was mixed with the amorphous spherical silica powder. Lithium carbonate particles were mixed in an amount of 0.01% by mass in terms of oxide with respect to the total mass of the mass of spherical amorphous silica and the mass of lithium in terms of oxide.
  • the mixed powder was filled in a BN container and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium.
  • the holding temperature was 1250° C., the holding time was 8 hours, and the heating rate was about 600° C./hour.
  • the nitrogen gas holding pressure under the holding temperature was 147 MPa (Example 19) and 125 MPa (Example 20).
  • Example 21 to 31 Amorphous silica particles were prepared by thermal spraying. Calcium hydroxide particles and lithium carbonate particles were mixed with the spherical amorphous silica particles (average particle diameter d50: 30.2 ⁇ m, circularity 0.91). With respect to the total mass of the mass of spherical amorphous silica, the mass of calcium converted to oxide, and the mass of lithium converted to oxide, 0.20% by mass of calcium hydroxide particles in terms of oxide, and lithium carbonate particles in terms of oxide In conversion, no addition (Example 21), 0.01% by mass (Examples 22 to 24), 0.03% by mass (Example 25), 0.05% by mass (Examples 26 to 31 ) were mixed.
  • the mixed powder was filled in a BN container and heat-treated at a high isostatic pressure with a HIP apparatus using nitrogen gas as a pressure medium.
  • the holding temperature was 1250°C, the holding time was 8 hours (Example 21, Example 23, Example 25, Example 29, and Example 31), the holding temperature was 1150°C, the holding time was 12 hours (Example 22). ), the holding temperature is 1300°C, the holding time is 1 hour (Examples 24 and 30), the holding temperature is 1125°C, the holding time is 12 hours (Example 26), the holding temperature is 1200°C, the holding time is 8 The time (Examples 27 and 28) and the rate of temperature increase were about 600°C/h.
  • the nitrogen gas holding pressure under the holding temperature was 196 MPa (Examples 21 to 27, 29 and 30), 147 MPa (Example 31) and 125 MPa (Example 28).
  • Examples 32 to 40 Amorphous silica particles were prepared by thermal spraying. Calcium hydroxide particles and lithium carbonate particles were mixed with the spherical amorphous silica particles (average particle diameter d50: 2.20 ⁇ m, circularity 0.93). With respect to the total mass of the mass of spherical amorphous silica, the mass of calcium converted to oxide, and the mass of lithium converted to oxide, 0.90% by mass of calcium hydroxide particles in terms of oxide, and lithium carbonate particles in terms of oxide In conversion, no addition (Examples 32 to 35), 0.01% by mass (Example 36), 0.03% by mass (Example 37), 0.05% by mass (Examples 38 and 39 , Example 40) were mixed.
  • the mixed powder was filled in a BN container and heat-treated at a high isostatic pressure with a HIP apparatus using nitrogen gas as a pressure medium.
  • the holding temperature was 1125°C and the holding time was 12 hours (Example 38), the holding temperature was 1150°C and the holding time was 12 hours (Example 32), the holding temperature was 1200°C and the holding time was 8 hours (Example 33), the holding temperature is 1250°C, the holding time is 8 hours (Examples 34, 36, 37, 39, and 40), the holding temperature is 1300°C, the holding time is 1 hour (Example 35), and the rate of temperature increase was about 600° C./hour.
  • the nitrogen gas holding pressure under the holding temperature was 196 MPa (Example 32, Examples 34 to 39), 147 MPa (Example 40), and 125 MPa (Example 33).
  • Comparative Examples 1 to 9 The amorphous spherical silica powder used in Examples 1 to 4 was used. This silica powder was not mixed with lithium carbonate powder (Comparative Examples 1, 2, and 7), and the powder was mixed with lithium carbonate powder (Comparative Examples 3 to 6, and Comparative Example 8). , Comparative Example 9) were prepared. In the mixing of lithium carbonate, 0.01% by mass of lithium carbonate particles in terms of oxide with respect to the total mass of the mass of the spherical amorphous silica and the mass of lithium in terms of oxide (Comparative Example 3, Comparative Example 5, Comparative Example 8) and 0.05% by mass (Comparative Example 4, Comparative Example 6, Comparative Example 9) were mixed.
  • the powder not mixed with lithium carbonate powder and the powder mixed with lithium carbonate powder were filled in a BN container, and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium.
  • the holding temperature was 1100° C. (Comparative Example 1, Comparative Example 3, Comparative Example 4, Comparative Example 7) and 1350° C. (Comparative Example 2, Comparative Example 5, Comparative Example 6, Comparative Example 8, Comparative Example 9).
  • the holding time was 12 hours (Comparative Examples 1, 3, 4, 7) and 1 hour (Comparative Examples 2, 5, 6, 8, 9).
  • the temperature increase rate was about 600°C/hour.
  • the nitrogen gas holding pressure under the holding temperature was 196 MPa (Comparative Examples 1 to 6) and 147 MPa (Comparative Examples 7 to 9).
  • the powder not mixed with lithium carbonate powder and the powder mixed with lithium carbonate powder were filled in a BN container, and subjected to heat treatment at high isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium.
  • the holding temperature was 1250°C.
  • the holding time was 8 hours (Comparative Examples 10 to 12) and 1 hour (Comparative Example 13).
  • the temperature increase rate was about 600°C/hour.
  • the nitrogen gas holding pressure under the holding temperature was 118 MPa (Comparative Examples 10 to 13).
  • Powder not mixed with lithium carbonate powder and powder mixed with lithium carbonate powder were filled in an alumina container and heat-treated in an atmospheric atmosphere (atmospheric pressure) using an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.). .
  • the temperature was raised to 1250° C. at a rate of 600° C./hour and held for 8 hours (Comparative Example 14) and 1 hour (Comparative Example 15). After that, it was cooled to room temperature at a cooling rate of about 100° C./hour.
  • the amorphous spherical silica powder used in Examples 21 to 31 was used. Powders were prepared by mixing both calcium hydroxide particles and lithium carbonate particles (Comparative Examples 19 to 22) with the spherical amorphous silica particles (average particle size d50: 30.2 ⁇ m). In the case of a powder in which only calcium hydroxide particles are mixed with amorphous silica particles, a predetermined amount of calcium in terms of oxide is added to the total mass of the mass of spherical amorphous silica and the mass of calcium in terms of oxide. were mixed.
  • the mass of spherical amorphous silica and calcium are converted to oxides, and lithium is converted to oxides.
  • the calcium hydroxide particles are 0.20% by mass in terms of calcium oxide
  • the lithium carbonate particles are 0.01% by mass in terms of lithium oxide (Comparative Example 19, Comparative Example 21) and 0.05% by mass (Examples 20 and 22).
  • the mixed powder was filled in a BN container, and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1100° C.
  • Examples 26 to 29 The amorphous spherical silica particles used in Examples 32-40 were used. A powder was prepared by mixing both calcium hydroxide particles and lithium carbonate particles with the spherical amorphous silica particles (average particle size d50: 2.2 ⁇ m). With respect to the total mass of the mass of spherical amorphous silica, the mass of calcium converted to oxide, and the mass of lithium converted to oxide, calcium hydroxide particles are added in an amount of 0.90% by mass in terms of calcium oxide, and lithium carbonate particles were mixed so that lithium was 0.01% by mass (Comparative Examples 26 and 28) and 0.05% by mass (Examples 27 and 29) in terms of oxide.
  • the mixed powder was filled in a BN container, and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium.
  • the holding temperature was 1100° C. (Comparative Examples 26 and 27) and 1350° C. (Comparative Examples 28 and 29), and the holding time was 12 hours (Comparative Examples 26 and 27) and 1 hour (Comparative Example 28). , Comparative Example 29).
  • the temperature increase rate was about 600°C/hour.
  • the nitrogen gas holding pressure under the holding temperature was 196 MPa.
  • silica particles obtained in Examples and Comparative Examples are shown in Tables 1 and 2, respectively.
  • the existence ratio of amorphous and crystalline silica, the type of crystalline silica, and the ratio are determined by the integrated intensity of the crystalline peak in XRD measurement. From the sum (Ic) and the integrated intensity (Ia) of the amorphous halo portion, the ratio of the crystalline phase can be obtained by calculation according to the following formula. More specifically, the proportion of the crystalline silica phase contained in the spherical crystalline silica particles can be determined.
  • X (crystal phase ratio) Ic / (Ic + Ia) ⁇ 100 (%)
  • the quantitative analysis of the crystal phase by the Reedveld method was performed without using a standard sample.
  • Circularity Circularity was determined by a flow particle image analysis method.
  • a flow type particle image analyzer "FPIA-3000" manufactured by Spectris was used.
  • the average particle size (D50) of the spherical quartz particles was measured by a laser diffraction/scattering particle size distribution measurement method.
  • impurity amount or additive amount The content of impurities or additive elements such as lithium and calcium in the spherical silica particles of the present invention was measured by ICP mass spectrometry (ICP-MS). Specifically, it was measured using ICP-MS (“7700X” manufactured by Agilent) in accordance with JIS-K0133. An aqueous solution in which silica particles were completely dissolved with hydrofluoric acid was used as a sample. Here, the impurity element content contained in the silica particles was defined as the impurity element content in the silica solution. A standard curve was prepared using a reagent-only base solution.
  • the zinc content of the spherical amorphous silica particles produced by the thermal spraying method in Examples and Comparative Examples is less than 1.0 ppm in terms of metal content, and the total amount of alkali metals (Li, K and Na) is It was 22 to 38 ppm in terms of metal.
  • the amorphous spherical silica described in Examples 1 to 18 and Comparative Examples 1 to 15 in which calcium was added during thermal spraying contains 7931 ppm of calcium, but Examples 19 to 28 and Comparative Example 16.
  • the total amount of alkaline earth metals (Ca+Mg+Ba) in the amorphous spherical silica used in Comparative Example 27 was 11 to 32 ppm, and the amount of aluminum metal was 97 to 8230 ppm.
  • the lithium content is 0.05% by mass or less in terms of oxide
  • the calcium content is in the range of 0.10% by mass or more and less than 1.0% by mass in terms of oxide.
  • Spherical crystalline silica particles were obtained in which 50% or more of the mass of the whole was crystalline silica, and 90.0% or more of the crystalline silica was quartz.
  • the particles of the examples according to the invention had a circularity of 0.86 to 0.92.
  • the average particle size three types of amorphous spherical silica having average particle sizes of 27.8 ⁇ m, 30.2 ⁇ m and 2.20 ⁇ m were used as raw materials in the examples according to the present invention.
  • the average particle size of the silica particles of the present invention using a raw material having an average particle size of 27.8 ⁇ m was 27.8 ⁇ m to 30.2 ⁇ m.
  • the average particle size of the silica of the present invention using a raw material having an average particle size of 30.2 ⁇ m was 32.3 ⁇ m to 33.8 ⁇ m.
  • the average particle size of the silica particles of the present invention using a raw material having an average particle size of 2.2 ⁇ m was 2.3 ⁇ m to 2.6 ⁇ m.
  • the calcium content is 0.10% by mass or more and less than 1.0% by mass in terms of oxide, and even when using raw materials with different average particle diameters, the atmospheric gas Only when the isotropic pressure is 125 MPa or more and the heat treatment temperature is from 1125° C. to 1300° C. or less, 50% or more of the whole is crystalline silica, and 90% or more of the crystalline silica is quartz.
  • Examples 21 to 31 and Comparative Example 18 using amorphous spherical silica having an average particle size of 30.2 ⁇ m as a raw material), and Comparative Example 18 (using amorphous spherical silica having an average particle size of 2.20 ⁇ m as a raw material)
  • the lithium content is less than 0.05% by mass in terms of oxide
  • the calcium content is 0.10 mass or more in terms of oxide. It can be seen that even when raw materials with less than 0% by mass and different average particle diameters are used, the appearance of cristobalite increases when the isotropic pressure of the atmosphere is less than 125 MPa, and the proportion of quartz in crystalline silica falls below 90%. . It can be seen that the isotropic pressure of the atmosphere gas must be 125 MPa or more and the heat treatment temperature must be 1125° C. to 1300° C. or less.

Abstract

The purpose of the present invention is to provide: spherical crystal particles having a low lithium content and a high quartz crystallization rate; a method for producing same; and a resin composite composition and resin composite that contain said spherical crystalline silica particles. These spherical crystalline silica particles have a circularity of 0.80 or more, an average particle diameter (D50) of 1.0-100.0 μm, contain lithium at a quantity of no more than/less than 0.05 mass% in terms of oxide and contain calcium at a quantity of 0.10 mass% to less than 1.00 mass% in terms of oxide, and in which 50.0% or more of the particles as a whole is crystalline silica and 90.0% or more of the crystalline silica is quartz. Also provided is a method for producing same.

Description

球状結晶質シリカ粒子およびその製造方法、並びに、それを含む樹脂複合組成物および樹脂複合体Spherical crystalline silica particles, method for producing the same, and resin composite composition and resin composite containing the same
 本発明は、球状結晶質シリカ粒子、特にリチウム含有量が低く且つ石英結晶化率の高い球状結晶質シリカ粒子、及びその製造方法、並びに、当該球状結晶質シリカ粒子を含む樹脂複合組成物および樹脂複合体に関係する。 The present invention provides spherical crystalline silica particles, particularly spherical crystalline silica particles having a low lithium content and a high quartz crystallinity, a method for producing the same, and a resin composite composition and a resin containing the spherical crystalline silica particles. Relating to complexes.
 シリカ粒子は樹脂用フィラーとして用いられており、例えば、半導体素子の封止材用のフィラーとして用いられている。シリカ粒子の形状について、角張った形状であると樹脂中での流動性、分散性、充填性が悪くなる。これらを改善するため、球状のシリカ粒子が広く用いられている。 Silica particles are used as fillers for resins, for example, as fillers for encapsulants for semiconductor devices. Regarding the shape of the silica particles, if the shape is angular, the fluidity, dispersibility and filling properties in the resin will deteriorate. In order to improve these, spherical silica particles are widely used.
 一般的には、球状シリカの製法として溶射法が用いられている。溶射では、粒子を火炎などの高温領域中に通すことにより、粒子が溶融し、粒子の形状は表面張力により球状となる。溶融球状化された粒子は、粒子どうしが融着しないように気流搬送して回収されるが、溶射後の粒子は急冷される。溶融状態から急冷されるため、シリカは、ほとんど結晶を含有せず、非晶質(アモルファス)構造を有し、一般に石英ガラスと呼ばれるガラス状の粒子となる。 Thermal spraying is generally used as a method for manufacturing spherical silica. In thermal spraying, the particles are melted by passing them through a high temperature region such as a flame, and the shape of the particles becomes spherical due to surface tension. The fused and spherical particles are recovered by being conveyed by an air stream so as not to fuse with each other, but the particles after thermal spraying are rapidly cooled. Because it is quenched from the molten state, silica has an amorphous structure with few crystals, resulting in glassy particles commonly referred to as fused silica.
 溶射によって得られる球状シリカは非晶質であるため、その熱膨張率および熱伝導率が低い。これらの物性は、結晶構造を有さず非晶質(アモルファス)構造を有する、石英ガラスの熱膨張率と同等と考えられ、おおよそ、熱膨張率は、0.5ppm/Kであり、熱伝導率は1.4W/mKである。 Because the spherical silica obtained by thermal spraying is amorphous, its coefficient of thermal expansion and thermal conductivity are low. These physical properties are considered to be equivalent to the coefficient of thermal expansion of quartz glass, which has an amorphous structure without a crystal structure. The rate is 1.4 W/mK.
 一般に封止材などで用いられる球状シリカ粒子は、非晶質であることから、熱膨張率が低い。そのため、樹脂と混合した際に混合物(樹脂組成物)の熱膨張率を下げる効果がある。これにより、樹脂組成物の熱膨張率を半導体素子に近づけることができる。また、樹脂組成物を封止材などに用いた際に、樹脂の硬化過程などの加熱、冷却時に生じる変形を抑制することができる。しかしながら、非晶質のシリカの熱伝導率はあまり高いものではない。一方で、半導体の高性能化に伴い発熱量が増大するにつて、発生する熱をより効率良く逃がすことが求められている。このため、より熱伝導率の高い球状シリカ粒子が必要とされてきている。 Spherical silica particles, which are generally used for sealing materials, etc., are amorphous and have a low coefficient of thermal expansion. Therefore, it has the effect of lowering the coefficient of thermal expansion of the mixture (resin composition) when mixed with a resin. Thereby, the coefficient of thermal expansion of the resin composition can be brought close to that of the semiconductor element. Moreover, when the resin composition is used as a sealing material or the like, it is possible to suppress deformation that occurs during heating or cooling during the curing process of the resin. However, the thermal conductivity of amorphous silica is not very high. On the other hand, as the amount of heat generated increases as the performance of semiconductors increases, it is required to release the generated heat more efficiently. Therefore, there is a need for spherical silica particles with higher thermal conductivity.
 非晶質のシリカに比べて、結晶質のシリカは規則的かつ緻密な構造を持つことから熱伝導率が高い。シリカの結晶構造として、クリストバライト、石英、トリディマイト等があり、これらの結晶構造を有するシリカは非晶質シリカと比べて、高い熱膨張率および熱伝導率を有することが知られている。特に石英は、他の結晶より緻密な結晶構造を有することから、熱伝導率が12.8W/mKと高く、石英を多く含む球状のシリカ粒子は高い熱伝導率が得られると考えられる。 Compared to amorphous silica, crystalline silica has a regular and dense structure, so it has high thermal conductivity. Crystal structures of silica include cristobalite, quartz, and tridymite, and silica having these crystal structures is known to have a higher coefficient of thermal expansion and thermal conductivity than amorphous silica. In particular, quartz has a denser crystal structure than other crystals, so it has a high thermal conductivity of 12.8 W/mK, and spherical silica particles containing a large amount of quartz are thought to provide a high thermal conductivity.
 結晶質シリカ粒子を得るための手段について、これまでに種々の検討がなされている。 Various studies have been made so far on means for obtaining crystalline silica particles.
 特許文献1は、ゾルゲル法により製造された非晶質のシリカゲルに、Zn化合物を添加し、900~1100℃で熱処理することによって、SiOを主成分とし、Zn化合物を含み、主結晶相がクオーツからなる多孔質粉末、が得られることを開示している。なお、当該熱処理は、大気中等で行われており、特に加圧はされていない。また、結晶相の含有比率は開示されていない。 In Patent Document 1, a Zn compound is added to an amorphous silica gel produced by a sol-gel method, and heat treatment is performed at 900 to 1100 ° C. to obtain SiO 2 as a main component, a Zn compound, and a main crystal phase. A porous powder made of quartz is obtained. Note that the heat treatment is performed in the atmosphere or the like, and no particular pressure is applied. Moreover, the content ratio of the crystalline phase is not disclosed.
 特許文献2は、結晶相が全体の90質量%以上であり、石英結晶が全体の70質量%以上であり、リチウムを酸化物換算で0.4~5質量%含み、及び/又は、カルシウムを酸化物換算で1~5質量%含む、球状結晶性シリカ粒子を開示している。当該球状結晶性シリカ粒子は、原料粉末を800~1300℃で熱処理し、冷却することにより得られる。なお、当該熱処理は電気炉、ガス炉等で行われており、特に加圧はされていない。 In Patent Document 2, the crystal phase is 90% by mass or more of the whole, the quartz crystal is 70% by mass or more of the whole, and contains 0.4 to 5% by mass of lithium in terms of oxide and / or calcium. It discloses spherical crystalline silica particles containing 1 to 5% by mass in terms of oxide. The spherical crystalline silica particles are obtained by heat-treating the raw material powder at 800 to 1300° C. and cooling it. Note that the heat treatment is performed in an electric furnace, a gas furnace, or the like, and no particular pressure is applied.
 特許文献3は、球状結晶質シリカ粒子に関するものであり、当該球状結晶質シリカ粒子における結晶質シリカの相の割合が40.0%以上であり、且つ、当該結晶質シリカの相に占める石英の割合が80.0質量%以上であり、リチウムが酸化物換算で0.02質量%以上0.40質量%未満含まれ、且つ、カルシウムが酸化物換算で0.004質量%以上1.0質量%未満含まれること、を開示している。当該球状結晶質シリカ粒子は、原料粉末を850~1150℃で熱処理することにより得られる。なお、当該熱処理は窒素やアルゴンなどの不活性ガス雰囲気で行うことができる。また、その雰囲気圧は、工業的に大量に熱処理することから大気圧が好ましいとされており、特に加圧はされていない。 Patent Document 3 relates to spherical crystalline silica particles, the ratio of the crystalline silica phase in the spherical crystalline silica particles is 40.0% or more, and the quartz occupies the crystalline silica phase. The ratio is 80.0% by mass or more, lithium is contained in an amount of 0.02% by mass or more and less than 0.40% by mass in terms of oxide, and calcium is contained in an amount of 0.004% by mass or more and 1.0% by mass in terms of oxide. % included. The spherical crystalline silica particles are obtained by heat-treating the raw material powder at 850 to 1150°C. Note that the heat treatment can be performed in an inert gas atmosphere such as nitrogen or argon. Moreover, the atmospheric pressure is preferably atmospheric pressure because a large amount of heat treatment is performed industrially, and no particular pressure is applied.
 特許文献4は、歯科用硬化物に関するものであり、当該歯科用硬化物に含まれる球状結晶制御粉体が、二酸化ケイ素の含有量が97質量%以上100質量%であり、且つ非晶質部分と結晶質部分とが混在してなることを開示している。非晶質部分と結晶質部分との割合は、非晶質の原料粉末を600℃~1700℃で熱処理することによって制御される。なお、当該熱処理では、特に加圧はされていない。特許文献4では、硬化の際に加圧してもよい旨の記載があるが、具体的な圧力は記載されていない。また、結晶質の種類および含有比率についても特に特定されていない。 Patent Document 4 relates to a dental cured product, and the spherical crystal controlled powder contained in the dental cured product has a silicon dioxide content of 97% by mass or more and 100% by mass, and has an amorphous portion and a crystalline portion are mixed. The ratio of the amorphous portion to the crystalline portion is controlled by heat-treating the amorphous raw material powder at 600°C to 1700°C. Note that no particular pressure is applied in the heat treatment. Patent Document 4 describes that pressure may be applied during curing, but does not describe specific pressure. Also, the type and content of the crystalline are not specified.
 特許文献5は、キータイト相を80質量%以上含む球状シリカフィラー用粉末を開示している。キータイトは、石英やクリストバライトのような一般的な結晶相では無く、主に高温・高圧・高水蒸気圧下で合成されるものである。特許文献5では、特段の加圧をせずに、球状非晶質シリカ粒子とリチウム化合物を混合し、この混合物を650~725℃で3~20時間加熱することにより当該球状シリカフィラー用粉末を得ている。 Patent Document 5 discloses a spherical silica filler powder containing 80% by mass or more of a keatite phase. Keatite is not a common crystalline phase such as quartz or cristobalite, but is mainly synthesized under high temperature, high pressure and high water vapor pressure. In Patent Document 5, spherical amorphous silica particles and a lithium compound are mixed without applying any particular pressure, and the mixture is heated at 650 to 725° C. for 3 to 20 hours to obtain the spherical silica filler powder. It has gained.
特開2002-20111号公報Japanese Unexamined Patent Application Publication No. 2002-20111 国際公開第2018/186308号WO2018/186308 国際公開第2021/235530号WO2021/235530 特許5616672号公報Japanese Patent No. 5616672 特開2019-52051号公報JP 2019-52051 A
 半導体製品では、発生する熱を効率良く逃がすことが求められている。特に高性能化に伴う発熱量の増大に対応するためには、半導体の封止材料などの周辺部材にもより熱を逃がしやすい高熱伝導の材料が求められている。このため、封止材料などに用いられるフィラーとして、熱伝導率の高く、高い充填率が得られる球状結晶質シリカは有用である。シリカには種々の結晶形態があり、特に石英は熱伝導率が高く、好ましい。 Semiconductor products are required to efficiently dissipate the generated heat. In particular, in order to cope with the increase in the amount of heat generated due to the higher performance, there is a demand for a material with high thermal conductivity that allows heat to escape more easily to peripheral members such as sealing materials for semiconductors. For this reason, spherical crystalline silica, which has high thermal conductivity and provides a high filling rate, is useful as a filler used in sealing materials and the like. Silica has various crystal forms, and quartz is particularly preferable because of its high thermal conductivity.
 球状結晶質シリカを得る方法としては、非晶質の球状シリカに、結晶化を促進するための元素を添加し、高温で熱処理して、結晶化する方法が開示されている。ただし、一般に、添加元素は球状結晶質シリカの性状に影響を与えるおそれがある。特に、半導体封止フィラーの用途では、アルカリ金属が電子デバイスの信頼性を損なうことが懸念されている。したがって、球状結晶質シリカでは、更なるリチウム低減が求められている。 As a method for obtaining spherical crystalline silica, a method is disclosed in which an element for promoting crystallization is added to amorphous spherical silica, heat-treated at a high temperature, and crystallized. However, in general, additive elements may affect the properties of spherical crystalline silica. In particular, when used as a semiconductor encapsulating filler, there is concern that alkali metals may impair the reliability of electronic devices. Therefore, spherical crystalline silica is required to further reduce lithium.
 また、熱伝導率を向上させる観点から、球状結晶質シリカにおいて、結晶質の含有率が一定程度以上であることが要求される。非晶質の含有率が高いと、熱伝導率は非晶質シリカのそれに近いものになり、熱伝導率が十分に向上できないことがあるためである。その上で、主たる結晶質の種類が特定されることも要求される。結晶質の種類によって、熱伝導率の性状は異なっている。したがって、複数の結晶質種類が混在すると、熱伝導率が変動し、所望の熱伝導率が得られないことがあるためである。 In addition, from the viewpoint of improving thermal conductivity, spherical crystalline silica is required to have a crystalline content of a certain level or more. This is because if the amorphous content is high, the thermal conductivity becomes close to that of amorphous silica, and the thermal conductivity may not be sufficiently improved. In addition, it is also required that the main crystalline type be specified. The properties of thermal conductivity differ depending on the type of crystalline material. Therefore, when a plurality of crystalline types are mixed, the thermal conductivity fluctuates, and the desired thermal conductivity may not be obtained.
 特許文献1、4は、結晶質の含有率、結晶質の種類について特定されていない。また、特許文献5のシリカフィラー用粉末では、キータイト相の含有率が80質量%であることを開示しているが、当該粉末における結晶相の含有率が不明である。したがって、これらの先行技術では、十分な熱伝導性が得られないおそれがある。 Patent Documents 1 and 4 do not specify the crystalline content or the type of crystalline. Moreover, although the powder for silica filler of Patent Document 5 discloses that the content of the keatite phase is 80% by mass, the content of the crystal phase in the powder is unknown. Therefore, these prior art techniques may not provide sufficient thermal conductivity.
 特許文献2の球状結晶性シリカ粒子は、結晶相が全体の90質量%以上であり、石英結晶が全体の70質量%以上であるので、十分な熱伝導性を期待できる。ただし、リチウムが酸化物換算で0.4~5質量%含まれている。また、特許文献3の球状結晶質シリカ粒子は、カルシウムを酸化物換算で0.004質量%以上1.0質量%未満含むことで、リチウムを酸化物換算で0.02質量%以上0.40質量%未満に低減している。ただし、さらにリチウムを低減することが望まれる。 In the spherical crystalline silica particles of Patent Document 2, the crystal phase accounts for 90% by mass or more of the whole, and the quartz crystal accounts for 70% by mass or more of the whole, so sufficient thermal conductivity can be expected. However, it contains 0.4 to 5% by mass of lithium in terms of oxide. Further, the spherical crystalline silica particles of Patent Document 3 contain calcium of 0.004% by mass or more and less than 1.0% by mass in terms of oxide, so that lithium is contained in an amount of 0.02% by mass or more and 0.40% by mass in terms of oxide. It is reduced to less than % by mass. However, it is desirable to further reduce lithium.
 上記の状況に鑑みて、本発明は、リチウム含有量が低く且つ石英結晶化率の高い球状結晶粒子、およびその製造方法、並びに、当該球状結晶質シリカ粒子を含む樹脂複合組成物および樹脂複合体を提供することを目的とする。 In view of the above situation, the present invention provides spherical crystal particles having a low lithium content and a high quartz crystallinity, a method for producing the same, and a resin composite composition and a resin composite containing the spherical crystalline silica particles. intended to provide
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、以下の着想を得た。
 非晶質のシリカ粒子にカルシウムを添加して熱処理することによって石英への結晶化が促進される。すなわち、カルシウムは石英への結晶化促進元素である。しかしカルシウムが存在する周辺のみで石英への結晶化が生じる。つまり、カルシウム添加による石英化の効果は局所的、または限定的である。
 加えて、熱処理によって非晶質シリカ粒子を結晶化する場合、概してクリストバライトへの結晶化も生じる。したがって、カルシウム添加の効果が及ばない範囲、典型的には非晶質シリカ粒子の内部では、石英ではなくクリストバライトへの結晶化が進む。非晶質シリカ粒子全体の石英化を促進するには、カルシウムが粒子内で熱拡散する必要があるが、非晶質シリカ中のカルシウムの拡散係数が小さい。
 その結果、カルシウム添加だけでは、石英結晶化率は低い。このことは、特に大粒径シリカ粒子(典型的には、D50:10μm以上)の場合に顕著である。これは、シリカ粒子の径が大きいほど、比表面積が低下し、カルシウムとの接触面積が低下するためである。
 このように、カルシウム添加のみによって、石英の結晶化率を向上することには限界がある。
 一方で、非晶質シリカの結晶化には圧力が影響することは知られているが、詳細に調べられた報告はほとんどない。
 そこで、本特許発明者等は、非晶質シリカ粒子への添加物の種類とその添加量、熱処理時の雰囲気圧力を変動させて結晶化実験を行った。特に、雰囲気圧力について、高圧高温処理を熱間等方圧加圧(HIP: Hot Isostatic Pressing)装置を用いて、高圧力域まで変動させた。その結果、リチウム元素の添加量を実質的に無添加のレベルまで低減させても高い石英結晶化率のシリカを得ることができることを見出した。
The present inventors obtained the following ideas as a result of earnest studies for solving the above problems.
Crystallization into quartz is promoted by adding calcium to amorphous silica particles and heat-treating them. That is, calcium is a crystallization promoting element for quartz. However, crystallization to quartz occurs only in the vicinity where calcium is present. That is, the effect of calcification by adding calcium is local or limited.
In addition, when heat treatment crystallizes amorphous silica particles, crystallization to cristobalite generally also occurs. Therefore, crystallization to cristobalite rather than quartz proceeds within the range where the effect of calcium addition does not reach, typically inside amorphous silica particles. Calcium needs to thermally diffuse within the particles in order to promote the quartification of the entire amorphous silica particles, but the diffusion coefficient of calcium in the amorphous silica is small.
As a result, the quartz crystallinity is low with calcium addition alone. This is particularly noticeable in the case of large-sized silica particles (typically, D50: 10 μm or more). This is because the larger the diameter of the silica particles, the lower the specific surface area and the contact area with calcium.
Thus, there is a limit to improving the crystallinity of quartz only by adding calcium.
On the other hand, it is known that the crystallization of amorphous silica is affected by pressure, but there are few reports on detailed investigations.
Therefore, the inventors of the present patent conducted crystallization experiments by varying the type and amount of additive added to amorphous silica particles and the atmospheric pressure during heat treatment. In particular, the atmospheric pressure was varied up to a high pressure range using a hot isostatic pressing (HIP) apparatus for high-pressure and high-temperature processing. As a result, the inventors have found that silica with a high quartz crystallinity can be obtained even if the amount of lithium element added is reduced to a substantially non-added level.
 本発明の要旨は以下の通りである。
[1]
 円形度が0.80以上、平均粒径(D50)が1.0μm以上100.0μm以下であり、リチウムを酸化物換算で0.05質量%以下含有し、カルシウムを酸化物換算で0.10~1.00質量%未満含有し、全体の50.0%以上が結晶質シリカであり、かつ前記結晶質シリカの90.0%以上が石英である、球状結晶質シリカ粒子。
[2]
 リチウムを酸化物換算で0.02質量%以下含有する[1]に記載の球状結晶質シリカ粒子。
[3]
 クリストバライトが全体の5.0%以下である、[1]または[2]に記載の球状結晶質シリカ粒子。
[4]
 アルミニウムを90~9000ppm含有する、[1]~[3]のいずれか1項に記載の球状結晶質シリカ粒子。
[5]
 平均粒径(D50)が10.0μm以上である、[1]~[4]のいずれか1項に記載の球状結晶質シリカ粒子。
[6]
 球状非晶質シリカ粒子に、カルシウム原料を混合して、又はカルシウム原料とリチウム化合物粒子を混合して、原料粉末とする、原料粉末調整工程と、
 前記原料粉末調整工程で得られた原料粉末を、温度が1125℃以上1300℃以下で、かつ、圧力が125MPa以上で、熱間等方圧加圧装置を用いて1時間以上熱処理し、球状結晶質シリカ粒子を生成する、熱処理工程と、
を含み、
 前記熱処理工程で生成される球状結晶質シリカ粒子において、カルシウムが酸化物換算で0.10~1.00質量%となるように、かつ、リチウムが酸化物換算で0.05質量%以下となるように、
 前記原料粉末調整工程における、カルシウム原料、若しくは、カルシウム原料とリチウム化合物粒子の混合割合を調整する、
球状結晶質シリカ粒子の製造方法。
[7]
 樹脂中に、[1]~[5]のいずれか1項に記載された球状結晶質シリカ粒子を含有することを特徴とする、樹脂複合組成物。
[8]
 [7]に記載された樹脂複合組成物を硬化してなることを特徴とする、樹脂複合体。
The gist of the present invention is as follows.
[1]
Circularity is 0.80 or more, average particle size (D50) is 1.0 μm or more and 100.0 μm or less, lithium is 0.05% by mass or less in terms of oxide, and calcium is 0.10 in terms of oxide. Spherical crystalline silica particles containing less than ~1.00% by mass, 50.0% or more of the whole being crystalline silica, and 90.0% or more of said crystalline silica being quartz.
[2]
The spherical crystalline silica particles according to [1], containing 0.02% by mass or less of lithium in terms of oxide.
[3]
The spherical crystalline silica particles according to [1] or [2], wherein cristobalite accounts for 5.0% or less of the whole.
[4]
The spherical crystalline silica particles according to any one of [1] to [3], containing 90 to 9000 ppm of aluminum.
[5]
The spherical crystalline silica particles according to any one of [1] to [4], having an average particle diameter (D50) of 10.0 μm or more.
[6]
A raw material powder preparation step of mixing spherical amorphous silica particles with a calcium raw material or mixing a calcium raw material and lithium compound particles to obtain a raw material powder;
The raw material powder obtained in the raw material powder preparation step is heat-treated at a temperature of 1125° C. or higher and 1300° C. or lower and a pressure of 125 MPa or higher using a hot isostatic pressing apparatus for 1 hour or longer to obtain spherical crystals. a heat treatment step to produce fine silica particles;
including
In the spherical crystalline silica particles generated in the heat treatment step, calcium is 0.10 to 1.00% by mass in terms of oxide, and lithium is 0.05% by mass or less in terms of oxide. like,
Adjusting the mixing ratio of the calcium raw material or the calcium raw material and the lithium compound particles in the raw material powder adjusting step,
A method for producing spherical crystalline silica particles.
[7]
A resin composite composition characterized by containing the spherical crystalline silica particles according to any one of [1] to [5] in a resin.
[8]
A resin composite obtained by curing the resin composite composition described in [7].
 本発明によれば、リチウム含有量が低く且つ石英結晶化率の高い球状結晶粒子、およびその製造方法、並びに、当該球状結晶質シリカ粒子を含む樹脂複合組成物および樹脂複合体を提供される。 According to the present invention, there are provided spherical crystal particles with a low lithium content and a high quartz crystallinity, a method for producing the same, and a resin composite composition and a resin composite containing the spherical crystalline silica particles.
 本発明の球状結晶質シリカ粒子は、
円形度が0.80以上、
平均粒径(D50)が1.0μm以上100.0μm以下であり、
リチウムを酸化物換算で0.05質量%以下含有し、
カルシウムを酸化物換算で0.10~1.00質量%未満含有し、
全体の50.0%以上が結晶質シリカであり、かつ
前記結晶質シリカの90.0%以上が石英である、ことを特徴とする。以下、特定事項ごとに説明をする。
The spherical crystalline silica particles of the present invention are
Circularity of 0.80 or more,
The average particle diameter (D50) is 1.0 μm or more and 100.0 μm or less,
Contains 0.05% by mass or less of lithium in terms of oxide,
Contains less than 0.10 to less than 1.00% by mass of calcium in terms of oxide,
50.0% or more of the whole is crystalline silica, and 90.0% or more of the crystalline silica is quartz. Each specific item will be explained below.
 本発明の球状結晶質シリカ粒子は、球状であり、球状にするための手段は特に制限されるものではなく、粉砕、研磨等の手段を用いてもよい。特に、結晶化する前に溶射する手段は、生産性が高く、低コストで球状化することができる。球状のシリカ粒子は、半導体封止材用のフィラー等として利用する場合に、流動性、分散性、充填性が高く、また封止材作製用機器の摩耗も抑えることができる。 The spherical crystalline silica particles of the present invention are spherical, and the means for making them spherical is not particularly limited, and means such as pulverization and polishing may be used. In particular, thermal spraying before crystallization is highly productive and enables spheroidization at low cost. Spherical silica particles have high fluidity, dispersibility, and filling properties when used as a filler for a semiconductor encapsulant, and can also suppress abrasion of encapsulant-producing equipment.
(円形度:0.80以上)
 より詳しくは、本発明の球状結晶質シリカ粒子は、平均円形度が0.80以上であり、好ましくは0.85、より好ましくは0.90以上であってもよい。円形度は、市販のフロー式粒子像分析装置により測定することができる。円形度=1のときが、真円である。つまり、円形度が1に近いほど、真円に近いとされる。平均円形度は、100個以上の粒子について測定した円形度の平均値として算出する。平均円形度が0.80未満であると、半導体封止材用のフィラー等として利用する場合に、流動性、分散性、充填性が十分でなく、また封止材作製用機器の摩耗が促進される場合がある。
 円形度の上限は1.0であってもよいが、実際に円形度を1.0にするのは実質的に困難であり、実現しようとする場合、製造コスト、管理コストが高くなる。用途等に応じて、円形度の上限を0.98、好ましくは0.95にしてもよい。
(Circularity: 0.80 or more)
More specifically, the spherical crystalline silica particles of the present invention may have an average circularity of 0.80 or more, preferably 0.85, and more preferably 0.90 or more. Circularity can be measured by a commercially available flow-type particle image analyzer. A perfect circle is obtained when the degree of circularity is 1. In other words, the closer the circularity is to 1, the closer to a perfect circle. The average circularity is calculated as the average value of circularities measured for 100 or more particles. If the average circularity is less than 0.80, when used as a filler for a semiconductor encapsulating material, the fluidity, dispersibility, and filling properties are not sufficient, and the wear of the encapsulating material-producing equipment is accelerated. may be
Although the upper limit of the circularity may be 1.0, it is practically difficult to achieve a circularity of 1.0, and if it is to be achieved, the manufacturing and management costs will increase. The upper limit of circularity may be set to 0.98, preferably 0.95, depending on the application.
 上記の平均円形度にするためには、出発原料となる非晶質の球状シリカ粒子(結晶化する前の粒子)の円形度を調節することで可能となる。溶射手段であれば、シリカ粉末を容易に円形度の高い粒子にすることができる。そして、本発明の球状結晶質シリカ粒子の平均円形度は、結晶化のための加熱処理の前後で、ほとんど低下しない。本発明の球状結晶質シリカ粒子は、1125~1300℃で結晶質にされており、この温度範囲では円形度がほとんど低下しないためである。また、非晶質のシリカ粒子どうしは、1125~1300℃程度で、融着または焼結により結合することがあるが、本発明の球状結晶質シリカ粒子は、結晶質にされているため(既に非晶質でないため)、1125~1300℃程度での融着または焼結により結合することが十分に抑えられる。結合すると円形度は低下するが、本発明の球状結晶質シリカ粒子どうしは結合が十分に抑えられているために、平均円形度がほとんど低下しない。したがって、本発明の球状結晶質シリカ粒子は、半導体封止材用のフィラー等として利用する場合に、流動性、分散性、充填性を高くすることができる。  In order to achieve the above average circularity, it is possible to adjust the circularity of the amorphous spherical silica particles (particles before crystallization) that are the starting material. If it is a thermal spraying means, the silica powder can be easily formed into particles with a high degree of circularity. Moreover, the average circularity of the spherical crystalline silica particles of the present invention hardly decreases before and after the heat treatment for crystallization. This is because the spherical crystalline silica particles of the present invention are crystalline at 1125 to 1300° C., and the circularity hardly decreases in this temperature range. In addition, amorphous silica particles may be bonded together by fusion or sintering at about 1125 to 1300 ° C., but the spherical crystalline silica particles of the present invention are crystalline (already (because it is not amorphous), bonding by fusion bonding or sintering at about 1125 to 1300° C. is sufficiently suppressed. Although the degree of circularity is reduced by bonding, the spherical crystalline silica particles of the present invention are sufficiently inhibited from being bonded to each other, so that the average degree of circularity hardly decreases. Therefore, the spherical crystalline silica particles of the present invention can improve fluidity, dispersibility, and filling properties when used as a filler for a semiconductor sealing material.
(平均粒径(D50):1.0μm以上100.0μm以下)
 本発明の球状結晶質シリカ粒子は、平均粒径(D50)が1.0~100.0μmであり、10.0μm以上であってもよい。平均粒径が100.0μmを超えると、半導体封止材用のフィラー等として利用する場合に、粒径が大きくなりすぎてゲートづまりや金型摩耗を引き起こしやすくなることがあり、平均粒径が1.0μm未満では粒子が小さくなりすぎて、シリカ粒子と樹脂とを混合した樹脂組成物の粘度を過度に高めることがあり、多量に充填することができなくなることがある。なお、ここでの平均粒径は、湿式のレーザー回折法(レーザー回折散乱法)による粒度分布測定により求めることができる。
 ここで言う平均粒径は、メディアン径と呼ばれるもので、レーザー回折法で粒径分布を測定して、粒径の頻度の累積が50%となる粒径を平均粒径(D50)とする。
(Average particle size (D50): 1.0 μm or more and 100.0 μm or less)
The spherical crystalline silica particles of the present invention have an average particle size (D50) of 1.0 to 100.0 μm, and may be 10.0 μm or more. If the average particle size exceeds 100.0 μm, the particle size becomes too large when used as a filler for a semiconductor encapsulant, etc., and gate clogging and mold wear tend to occur. If the particle size is less than 1.0 μm, the particles become too small, and the viscosity of the resin composition in which the silica particles and the resin are mixed may be excessively increased, making it impossible to fill a large amount. The average particle size here can be obtained by particle size distribution measurement by a wet laser diffraction method (laser diffraction scattering method).
The average particle size referred to here is called a median diameter, and the particle size distribution is measured by a laser diffraction method, and the particle size at which the cumulative particle size frequency is 50% is defined as the average particle size (D50).
 上記の粒径範囲にするためには、原料の非晶質の球状シリカ粒子(結晶化する前の粒子)の粒径を調節することで可能である。溶射手段であれば、容易に粒径を調節することができる。言い換えると、本発明の球状結晶質シリカ粒子の平均粒径は、結晶化のための加熱処理の前後で、ほとんど変化をしない。非晶質のシリカ粒子どうしは、1125~1300℃程度でも粒子が軟化し、融着または焼結により結合することがあるが、本発明の球状結晶質シリカ粒子は、結晶質にされており、非晶質のように軟化しないため、1125~1300℃程度での融着または焼結により結合することが十分に抑えられる。特に、粒子どうしの融着または焼結による結合は、粒子の表面積比が大きいほど、つまり粒径が小さいほど生じやすい。しかし、本発明の球状結晶質シリカ粒子は、結晶質であるため、平均粒径が1.0μmであっても、融着または焼結による結合をすることがなく、凝集しにくい。したがって、本発明の球状結晶質シリカ粒子は、半導体封止材用のフィラー等として利用する場合に、流動性、分散性、充填性が高くすることができる。
 また、粒子同士の融着または焼結が起こる温度は、原料の非晶質の球状シリカの粒径や添加成分の種類、添加量により変わるため、1125~1300℃の温度範囲でも、それぞれの原料や添加成分に応じて、融着または焼結が起こらない、適当な温度で熱処理を行うことが望ましい。
The above particle size range can be achieved by adjusting the particle size of the raw amorphous spherical silica particles (particles before crystallization). If it is thermal spraying means, the particle size can be easily adjusted. In other words, the average particle size of the spherical crystalline silica particles of the present invention hardly changes before and after the heat treatment for crystallization. Amorphous silica particles may be softened even at about 1125 to 1300° C. and may be bonded by fusion or sintering, but the spherical crystalline silica particles of the present invention are crystalline, Since it does not soften like an amorphous material, bonding by fusion or sintering at about 1125 to 1300° C. is sufficiently suppressed. In particular, bonding between particles due to fusion or sintering is more likely to occur as the surface area ratio of the particles increases, that is, as the particle size decreases. However, since the spherical crystalline silica particles of the present invention are crystalline, even if the average particle size is 1.0 μm, they are not bound by fusion or sintering, and are less likely to agglomerate. Therefore, the spherical crystalline silica particles of the present invention can improve fluidity, dispersibility, and filling properties when used as a filler for semiconductor sealing materials.
In addition, the temperature at which the particles are fused or sintered varies depending on the particle size of the raw material amorphous spherical silica, the type of additive component, and the amount added. It is desirable to carry out the heat treatment at an appropriate temperature at which fusion or sintering does not occur depending on the components and added components.
(リチウム含有率:酸化物換算で0.05質量%以下)
 本発明の球状結晶質シリカ粒子は、球状結晶質シリカ粒子の全質量を基準として、酸化物換算でリチウムを0.05質量%以下で含有する。リチウムはアルカリ金属の一つであり、アルカリ金属が電子デバイスの信頼性を損なうおそれがある。したがって、シリカ粒子のリチウム含有率は低いほど、当該シリカ粒子をフィラーとして用いる電子デバイスの信頼性は向上する。この点で、リチウム含有率は、低いほど好ましく、酸化物換算で、0.03質量%以下または未満、0.02質量%以下または未満、0.01質量%以下または未満であってもよい。また、リチウム含有量の下限は限定されるものではなく、0であってもよい。本発明におけるリチウムは、積極的に添加されるものに限定されず、原料となる非晶質シリカ粒子等に含まれる不純物であってもよい。また、リチウム含有率を調整するために、リチウムやリチウム化合物を原料となる非晶質シリカ粒子等に混合してもよい。リチウム化合物は、酸化物、炭酸化物、水酸化物、硝酸化物など、添加する際の形態は特に制限されない。
 概して、リチウムは、結晶化が促進されたシリカ粒子内で、酸化物、炭酸化物、水酸化物、硝酸化物など、あるいはシリカとの複合酸化物の形態で存在することができ、実質的に大部分は酸化物の形態で存在する。したがって、特に断りのないかぎり、本発明では、リチウム含有量を酸化物換算で算出する。具体的には、リチウムの含有量は、ICP質量分析(ICP-MS)による測定を行い、これを酸化物換算することによって得られる。
(Lithium content: 0.05% by mass or less in terms of oxide)
The spherical crystalline silica particles of the present invention contain 0.05% by mass or less of lithium in terms of oxide based on the total mass of the spherical crystalline silica particles. Lithium is one of alkali metals, and alkali metals may impair the reliability of electronic devices. Therefore, the lower the lithium content of the silica particles, the more reliable the electronic device using the silica particles as a filler. In this respect, the lithium content is preferably as low as possible, and may be 0.03% by mass or less or less, 0.02% by mass or less or less, or 0.01% by mass or less or less in terms of oxide. Moreover, the lower limit of the lithium content is not limited, and may be zero. Lithium in the present invention is not limited to being positively added, and may be an impurity contained in the raw material such as amorphous silica particles. Moreover, in order to adjust the lithium content, lithium or a lithium compound may be mixed with the raw material such as amorphous silica particles. The form of the lithium compound to be added is not particularly limited, and may be an oxide, carbonate, hydroxide, nitrate, or the like.
In general, lithium can exist in the form of oxides, carbonates, hydroxides, nitrates, etc., or composite oxides with silica within silica particles with enhanced crystallization, and substantially The part is present in oxide form. Therefore, unless otherwise specified, in the present invention, the lithium content is calculated in terms of oxide. Specifically, the content of lithium is obtained by measuring by ICP mass spectrometry (ICP-MS) and converting it to oxide.
(カルシウム含有率:酸化物換算で0.10質量%以上1.00質量%未満)
 本発明の球状結晶質シリカ粒子は、球状結晶質シリカ粒子の全質量を基準として、酸化物換算でカルシウムを酸化物換算で0.10質量%以上1.00質量%未満で含有する。カルシウムは、非晶質シリカとともに加熱することにより、非晶質シリカの結晶化を促進する。カルシウム含有率が0.10質量%未満であると、結晶化が十分に促進しないおそれがある。カルシウム含有率が高いほど、結晶化を促進する効果は高まる。その観点から、カルシウム含有率を、0.20質量%以上としてもよい。ただし、カルシウムの含有率が1.00質量%以上で非晶質シリカと加熱すると、カルシウムとシリカが反応し、例えば、Ca(SiO)のような珪酸化合物を生成しやすくなる。特に高圧力下であれば、そのおそれがさらに高まる。このような化合物は、シリカ粒子の外周部に生成しやすく、粒子の形状が変形して粒子の円形度を低下させたり、珪酸化合物が不定形の微細な粒子となって存在したりするため、樹脂と混合した際の流動性を低下させるおそれがある。したがって、カルシウム含有率の上限は1.00質量%未満であり、好ましくは0.90質量%以下または未満であり、より好ましくは0.80質量%以下または未満である。
 なお、カルシウム含有量の調整には、カルシウムや、カルシウム化合物を原料となる非晶質シリカ粒子等に混合してもよい。カルシウム化合物は、酸化物、炭酸化物、水酸化物、硝酸化物など、添加する際の形態は特に制限されない。非晶質シリカ粒子の原料となる珪石には、不純物としてカルシウム化合物が含まれていることが多いことから、酸化物換算での含有量が適正な範囲の原料珪石や非晶質シリカ粒子を用意して、上述の好ましい範囲に調整することもできる。
 概して、カルシウムは、結晶化が促進されたシリカ粒子内で、酸化物、炭酸化物、水酸化物、硝酸化物など、あるいはシリカとの複合酸化物の形態で存在することができ、実質的に大部分は酸化物の形態で存在する。したがって、特に断りのないかぎり、本発明では、カルシウム含有量を酸化物換算で算出する。具体的には、カルシウムの含有量は、ICP質量分析(ICP-MS)による測定を行い、これを酸化物換算することによって得られる。
(Calcium content: 0.10% by mass or more and less than 1.00% by mass in terms of oxide)
The spherical crystalline silica particles of the present invention contain 0.10% by mass or more and less than 1.00% by mass of calcium in terms of oxide based on the total mass of the spherical crystalline silica particles. Calcium promotes crystallization of amorphous silica by heating with amorphous silica. If the calcium content is less than 0.10% by mass, crystallization may not be promoted sufficiently. The higher the calcium content, the higher the effect of promoting crystallization. From that point of view, the calcium content may be 0.20% by mass or more. However, if the calcium content is 1.00% by mass or more and the amorphous silica is heated, the calcium and silica react with each other to easily form a silicic acid compound such as Ca 2 (SiO 4 ). In particular, under high pressure, the possibility of this is further increased. Such compounds are likely to be generated in the outer periphery of silica particles, and the shape of the particles is deformed to reduce the circularity of the particles. There is a risk of reducing fluidity when mixed with resin. Therefore, the upper limit of the calcium content is less than 1.00% by mass, preferably less than or equal to 0.90% by mass, and more preferably less than or equal to 0.80% by mass.
To adjust the calcium content, calcium or a calcium compound may be mixed with the raw material, such as amorphous silica particles. The form of the calcium compound to be added is not particularly limited, and may be an oxide, carbonate, hydroxide, nitrate, or the like. Silica stone, which is the raw material for amorphous silica particles, often contains calcium compounds as impurities. can be adjusted to the preferred range described above.
In general, calcium can be present in the form of oxides, carbonates, hydroxides, nitrates, etc., or composite oxides with silica within silica particles with accelerated crystallization, and can be substantially large. The part is present in oxide form. Therefore, unless otherwise specified, in the present invention, the calcium content is calculated in terms of oxide. Specifically, the content of calcium is obtained by measuring by ICP mass spectrometry (ICP-MS) and converting it to oxide.
 (アルミニウム)
 本発明の一態様では、球状結晶質シリカ粒子が、球状結晶質シリカ粒子の全質量を基準として、金属アルミニウム換算でアルミニウムを90~9000ppm含有してもよい。
 非晶質シリカ粒子の結晶化を促進するためにカルシウムを用いる場合、金属アルミニウム換算で90~9000ppmのアルミニウムを含むことが好ましい。特定の理論に拘束されるものではないが、アルミニウムは熱処理の際に結晶核形成剤として作用し、カルシウムとともに用いた場合に石英結晶を多く生成する効果を得ることができる。しかしながら、アルミニウムが金属アルミニウム換算で90ppmより少ない場合、結晶化を促進する十分な効果を得ることができない。また、アルミニウムが金属アルミニウム換算で9000ppmより多くなると、カルシウムとアルミニウムとシリカに含まれる珪素との複合酸化物が生成しやすくなるため、カルシウム添加による結晶化を促進する効果が少なくなるうえに、Alが多くなることでクリストバライトが生成し易くなる。すなわち、過剰なアルミニウムは、石英結晶の生成量を少なくするおそれがある。上記を踏まえて、アルミニウム含有量を、100ppm以上としてもよく、8200ppm以下としてもよい。
 なお、アルミニウム含有量の調整には、アルミニウムや、アルミニウム化合物を原料となる非晶質シリカ粒子等に混合してもよい。アルミニウム化合物として、酸化アルミニウム、水酸化アルミニウム等を用いてもよい。非晶質シリカ粒子の原料となる珪石には、不純物としてアルミニウム化合物が含まれていることが多いことから、金属アルミニウム換算での含有量が適正な範囲の原料珪石や非晶質シリカ粒子を用意して、上述の好ましい範囲に調整することもできる。
 また、アルミニウムの含有量は、ICP質量分析(ICP-MS)による測定によって得られる。
(aluminum)
In one aspect of the present invention, the spherical crystalline silica particles may contain 90 to 9000 ppm of aluminum in terms of metallic aluminum based on the total mass of the spherical crystalline silica particles.
When calcium is used to promote crystallization of amorphous silica particles, it preferably contains 90 to 9000 ppm of aluminum in terms of metallic aluminum. Without being bound by any particular theory, aluminum acts as a crystal nucleating agent during heat treatment, and can have the effect of producing more quartz crystals when used with calcium. However, when aluminum is less than 90 ppm in terms of metal aluminum, a sufficient effect of promoting crystallization cannot be obtained. In addition, if the amount of aluminum exceeds 9000 ppm in terms of metal aluminum, a composite oxide of calcium, aluminum, and silicon contained in silica is likely to be formed. cristobalite is likely to be generated by increasing the That is, excess aluminum may reduce the production of quartz crystals. Based on the above, the aluminum content may be set to 100 ppm or more and may be set to 8200 ppm or less.
In order to adjust the aluminum content, aluminum or an aluminum compound may be mixed with the raw material amorphous silica particles or the like. As an aluminum compound, aluminum oxide, aluminum hydroxide, or the like may be used. Silica stone, which is the raw material for amorphous silica particles, often contains aluminum compounds as impurities. can be adjusted to the preferred range described above.
Also, the content of aluminum is obtained by measurement by ICP mass spectrometry (ICP-MS).
 さらに、本発明の一態様では、球状結晶質シリカ粒子が、結晶化度に影響を及ぼさない範囲で、金属不純物を含んでもよい。典型的な、金属不純物として、アルカリ金属(カリウム、ナトリウム等)、アルカリ土類金属(マグネシウム、バリウム等)等が挙げられる。 Furthermore, in one aspect of the present invention, the spherical crystalline silica particles may contain metal impurities within a range that does not affect the degree of crystallinity. Typical metal impurities include alkali metals (potassium, sodium, etc.), alkaline earth metals (magnesium, barium, etc.), and the like.
 (結晶質シリカ:球状結晶質シリカ粒子の50.0%以上)
 本発明の球状結晶質シリカ粒子は、全体の50.0%以上が結晶質シリカである。ここで、全体とは、球状結晶質シリカ粒子の全体を指す。
 結晶質シリカが50.0%未満であると、非晶質シリカの比率が50.0%以上となる。非晶質シリカの熱伝導率は1.4W/mKと低いため、非晶質のシリカを50.0%以上含むとシリカ粒子の熱伝導率を低下させてしまうことがある。結晶質シリカの割合が高いほど、熱伝導率が高くなるので好ましい。したがって、結晶質シリカの割合は、60.0%以上であってもよく、好ましくは70.0%以上であってもよく、より好ましくは80.0%以上であってもよく、さらに好ましくは90.0%以上であってもよい。結晶質シリカの割合の上限は特に限定されるものではなく、用途に応じて、典型的には所望する熱伝導率に応じて調整してもよい。したがって、結晶質シリカの割合の上限は100%であってもよく、95%以下であってもよく、90%以下であってもよく、85%以下であってもよく、80%以下であってもよい。
 結晶相と非晶質の含有量は、X線回折により定量分析することができる。X線回折による定量分析では、リートベルト法などの解析方法を用いることにより、標準試料を用いずに定量分析することが可能である。
 より詳しくは、球状結晶質シリカ粒子の全体に対する結晶質シリカの割合(以下、「結晶化率」と称することもある)は、X線回折により、非晶質のピークと結晶質のピークの積分面積を求め、その結晶質の面積の比率を結晶化率とする。つまり、結晶化率=結晶質のピークの積分面積/(非晶質のピークの積分面積+結晶質のピークの積分面積)として計算する。
(Crystalline silica: 50.0% or more of spherical crystalline silica particles)
In the spherical crystalline silica particles of the present invention, 50.0% or more of the whole is crystalline silica. Here, the whole refers to the whole spherical crystalline silica particles.
If the crystalline silica is less than 50.0%, the proportion of amorphous silica will be 50.0% or more. Since the thermal conductivity of amorphous silica is as low as 1.4 W/mK, if 50.0% or more of amorphous silica is contained, the thermal conductivity of silica particles may be lowered. The higher the proportion of crystalline silica, the higher the thermal conductivity, which is preferable. Therefore, the proportion of crystalline silica may be 60.0% or more, preferably 70.0% or more, more preferably 80.0% or more, and still more preferably It may be 90.0% or more. The upper limit of the proportion of crystalline silica is not particularly limited and may be adjusted depending on the application, typically the desired thermal conductivity. Therefore, the upper limit of the proportion of crystalline silica may be 100%, 95% or less, 90% or less, 85% or less, or 80% or less. may
The crystalline phase and amorphous content can be quantitatively analyzed by X-ray diffraction. Quantitative analysis by X-ray diffraction can be performed without using a standard sample by using an analysis method such as the Rietveld method.
More specifically, the ratio of crystalline silica to the total spherical crystalline silica particles (hereinafter sometimes referred to as "crystallinity") is obtained by X-ray diffraction, the integration of the amorphous peak and the crystalline peak The area is obtained, and the ratio of the crystalline area is defined as the crystallization rate. That is, the crystallinity ratio is calculated as follows: integrated area of crystalline peak/(integrated area of amorphous peak + integrated area of crystalline peak).
 (石英:結晶質シリカの90.0%以上)
 本発明の球状結晶質シリカ粒子では、結晶質シリカの90.0%以上が石英である。石英は熱伝導率が12.8W/mKであり、非晶質シリカの熱伝導率1.4W/mKよりはるかに大きい。したがって、本発明の球状結晶質シリカ粒子では、粒子全体の50.0%以上が結晶質シリカであり、当該結晶質シリカの90.0%以上が石英結晶であるので、望ましい高熱伝導率を得ることができる。
 結晶質シリカは、石英以外の結晶相として、クリストバライト、トリディマイトおよびその他の結晶形態を含んでも良い。いずれの結晶も、熱伝導率が10W/mK程度であり、石英の12.8W/mKより低いものの、非晶質のシリカより高い熱伝導率を有する。
 ただし、石英の含有率が90.0%未満、言い換えると、クリストバライトやトリディマイト等の含有量が10.0%以上であると、αクリストバライト→βクリストバライトへの相転移、もしくはαトリディマイト→β1トリディマイト→β2トリディマイトへの相転移が起こり、相転移に伴う体積膨張により、樹脂と混合して使用する際に樹脂とシリカ粒子の間に空隙が生じたり、割れやクラックの原因となる場合がある。このため、結晶質シリカの90.0%以上を石英にして、クリストバライトやトリディマイトの含有量を少なくすることが重要である。この点で、クリストバライトやトリディマイト等の含有量は少ないほど好ましい。したがって、本発明の一態様では、クリストバライト及び/又はトリディマイトの含有量は、球状結晶質シリカ粒子の全体の、5.0%以下であってもよい。
 結晶相と非晶質の含有量と同様に、石英、クリストバライト、トリディマイト、その他の結晶の含有量は、X線回折により定量分析することができる。X線回折による定量分析では、リートベルト法などの解析方法を用いることにより、標準試料を用いずに定量分析することが可能である。
 より詳しくは、結晶質シリカに対する各結晶の割合は、X線回折により、各結晶のピークの積分面積を求め、それらの結晶の面積の比率から求められる。一例として、石英の結晶の割合=石英のピークの積分面積/(石英のピークの積分面積+クリストバライトのピークの積分面+トリディマイトのピークの積分面積積+その他の結晶形態のピークの積分面積積)として計算する。
(Quartz: 90.0% or more of crystalline silica)
In the spherical crystalline silica particles of the present invention, 90.0% or more of the crystalline silica is quartz. Quartz has a thermal conductivity of 12.8 W/mK, which is much higher than the 1.4 W/mK thermal conductivity of amorphous silica. Therefore, in the spherical crystalline silica particles of the present invention, 50.0% or more of the entire particle is crystalline silica, and 90.0% or more of the crystalline silica is quartz crystal, so that desirable high thermal conductivity is obtained. be able to.
Crystalline silica may include cristobalite, tridymite and other crystalline forms as crystalline phases other than quartz. Both crystals have a thermal conductivity of about 10 W/mK, which is lower than the 12.8 W/mK of quartz, but higher than that of amorphous silica.
However, when the content of quartz is less than 90.0%, in other words, when the content of cristobalite, tridymite, etc. is 10.0% or more, a phase transition from α-cristobalite to β-cristobalite or α-tridymite → β1-tridymite → A phase transition to β2 tridymite occurs, and the volume expansion associated with the phase transition may cause voids between the resin and silica particles when mixed with a resin and cause cracks. Therefore, it is important to reduce the content of cristobalite and tridymite by replacing 90.0% or more of the crystalline silica with quartz. In this respect, it is preferable that the content of cristobalite, tridymite, etc. is as low as possible. Therefore, in one aspect of the present invention, the content of cristobalite and/or tridymite may be 5.0% or less of the total spherical crystalline silica particles.
The content of quartz, cristobalite, tridymite, and other crystals, as well as the crystalline phase and amorphous content, can be quantitatively analyzed by X-ray diffraction. Quantitative analysis by X-ray diffraction can be performed without using a standard sample by using an analysis method such as the Rietveld method.
More specifically, the ratio of each crystal to crystalline silica is obtained from the ratio of the areas of the crystals obtained by obtaining the integrated area of the peak of each crystal by X-ray diffraction. As an example, the ratio of quartz crystals = integrated area of quartz peak / (integrated area of quartz peak + integrated area of cristobalite peak + integrated area of tridymite peak + integrated area of peaks of other crystal forms) Calculate as
 (製造方法)
 本発明の球状結晶質シリカ粒子は、以下の工程を含む方法で製造することができる。すなわち、本発明の製造方法は、
 球状非晶質シリカ粒子に、カルシウム原料を混合して、又はカルシウム原料とリチウム化合物粒子を混合して、原料粉末とする、原料粉末調整工程と、
前記原料粉末調整工程で得られた原料粉末を、温度が1125℃以上1300℃以下で、かつ、圧力が125MPa以上で、熱間等方圧加圧装置を用いて1時間以上熱処理し、球状結晶質シリカ粒子を生成する、熱処理工程と、
を含み、
前記熱処理工程で生成される球状結晶質シリカ粒子において、カルシウムが酸化物換算で0.10~1.00質量%となるように、かつ、リチウムが酸化物換算で0.05質量%以下となるように、
前記原料粉末調整工程における、カルシウム原料、若しくは、カルシウム原料とリチウム化合物粒子の混合割合を調整する、
球状結晶質シリカ粒子の製造方法、である。
(Production method)
The spherical crystalline silica particles of the present invention can be produced by a method including the following steps. That is, the production method of the present invention is
A raw material powder preparation step of mixing spherical amorphous silica particles with a calcium raw material or mixing a calcium raw material and lithium compound particles to obtain a raw material powder;
The raw material powder obtained in the raw material powder preparation step is heat-treated at a temperature of 1125° C. or higher and 1300° C. or lower and a pressure of 125 MPa or higher using a hot isostatic pressing apparatus for 1 hour or longer to obtain spherical crystals. a heat treatment step to produce fine silica particles;
including
In the spherical crystalline silica particles generated in the heat treatment step, calcium is 0.10 to 1.00% by mass in terms of oxide, and lithium is 0.05% by mass or less in terms of oxide. like,
Adjusting the mixing ratio of the calcium raw material or the calcium raw material and the lithium compound particles in the raw material powder adjusting step,
A method for producing spherical crystalline silica particles.
 (球状非晶質シリカ粒子)
 原料である球状非晶質シリカ粒子は溶射法などの方法により作製することができる。例えば溶射法では、粉砕して所望の粒径に調製したシリカ粉末を火炎中に通すことにより、粒子が溶融し、粒子の形状は表面張力により球状となる。
(Spherical amorphous silica particles)
The raw material spherical amorphous silica particles can be produced by a method such as thermal spraying. For example, in the thermal spraying method, by passing silica powder pulverized to a desired particle size through a flame, the particles are melted and the shape of the particles becomes spherical due to surface tension.
 溶射により溶融球状化された粒子どうしが融着しないように、溶射後の粒子は急冷処理してもよい。その場合、溶融状態から急冷されるため、球状シリカ粒子は、結晶構造を有さず、非晶質(アモルファス)構造を有している。球状シリカ粒子は溶射されているため、非多孔質であってもよい。非多孔質の球状シリカ粒子は、緻密であり、熱伝導率が高くなると期待される。 The particles after thermal spraying may be quenched so that the particles that have been melted and sphericalized by thermal spraying do not fuse with each other. In that case, since the molten state is rapidly cooled, the spherical silica particles do not have a crystal structure but have an amorphous structure. Since the spherical silica particles are thermally sprayed, they may be non-porous. Non-porous spherical silica particles are expected to be dense and have high thermal conductivity.
 溶射等によって、球状非晶質シリカ粒子は、平均円形度を0.80以上とすることができる。続く結晶化のための熱処理は最大温度が1300℃程度であるため、球状シリカ粒子の円形度はほとんど変化をしない。円形度は、非晶質シリカ粒子から結晶質シリカ粒子になる過程で固着するため変化することがあるが、解砕を行えば、もとの非晶質シリカ粒子とほぼ同じ円形度の結晶質シリカ粒子を得ることができる。すなわち円形度0.80以上の非晶質シリカ粒子を用いれば熱処理で得られる結晶質シリカ粒子も、円形度0.80以上の範囲のものが得られる。解砕は転動ボールミル、ロッキングミキサー、ビーズミルなどの一般的なミキサーやミルで行うことができる。熱処理によって、円形度が変化する場合、事前試験や事前調査で、円形度の変化率を確認し、確認結果に基づいて、熱処理前の球状非晶質シリカ粒子の円形度を調整することができる。そして、溶射手段であれば、容易に平均円形度の高い球状非晶質シリカ粒子を得ることができる。このため、本発明の方法では、円形度が0.8以上の球状結晶質シリカ粒子を容易に実現できる。当然ながら、平均円形度が0.80未満の球状非晶質シリカ粒子を使用すれば、本発明の方法により平均円形度が0.80未満の球状結晶質シリカ粒子を得ることができる。 The spherical amorphous silica particles can be made to have an average circularity of 0.80 or more by thermal spraying or the like. Since the maximum temperature of the subsequent heat treatment for crystallization is about 1300° C., the circularity of the spherical silica particles hardly changes. Circularity may change due to adhesion during the process from amorphous silica particles to crystalline silica particles. Silica particles can be obtained. That is, when amorphous silica particles having a circularity of 0.80 or more are used, crystalline silica particles obtained by heat treatment also have a circularity of 0.80 or more. Pulverization can be carried out with a general mixer or mill such as a tumbling ball mill, rocking mixer, bead mill, or the like. If the circularity changes due to heat treatment, the rate of change in circularity can be confirmed in a preliminary test or preliminary survey, and the circularity of the spherical amorphous silica particles before heat treatment can be adjusted based on the confirmation results. . Then, if it is a thermal spraying means, it is possible to easily obtain spherical amorphous silica particles having a high average circularity. Therefore, according to the method of the present invention, spherical crystalline silica particles having a circularity of 0.8 or more can be easily obtained. Of course, if spherical amorphous silica particles with an average circularity of less than 0.80 are used, spherical crystalline silica particles with an average circularity of less than 0.80 can be obtained by the method of the present invention.
 溶射等によって得られた、球状非晶質シリカ粒子は、平均粒径(D50)が1.0~100.0μmであってもよく、10.0μm以上であってもよい。続く結晶化のための加熱、冷却工程は最大温度が1300℃程度であるため、球状シリカ粒子の粒径はほとんど変化をしない。平均粒径D50は、非晶質シリカ粒子から結晶質シリカ粒子になる過程で固着するため変化することがあるが、解砕を行えば、もとの非晶質シリカ粒子とほぼ同じ平均粒径の結晶質シリカ粒子を得ることができる。すなわちD50が1.0μm以上100μm以下の非晶質シリカ粒子を用いれば熱処理で得られる結晶質シリカ粒子も、D50が1.0μm以上100μm以下の範囲のものが得られる。熱処理によって、シリカ粉は、軽く固着することがあるが、解砕処理を行うことで、もとの平均粒子径と同等の粉体となる。解砕は転動ボールミル、ロッキングミキサー、ビーズミルなどの一般的なミキサーやミルで行うことができる。熱処理によって、平均粒径(D50)が変化する場合、事前試験や事前調査で、平均粒径(D50)の変化率を確認し、確認結果に基づいて、熱処理前の球状非晶質シリカ粒子の平均粒径(D50)を調整することができる。そして、溶射手段であれば、容易に球状非晶質シリカ粒子の粒径を調節することができる。このため、本発明の方法では、平均粒径(D50)が1.0~100.0μmの球状結晶質シリカ粒子を容易に実現できる。また、平均粒径(D50)が10.0μm以上の球状結晶質シリカ粒子を容易に実現できる。当然ながら、平均粒径(D50)が1.0μm未満の球状非晶質シリカ粒子を使用すれば、本発明の方法により平均粒径(D50)が1.0μm未満の球状結晶質シリカ粒子を得ることができる。また、平均粒径(D50)が10.0μm以上の球状非晶質シリカ粒子を使用すれば、本発明の方法により平均粒径(D50)が10.0μm以上の球状結晶質シリカ粒子を得ることができる。さらに、平均粒径(D50)が100.0μmを超える球状非晶質シリカ粒子を使用すれば、本発明の方法により平均粒径(D50)が100.0μmを超える球状結晶質シリカ粒子を得ることができる。 The spherical amorphous silica particles obtained by thermal spraying or the like may have an average particle size (D50) of 1.0 to 100.0 μm, or may be 10.0 μm or more. Since the maximum temperature of the subsequent heating and cooling steps for crystallization is about 1300° C., the particle size of the spherical silica particles hardly changes. The average particle diameter D50 may change due to adhesion in the process from amorphous silica particles to crystalline silica particles, but if crushed, the average particle diameter is almost the same as that of the original amorphous silica particles. of crystalline silica particles can be obtained. That is, if amorphous silica particles with a D50 of 1.0 μm or more and 100 μm or less are used, crystalline silica particles obtained by heat treatment also have a D50 of 1.0 μm or more and 100 μm or less. Due to the heat treatment, the silica powder may be lightly adhered, but by performing the crushing treatment, it becomes a powder having the same average particle size as the original. Pulverization can be carried out with a general mixer or mill such as a tumbling ball mill, rocking mixer, bead mill, or the like. If the average particle size (D50) changes due to heat treatment, the change rate of the average particle size (D50) is confirmed in a preliminary test or preliminary survey, and based on the confirmation results, the spherical amorphous silica particles before heat treatment. The average particle size (D50) can be adjusted. Then, the particle size of the spherical amorphous silica particles can be easily adjusted by thermal spraying means. Therefore, the method of the present invention can easily produce spherical crystalline silica particles having an average particle size (D50) of 1.0 to 100.0 μm. In addition, spherical crystalline silica particles having an average particle size (D50) of 10.0 μm or more can be easily realized. Of course, if spherical amorphous silica particles with an average particle size (D50) of less than 1.0 μm are used, the process of the present invention will yield spherical crystalline silica particles with an average particle size (D50) of less than 1.0 μm. be able to. Moreover, when spherical amorphous silica particles having an average particle diameter (D50) of 10.0 μm or more are used, spherical crystalline silica particles having an average particle diameter (D50) of 10.0 μm or more can be obtained by the method of the present invention. can be done. Furthermore, if spherical amorphous silica particles having an average particle size (D50) of more than 100.0 μm are used, the method of the present invention can obtain spherical crystalline silica particles having an average particle size (D50) of more than 100.0 μm. can be done.
 また、溶射前のシリカ粉末が90~9000ppmのアルミニウムを含むように、シリカ粉末を調製してもよい。特定の理論に拘束されるものではないが、アルミニウムは熱処理の際に結晶核形成剤として作用することが考えられる。溶射工程(溶融)を通じて、アルミニウムがシリカ粒子中に均一に分散する。アルミニウムは、その後の熱処理工程の際に結晶核形成剤として作用することが考えられ、シリカ粒子中に均一に分散していることにより、均等且つ従来よりも低い温度と短い時間での結晶成長が実現される。
 また、アルミニウムが酸化したアルミナはシリカ粒子の化学耐久性(耐酸性など)を高める効果も期待できる。アルミニウムの含有量が90ppm未満では、結晶化促進効果や化学耐久性向上効果が十分でないことがある。一方でアルミニウムまたはアルミナは、シリカの融点を低下させる効果も知られており、例えばアルミナシリカガラスの融点は、純粋なシリカガラスの融点よりも低い。そのため、アルミニウムの含有量が9000ppmを超えると、シリカ粒子の融点が低下し、熱処理中に、シリカ粒子どうしが融着または焼結により結合しやすくなる。粒子どうしの結合が進むと、半導体封止材用のフィラー等として利用する場合に、流動性、分散性、充填性が十分でなく、また封止材作製用機器の摩耗も促進される。また、半導体封止材では概して高純度が必要とされており、アルミニウムを9000ppm以上添加することは、適当でない場合がある。
 また、アルミニウムの存在は、非晶質のシリカ粒子をカルシウムと混合して結晶化させる際に、結晶化を促進する効果が得られる。
 また、アルミニウムの含有量は、ICP質量分析(ICP-MS)により測定することができる。
 アルミニウムの含有量は、結晶化させるための熱処理段階でもその含有量がほぼ変わらない。また、熱処理前後でのシリカ粒子の質量もほとんど変化しない。このため、90~9000ppmのアルミニウムを含有した球状シリカ粒子を用いることで、結晶化促進の効果を得ることができる。熱処理によって、アルミニウムの含有量が変化する場合、事前試験や事前調査で、アルミニウムの含有量の変化率を確認し、確認結果に基づいて、熱処理前の球状非晶質シリカ粒子のアルミニウムの含有量を調整してもよい。
Also, the silica powder may be prepared so that the silica powder before thermal spraying contains 90 to 9000 ppm of aluminum. While not wishing to be bound by any particular theory, it is believed that aluminum acts as a crystal nucleator during heat treatment. Through the thermal spraying process (melting) the aluminum is evenly dispersed in the silica particles. It is thought that aluminum acts as a crystal nucleating agent during the subsequent heat treatment process, and because it is evenly dispersed in the silica particles, the crystals grow evenly at a lower temperature and in a shorter time than before. Realized.
In addition, alumina obtained by oxidizing aluminum can be expected to have the effect of enhancing the chemical durability (acid resistance, etc.) of silica particles. If the aluminum content is less than 90 ppm, the effect of promoting crystallization and the effect of improving chemical durability may not be sufficient. On the other hand, aluminum or alumina is also known to have the effect of lowering the melting point of silica. For example, the melting point of alumina-silica glass is lower than that of pure silica glass. Therefore, when the content of aluminum exceeds 9000 ppm, the melting point of the silica particles is lowered, and the silica particles are likely to bond together by fusion or sintering during heat treatment. If the bonding between the particles progresses, the fluidity, dispersibility and filling properties are insufficient when used as a filler for a semiconductor encapsulant, and wear of encapsulant production equipment is accelerated. In addition, semiconductor encapsulants generally require high purity, and it may not be appropriate to add 9000 ppm or more of aluminum.
In addition, the presence of aluminum has the effect of promoting crystallization when amorphous silica particles are mixed with calcium and crystallized.
Also, the content of aluminum can be measured by ICP mass spectrometry (ICP-MS).
The content of aluminum remains almost unchanged during the heat treatment stage for crystallization. Moreover, the mass of the silica particles before and after the heat treatment hardly changes. Therefore, by using spherical silica particles containing 90 to 9000 ppm of aluminum, the effect of promoting crystallization can be obtained. If the aluminum content changes due to heat treatment, the rate of change in the aluminum content is confirmed in a preliminary test or survey, and based on the confirmation results, the aluminum content of the spherical amorphous silica particles before heat treatment may be adjusted.
 また、溶射前のシリカ粉末が、結晶化に影響を及ぼさない範囲で金属不純物を含んでもよい。典型的な、金属不純物として、アルカリ金属(カリウム、ナトリウム等)、アルカリ土類金属(マグネシウム、バリウム等)等が挙げられる。 In addition, the silica powder before thermal spraying may contain metal impurities within a range that does not affect crystallization. Typical metal impurities include alkali metals (potassium, sodium, etc.), alkaline earth metals (magnesium, barium, etc.), and the like.
 (カルシウム原料)
 カルシウム原料には、炭酸化物であるCaCOや水酸化物であるCa(OH)を用いてもよい。CaCOやCa(OH)は、酸化物のCaOに比べて化学的に安定であり、安全上の危険性も低いため、取り扱いが比較的容易である。また、CaCOやCa(OH)を用いる場合、分解温度はCaCOの825℃に比べて、Ca(OH)は580℃と低い温度でCaOに分解する。このため、Ca(OH)を用いた方が、低温でCaOとなり結晶化を促進する効果が得られると考えられ、シリカの低温型の結晶である石英に結晶化する効果を得ることができる。
(Calcium raw material)
As a calcium raw material, CaCO3, which is a carbonate, or Ca(OH) 2 , which is a hydroxide, may be used. CaCO 3 and Ca(OH) 2 are chemically more stable than CaO, which is an oxide, and are relatively easy to handle because of their low safety hazards. When CaCO 3 or Ca(OH) 2 is used, Ca(OH) 2 decomposes into CaO at a lower temperature of 580° C. compared to 825° C. of CaCO 3 . Therefore, the use of Ca(OH) 2 is considered to be CaO at a low temperature with the effect of promoting crystallization, and it is possible to obtain the effect of crystallization into quartz, which is a low-temperature crystal of silica. .
 (リチウム化合物粒子)
 リチウム化合物粒子には、炭酸化物であるLiCOを用いてもよい。LiCOは、水と混合した場合、溶解度も低く、安全上の危険性も低いため、取り扱いが比較的容易である。また、LiCOは710℃で溶融するが、融点以下の温度でSiOと反応してSiO粒子に取り込まれると考えられる。このような低温でLiがSiOに取り込まれることにより、低い温度で結晶化を促進する効果が期待される。一方で、リチウムはアルカリ金属の一つであり、アルカリ金属が電子デバイスの信頼性を損なうおそれがある。そのため、リチウム化合物粒子は積極的に添加をしなくてもよく、任意付加的に球状非晶質シリカ粒子と混合される。また、熱処理後の球状結晶質シリカ粒子に含まれるリチウムは、原料となる非晶質シリカ粒子等に含まれる不純物に由来するものであってもよい。
(lithium compound particles)
Li 2 CO 3 , which is a carbonate, may be used as the lithium compound particles. Li 2 CO 3 is relatively easy to handle when mixed with water because of its low solubility and low safety hazards. Also, Li 2 CO 3 melts at 710° C., but it is thought that it reacts with SiO 2 at a temperature below the melting point and is incorporated into the SiO 2 particles. By incorporating Li into SiO 2 at such a low temperature, an effect of promoting crystallization at a low temperature is expected. On the other hand, lithium is one of alkali metals, and alkali metals may impair the reliability of electronic devices. Therefore, lithium compound particles do not have to be actively added, and are optionally mixed with spherical amorphous silica particles. Moreover, the lithium contained in the spherical crystalline silica particles after the heat treatment may be derived from impurities contained in the raw material amorphous silica particles or the like.
 (原料粉末調整工程)
 原料粉末調整工程において、球状非晶質シリカ粒子に、カルシウム原料を混合して、又はカルシウム原料とリチウム化合物粒子を混合して、原料粉末とする。
(Raw material powder adjustment process)
In the raw material powder preparation step, the spherical amorphous silica particles are mixed with the calcium raw material, or the calcium raw material and the lithium compound particles are mixed to obtain the raw material powder.
 球状非晶質シリカ粒子と混合するカルシウム原料、およびリチウム化合物粒子は、酸化物、炭酸化物、水酸化物、硝酸化物など、添加する際の形態は特に制限されない。非晶質の球状シリカ粒子と均一に混合されるものであれば、粉末や水溶液等の状態で添加することができる。混合する手法は、混合物中で各原料が均等に分散して混合されるものであれば、特に限定されない。混合は粉体ミキサーにより行ってもよい。混合により、球状非晶質シリカの少なくとも一部に、カルシウム原料およびリチウム化合物粒子が接触し、続く熱処理工程で、球状非晶質シリカの結晶化、特に石英への結晶化が促進される。 The calcium raw material and lithium compound particles to be mixed with the spherical amorphous silica particles are not particularly limited in form when added, such as oxides, carbonates, hydroxides, and nitrates. It can be added in the form of powder, aqueous solution, or the like, as long as it can be uniformly mixed with the amorphous spherical silica particles. The method of mixing is not particularly limited as long as each raw material is uniformly dispersed and mixed in the mixture. Mixing may be performed by a powder mixer. The mixing brings the calcium source material and the lithium compound particles into contact with at least a portion of the spherical amorphous silica, and the subsequent heat treatment step promotes crystallization of the spherical amorphous silica, particularly crystallization into quartz.
 ここで、熱処理工程で生成される球状結晶質シリカ粒子において、カルシウムは酸化物換算で0.10~1.00質量%であり、リチウムは酸化物換算で0.05質量%以下になるように、カルシウム原料、若しくは、カルシウム原料とリチウム化合物粒子の混合割合を調整される。なお、上記質量%は、球状結晶質シリカ粒子の質量の合計を、100質量%とする。この混合して得られた原料粉末は、その後結晶化させるための熱処理段階でもその質量比率は、概ね同じである。ただし、混合した、カルシウム原料及びリチウム化合物粒子の全量が、熱処理後の球状結晶質シリカ粒子中に含有されないこともあるので、歩留まりを考慮して、混合割合が調整される。典型的には、原料粉末と球状結晶質シリカ粒子の組成に差異がある場合、事前試験や事前調査で、組成の差異を確認し、確認結果に基づいて、熱処理前の原料粉末におけるカルシウム原料、若しくは、カルシウム原料とリチウム化合物粒子の混合割合を調整することができる。なお、これらの調整には、事前の確認結果によっては調整をしないことも含まれる。具体的な一例として、結晶化のための熱処理条件下でのリチウムおよびカルシウムの減量について事前に同一条件下で試験をして見出しておいて、その条件で操業してもよい。したがって、当該原料粉末を用いることにより、本発明の球状結晶質シリカ粒子におけるリチウム含有率及びカルシウム含有率を得ることができる。 Here, in the spherical crystalline silica particles generated in the heat treatment step, calcium is 0.10 to 1.00% by mass in terms of oxide, and lithium is 0.05% by mass or less in terms of oxide. , the mixing ratio of the calcium raw material, or the calcium raw material and the lithium compound particles is adjusted. In addition, the said mass % makes the total mass of a spherical crystalline silica particle 100 mass %. The mass ratio of the raw material powder obtained by this mixing is generally the same even in the subsequent heat treatment stage for crystallization. However, since the total amount of the mixed calcium raw material and lithium compound particles may not be contained in the spherical crystalline silica particles after heat treatment, the mixing ratio is adjusted in consideration of the yield. Typically, when there is a difference in the composition of the raw material powder and the spherical crystalline silica particles, the difference in composition is confirmed in a preliminary test or preliminary investigation, and based on the confirmation result, the calcium raw material in the raw material powder before heat treatment, Alternatively, the mixing ratio of the calcium raw material and the lithium compound particles can be adjusted. Note that these adjustments may not be made depending on the results of prior confirmation. As a specific example, the loss of lithium and calcium under the heat treatment conditions for crystallization may be found in advance by testing under the same conditions, and the operation may be performed under those conditions. Therefore, by using the raw material powder, the lithium content and calcium content in the spherical crystalline silica particles of the present invention can be obtained.
 (熱処理工程)
 混合して得られる原料粉末を、熱間等方圧加圧装置を用いて、1125℃以上1300℃以下でかつ、雰囲気圧力が125MPa以上で、1時間以上熱処理する。熱処理工程において、原料粉末に含まれるカルシウム原料及び/又はリチウム化合物粒子が、球状非晶質シリカ粒子の内部に拡散するために、球状非晶質シリカ粒子の石英への結晶化が促進される。
(Heat treatment process)
The raw material powder obtained by mixing is heat-treated at 1125° C. or higher and 1300° C. or lower at an atmospheric pressure of 125 MPa or higher using a hot isostatic pressing apparatus for 1 hour or longer. In the heat treatment step, the calcium raw material and/or lithium compound particles contained in the raw material powder diffuse into the spherical amorphous silica particles, thereby promoting the crystallization of the spherical amorphous silica particles into quartz.
 熱処理温度は、1125℃以上1300℃以下である。
 1125℃未満では、非晶質シリカの結晶化が十分に促進されず、全体の50.0%以上が結晶質シリカである球状結晶質シリカ粒子が得られないことがある。また、1300℃超では、非晶質シリカの結晶化は十分に促進されるが、得られた結晶質シリカでは、石英以外、特にクリストバライトが多く含まれることがある。すなわち、結晶質シリカの90.0%以上が石英である、球状結晶質シリカ粒子が得られないことがある。熱処理温度までの昇温速度は特に限定されるものではないが、昇温速度が遅すぎると生産性が低下することがあり、また昇温速度が速すぎると過剰な設備性能が必要となるので、2℃/分~20℃/分としてもよい。
The heat treatment temperature is 1125° C. or higher and 1300° C. or lower.
If the temperature is lower than 1125°C, crystallization of amorphous silica is not sufficiently promoted, and spherical crystalline silica particles containing 50.0% or more of crystalline silica may not be obtained. In addition, when the temperature exceeds 1300° C., crystallization of amorphous silica is sufficiently promoted, but the resulting crystalline silica may contain a large amount of cristobalite in addition to quartz. That is, it may not be possible to obtain spherical crystalline silica particles in which 90.0% or more of the crystalline silica is quartz. The rate of temperature rise to the heat treatment temperature is not particularly limited, but if the rate of temperature rise is too slow, productivity may decrease, and if the rate of temperature rise is too fast, excessive equipment performance will be required. , 2° C./min to 20° C./min.
 雰囲気圧力は、125MPa以上である。適切な熱処理によって非晶質シリカの結晶化は十分に促進されるが、低い雰囲気圧力で得られた結晶質シリカでは、石英以外、特にクリストバライトが多く含まれることがある。すなわち、125MPa未満では、結晶質シリカの90.0%以上が石英である、球状結晶質シリカ粒子が得られないことがある。圧力は高いほど、石英の生成が促進されると考えられ、雰囲気圧力は147MPa以上であってもよい。圧力の上限は特に限定されるものではないが、装置による能力の限界があり、典型的には約200MPaであってもよく、196MPaであってもよい。 The atmospheric pressure is 125 MPa or higher. Crystallization of amorphous silica is sufficiently promoted by appropriate heat treatment, but crystalline silica obtained at a low atmospheric pressure may contain a large amount of cristobalite in addition to quartz. That is, when the pressure is less than 125 MPa, spherical crystalline silica particles in which 90.0% or more of the crystalline silica is quartz may not be obtained. It is believed that the higher the pressure, the more the formation of quartz is promoted, and the atmospheric pressure may be 147 MPa or higher. Although the upper limit of the pressure is not particularly limited, there is a limit of capability depending on the device, and typically it may be about 200 MPa or 196 MPa.
 熱処理時間は、1時間以上である。
 熱処理時間が1時間未満であると、非晶質シリカの結晶化が十分に促進されず、全体の50.0%以上が結晶質シリカである球状結晶質シリカ粒子が得られないことがある。概して、熱処理時間が長いほど、結晶化は促進される。一方で、石英以外に、クリストバライト等の結晶形態が発生する可能性もある。したがって、熱処理時間は、所望の結晶化率および石英化率が得られるように適宜調整することも可能である。そのため、熱処理時間の上限は特に限定されるものではないが、生産性等を考慮して、24時間以下、20時間以下、16時間以下、12時間以下としてもよい。
The heat treatment time is 1 hour or longer.
If the heat treatment time is less than 1 hour, crystallization of amorphous silica is not sufficiently promoted, and spherical crystalline silica particles containing 50.0% or more of crystalline silica may not be obtained. In general, longer heat treatment times promote crystallization. On the other hand, crystal forms other than quartz, such as cristobalite, may occur. Therefore, the heat treatment time can be appropriately adjusted so as to obtain the desired crystallinity and silica ratio. Therefore, the upper limit of the heat treatment time is not particularly limited, but it may be 24 hours or less, 20 hours or less, 16 hours or less, or 12 hours or less in consideration of productivity or the like.
 本発明では、熱間等方圧加圧装置によって熱処理を行う。熱間等方圧加圧装置は、圧力と温度との相乗効果を利用して加圧する加圧処理装置であり、典型的には、数100~2000℃の高温と数10~200MPaの等方的な圧力を被処理体に同時に加えて処理することが可能である。 In the present invention, heat treatment is performed using a hot isostatic pressing device. The hot isostatic pressing apparatus is a pressure treatment apparatus that pressurizes using the synergistic effect of pressure and temperature. It is possible to simultaneously apply pressure to the object to be treated.
 特定の理論に拘束されることは望まないが、高温、高圧下での熱処理によって、高い石英化率を有する球状結晶質シリカ粒子が得られる理由について、以下が考えられる。
 常圧下でも(高圧下でなくとも)非晶質シリカを熱処理することによって、非晶質シリカの結晶化が促進されることが知られている。さらに、非晶質シリカにカルシウム原料混合することにより、カルシウム原料に含まれるカルシウムが、結晶化、特に石英化を促進する。ただし、カルシウムによる効果は、非晶質シリカ粒子と接触した箇所に限定される。そのため、非晶質シリカ粒子内部での結晶化(石英化)が促進されにくく、一方で非晶質シリカ粒子内部では熱処理(温度)の影響によってクリストバライト化が促進することがある。つまり、石英結晶化率の高い球状結晶粒子が得られにくい。本発明によれば、125MPa以上の圧力下で、熱処理をすることにより、カルシウムが非晶質シリカ粒子内部へ熱拡散されやすくなり、非晶質シリカ粒子内部でも結晶化(石英化)が促進される。その結果、高い石英化率を有する球状結晶質シリカ粒子が得られる、と考えられる。
 また、一般に、粒子の粒径が大きいほど、比表面積は小さくなり、カルシウムの熱拡散が促進されず、高い石英化率を有する球状結晶質シリカ粒子は得られにくい。本発明によれば、そのような、粒径の大きな粒子、典型的には平均粒径(D50)が10.0μm以上であっても、高い石英化率を得ることができる。
Although not wishing to be bound by any particular theory, the following is believed to be the reason why the heat treatment at high temperature and high pressure yields spherical crystalline silica particles with a high silicification ratio.
It is known that heat treatment of amorphous silica under normal pressure (not under high pressure) promotes crystallization of amorphous silica. Furthermore, by mixing the amorphous silica with the calcium raw material, the calcium contained in the calcium raw material promotes crystallization, particularly quartification. However, the effect of calcium is limited to the points in contact with the amorphous silica particles. Therefore, crystallization (quartzification) inside the amorphous silica particles is less likely to be promoted, while cristobalite formation may be promoted inside the amorphous silica particles due to the influence of heat treatment (temperature). In other words, it is difficult to obtain spherical crystal grains with a high quartz crystallinity. According to the present invention, heat treatment under a pressure of 125 MPa or higher facilitates thermal diffusion of calcium into the amorphous silica particles, promoting crystallization (quartzization) even inside the amorphous silica particles. be. As a result, it is believed that spherical crystalline silica particles having a high silicification rate are obtained.
In general, the larger the grain size of the particles, the smaller the specific surface area and the thermal diffusion of calcium is not promoted, making it difficult to obtain spherical crystalline silica particles with a high silicification rate. According to the present invention, even with such particles having a large particle size, typically having an average particle size (D50) of 10.0 μm or more, a high silica ratio can be obtained.
 (球状結晶質シリカ粒子の用途)
 本発明の一態様によって、最終的に得られた球状結晶質シリカ粒子と樹脂との複合組成物、さらには当該樹脂複合組成物を硬化した樹脂複合体を製造することができる。樹脂複合組成物の組成等について、以下により詳細に説明する。
(Use of spherical crystalline silica particles)
According to one aspect of the present invention, a composite composition of the finally obtained spherical crystalline silica particles and a resin, and further a resin composite obtained by curing the resin composite composition can be produced. The composition and the like of the resin composite composition will be described in more detail below.
 球状結晶質シリカ粒子と樹脂とを含むスラリー組成物を用いて、半導体封止材(特に固形封止材)、層間絶縁フィルム等の樹脂複合組成物を得ることができる。さらには、これらの樹脂複合体組成物を硬化させることで、封止材(硬化体)、半導体パッケージ用基板等の樹脂複合体を得ることができる。 By using a slurry composition containing spherical crystalline silica particles and a resin, it is possible to obtain a resin composite composition such as a semiconductor encapsulating material (especially a solid encapsulating material) and an interlayer insulating film. Further, by curing these resin composite compositions, it is possible to obtain resin composites such as sealing materials (cured bodies) and substrates for semiconductor packages.
 前記樹脂複合組成物を製造する場合、例えば、球状結晶質シリカ粒子及び樹脂の他に、硬化剤、硬化促進剤、難燃剤、シランカップリング剤等を必要により配合し、混錬等の公知の方法で複合化する。そして、ペレット状、フィルム状等、用途に応じて成型する。 When producing the resin composite composition, for example, in addition to the spherical crystalline silica particles and the resin, a curing agent, a curing accelerator, a flame retardant, a silane coupling agent, etc. are blended as necessary, and kneading or the like is performed. Composite in a way. Then, it is molded into a pellet shape, a film shape, or the like according to the application.
 さらに、前記樹脂複合組成物を硬化して樹脂複合体を製造する場合、例えば、樹脂複合組成物に熱を加えて溶融して、用途に応じた形状に加工し、溶融時よりも高い熱を加えて完全に硬化させる。この場合、トランスファーモールド法等の公知の方法を使用することができる。 Furthermore, when producing a resin composite by curing the resin composite composition, for example, the resin composite composition is melted by applying heat, processed into a shape according to the application, and subjected to a higher heat than during melting. and let it harden completely. In this case, a known method such as a transfer molding method can be used.
 例えば、パッケージ用基板や層間絶縁フィルム等の半導体関連材料を製造する場合には、樹脂複合組成物に使用する樹脂として、公知の樹脂が適用できるが、エポキシ樹脂を採用することが好ましい。エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等を用いることができる。これらの中の1種類を単独で用いることもできるし、異なる分子量を有する2種類以上を併用することもできる。これらの中でも、硬化性、耐熱性等の観点から、1分子中にエポキシ基を2個以上有するエポキシ樹脂が好ましい。具体的には、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF及びビスフェノールS等のグリシジルエーテル、フタル酸やダイマー酸等の多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、β-ナフトールノボラック型エポキシ樹脂、1,6-ジヒドロキシナフタレン型エポキシ樹脂、2,7-ジヒドロキシナフタレン型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素等のハロゲンを導入したエポキシ樹脂等が挙げられる。これら1分子中にエポキシ基を2個以上有するエポキシ樹脂中でも特にビスフェノールA型エポキシ樹脂が好ましい。 For example, when manufacturing semiconductor-related materials such as package substrates and interlayer insulating films, as the resin used in the resin composite composition, known resins can be applied, but it is preferable to adopt epoxy resin. Epoxy resins are not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin, etc. can be used. One of these may be used alone, or two or more of them having different molecular weights may be used in combination. Among these, epoxy resins having two or more epoxy groups in one molecule are preferable from the viewpoint of curability, heat resistance, and the like. Specifically, biphenyl-type epoxy resins, phenol novolac-type epoxy resins, ortho-cresol novolak-type epoxy resins, epoxidized novolac resins of phenols and aldehydes, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, Glycidyl ester acid epoxy resins, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, alkyl-modified polyfunctionals obtained by the reaction of polybasic acids such as phthalic acid and dimer acid with epochlorhydrin Epoxy resins, β-naphthol novolak type epoxy resins, 1,6-dihydroxynaphthalene type epoxy resins, 2,7-dihydroxynaphthalene type epoxy resins, bishydroxybiphenyl type epoxy resins, bromine etc. for imparting flame retardancy Epoxy resin into which halogen is introduced. Among these epoxy resins having two or more epoxy groups in one molecule, bisphenol A type epoxy resins are particularly preferred.
 また、半導体封止材用複合材料以外の用途、例えば、プリント基板用のプリプレグ、各種エンジニアプラスチックス等の樹脂複合組成物に使用する樹脂としては、エポキシ系以外の樹脂も適用できる。具体的には、エポキシ樹脂の他には、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂が挙げられる。 In addition, resins other than epoxy resins can also be used for applications other than composite materials for semiconductor encapsulants, such as prepregs for printed circuit boards and resin composite compositions such as various engineering plastics. Specifically, in addition to epoxy resins, polyamides such as silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, and polyetherimides; polybutylene terephthalate, polyethylene terephthalate, etc. polyester; polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene ) resins.
 樹脂複合組成物に用いられる硬化剤としては、前記樹脂を硬化するために、公知の硬化剤を用いればよいが、例えばフェノール系硬化剤を使用することができる。フェノール系硬化剤としては、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類等を、単独あるいは2種以上組み合わせて使用することができる。 As the curing agent used in the resin composite composition, a known curing agent may be used to cure the resin, and for example, a phenol-based curing agent may be used. Phenol novolak resins, alkylphenol novolak resins, polyvinylphenols, and the like can be used as the phenol-based curing agent either singly or in combination of two or more.
前記フェノール硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が0.1以上、1.0未満が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。 As for the compounding amount of the phenolic curing agent, the equivalent ratio to the epoxy resin (phenolic hydroxyl group equivalent/epoxy group equivalent) is preferably 0.1 or more and less than 1.0. As a result, there is no residual unreacted phenolic curing agent, and the moisture absorption and heat resistance is improved.
 本発明の球状結晶質シリカ粒子の、樹脂複合組成物における添加量は、耐熱性、熱膨張率の観点から、多いことが好ましいが、通常、70質量%以上95質量%以下、好ましくは80質量%以上95質量%以下、更に好ましくは85質量%以上95質量%以下であるのが適当である。これは、球状結晶質シリカ粒子の配合量が少なすぎると、封止材料の強度向上や熱膨張抑制などの効果が得られにくいためであり、また逆に多すぎると、球状結晶質シリカ粒子の表面処理に関わらず複合材料において球状結晶質シリカ粒子の凝集による偏析が起きやすく、複合材料の粘度も大きくなりすぎるなどの問題から、封止材料として実用が困難となるためである。 The amount of the spherical crystalline silica particles of the present invention added to the resin composite composition is preferably large from the viewpoint of heat resistance and coefficient of thermal expansion, but is usually 70% by mass or more and 95% by mass or less, preferably 80% by mass. % or more and 95 mass % or less, more preferably 85 mass % or more and 95 mass % or less. This is because if the amount of the spherical crystalline silica particles is too small, it is difficult to obtain the effects of improving the strength of the sealing material and suppressing thermal expansion. This is because, regardless of the surface treatment, segregation due to agglomeration of spherical crystalline silica particles tends to occur in the composite material, and the viscosity of the composite material becomes too high, making it difficult to use as a sealing material.
 また、シランカップリング剤については、公知のカップリング剤を用いればよいが、エポキシ系官能基を有するものが好ましい。 As for the silane coupling agent, a known coupling agent may be used, but one having an epoxy-based functional group is preferable.
 以下の実施例・比較例を通じて、本発明について説明する。ただし、本発明は、以下の実施例に限定して解釈されるものではない。 The present invention will be explained through the following examples and comparative examples. However, the present invention should not be construed as being limited to the following examples.
(実施例1~実施例4)
 非晶質シリカ粒子を溶射法で作製した。溶射では、破砕形状シリカの質量とカルシウムを酸化物換算した質量の合計の質量に対して、カルシウムを酸化物換算で0.80質量%混合した粉体を原料とした。当該球状非晶質シリカ粒子(平均粒径d50:27.8μm、円形度0.92)を、BN(窒化ホウ素)製の容器に充填し、株式会社神戸製鋼所の熱間等方圧加圧(Hot Isostatic Pressing :HIP)装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、実施例1(1150℃)、実施例2(1200℃)、実施例3(1250℃)、実施例4(1300℃)として、実施例1では12時間、実施例2および実施例3では8時間、実施例4では1時間保持をした。昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は196MPaとした。
(Examples 1 to 4)
Amorphous silica particles were prepared by thermal spraying. In thermal spraying, a powder obtained by mixing 0.80% by mass of calcium in terms of oxide with respect to the total mass of the mass of crushed silica and the mass of calcium in terms of oxide was used as a raw material. The spherical amorphous silica particles (average particle diameter d50: 27.8 μm, circularity 0.92) are filled in a BN (boron nitride) container and subjected to hot isostatic pressing by Kobe Steel, Ltd. (Hot Isostatic Pressing: HIP) apparatus, nitrogen gas was used as a pressure medium, and heat treatment was performed under isostatic pressure. The holding temperature is Example 1 (1150 ° C.), Example 2 (1200 ° C.), Example 3 (1250 ° C.), Example 4 (1300 ° C.), Example 1 is 12 hours, Example 2 and Example 3 was held for 8 hours, and Example 4 was held for 1 hour. The temperature increase rate was about 600°C/hour. The nitrogen gas holding pressure under the holding temperature was 196 MPa.
(実施例5~実施例17)
 非晶質球状シリカ粉体は実施例1~実施例4で用いたものを使用した。当該非晶質球状シリカに、炭酸リチウム粉体を混合した。球状非晶質シリカの質量とリチウムを酸化物換算した質量の合計の質量に対して、炭酸リチウム粒子を酸化物換算で0.01質量%(実施例5~実施例8)、0.02質量%(実施例9)、0.03質量%(実施例10~実施例13)、0.05質量%(実施例14~実施例17)を混合した。混合粉をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、1125℃(実施例14)、1150℃(実施例15)、1200℃(実施例5、実施例6、実施例9、実施例10、実施例11、実施例16)、1250℃(実施例7、実施例12、実施例17)、1300℃(実施例8、実施例13)とした。保持時間は、1時間(実施例5、実施例8、実施例9、実施例10、実施例13、実施例17)、8時間(実施例6、実施例7、実施例11、実施例12、実施例14、実施例15、実施例16)とした。昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は196MPaとした。
(Examples 5 to 17)
The amorphous spherical silica powder used in Examples 1 to 4 was used. Lithium carbonate powder was mixed with the amorphous spherical silica. With respect to the total mass of the mass of the spherical amorphous silica and the mass of lithium in terms of oxide, the lithium carbonate particles were 0.01 mass% in terms of oxide (Examples 5 to 8) and 0.02 mass. % (Example 9), 0.03% by mass (Examples 10 to 13), and 0.05% by mass (Examples 14 to 17) were mixed. The mixed powder was filled in a BN container and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1125°C (Example 14), 1150°C (Example 15), 1200°C (Example 5, Example 6, Example 9, Example 10, Example 11, Example 16), 1250°C. (Example 7, Example 12, Example 17) and 1300°C (Example 8, Example 13). The holding time was 1 hour (Example 5, Example 8, Example 9, Example 10, Example 13, Example 17), 8 hours (Example 6, Example 7, Example 11, Example 12). , Example 14, Example 15, and Example 16). The temperature increase rate was about 600°C/hour. The nitrogen gas holding pressure under the holding temperature was 196 MPa.
(実施例18)
 非晶質球状シリカ粉体は実施例1~実施例4で用いたものを使用した。当該非晶質球状シリカ粉体をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、1250℃、保持時間は8時間、昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は147MPaとした。
(Example 18)
The amorphous spherical silica powder used in Examples 1 to 4 was used. The amorphous spherical silica powder was filled in a BN container and heat-treated under isotropic pressure with a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1250° C., the holding time was 8 hours, and the heating rate was about 600° C./hour. The nitrogen gas holding pressure under the holding temperature was 147 MPa.
(実施例19、実施例20)
 非晶質球状シリカ粉体は実施例1~実施例4で用いたものを使用した。当該非晶質球状シリカ粉体に、炭酸リチウム粉体を混合した。球状非晶質シリカの質量とリチウムを酸化物換算した質量の合計の質量に対して、炭酸リチウム粒子を酸化物換算で0.01質量%を混合した。混合粉をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、1250℃、保持時間は8時間、昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は147MPa(実施例19)、125MPa(実施例20)とした。
(Example 19, Example 20)
The amorphous spherical silica powder used in Examples 1 to 4 was used. Lithium carbonate powder was mixed with the amorphous spherical silica powder. Lithium carbonate particles were mixed in an amount of 0.01% by mass in terms of oxide with respect to the total mass of the mass of spherical amorphous silica and the mass of lithium in terms of oxide. The mixed powder was filled in a BN container and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1250° C., the holding time was 8 hours, and the heating rate was about 600° C./hour. The nitrogen gas holding pressure under the holding temperature was 147 MPa (Example 19) and 125 MPa (Example 20).
(実施例21~実施例31)
 非晶質シリカ粒子を溶射法で作製した。当該球状非晶質シリカ粒子(平均粒径d50:30.2μm、円形度0.91)に水酸化カルシウム粒子および炭酸リチウム粒子を混合した。球状非晶質シリカの質量とカルシウムを酸化物換算およびリチウムを酸化物換算した質量の合計の質量に対して、水酸化カルシウム粒子を酸化物換算で0.20質量%、炭酸リチウム粒子を酸化物換算で、添加無し(実施例21)、0.01質量%(実施例22~実施例24)、0.03質量%(実施例25)、0.05質量%(実施例26~実施例31)を混合した。混合粉をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、高い等方圧力で熱処理を行った。保持温度は、1250℃、保持時間は8時間(実施例21、実施例23、実施例25、実施例29、実施例31)、保持温度は、1150℃、保持時間は12時間(実施例22)、保持温度は1300℃、保持時間は1時間(実施例24、実施例30)、保持温度は1125℃、保持時間は12時間(実施例26)、保持温度は1200℃、保持時間は8時間(実施例27、実施例28)、昇温速度は、約600℃/hとした。保持温度下における窒素ガス保持圧力は196MPa(実施例21~実施例27、実施例29、実施例30)、147MPa(実施例31)、125MPa(実施例28)とした。
(Examples 21 to 31)
Amorphous silica particles were prepared by thermal spraying. Calcium hydroxide particles and lithium carbonate particles were mixed with the spherical amorphous silica particles (average particle diameter d50: 30.2 μm, circularity 0.91). With respect to the total mass of the mass of spherical amorphous silica, the mass of calcium converted to oxide, and the mass of lithium converted to oxide, 0.20% by mass of calcium hydroxide particles in terms of oxide, and lithium carbonate particles in terms of oxide In conversion, no addition (Example 21), 0.01% by mass (Examples 22 to 24), 0.03% by mass (Example 25), 0.05% by mass (Examples 26 to 31 ) were mixed. The mixed powder was filled in a BN container and heat-treated at a high isostatic pressure with a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1250°C, the holding time was 8 hours (Example 21, Example 23, Example 25, Example 29, and Example 31), the holding temperature was 1150°C, the holding time was 12 hours (Example 22). ), the holding temperature is 1300°C, the holding time is 1 hour (Examples 24 and 30), the holding temperature is 1125°C, the holding time is 12 hours (Example 26), the holding temperature is 1200°C, the holding time is 8 The time (Examples 27 and 28) and the rate of temperature increase were about 600°C/h. The nitrogen gas holding pressure under the holding temperature was 196 MPa (Examples 21 to 27, 29 and 30), 147 MPa (Example 31) and 125 MPa (Example 28).
(実施例32~実施例40)
 非晶質シリカ粒子を溶射法で作製した。当該球状非晶質シリカ粒子(平均粒径d50:2.20μm、円形度0.93)に水酸化カルシウム粒子および炭酸リチウム粒子を混合した。球状非晶質シリカの質量とカルシウムを酸化物換算およびリチウムを酸化物換算した質量の合計の質量に対して、水酸化カルシウム粒子を酸化物換算で0.90質量%、炭酸リチウム粒子を酸化物換算で、添加無し(実施例32~実施例35)、0.01質量%(実施例36)、0.03質量%(実施例37)、0.05質量%(実施例38、実施例39、実施例40)を混合した。混合粉をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、高い等方圧力で熱処理を行った。保持温度は、1125℃、保持時間は12時間(実施例38)、保持温度は、1150℃、保持時間は12時間(実施例32)、保持温度は1200℃、保持時間は8時間(実施例33)、保持温度は1250℃、保持時間は8時間(実施例34、実施例36、実施例37、実施例39、実施例40)、保持温度は1300℃、保持時間は1時間(実施例35)、昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は196MPa(実施例32、実施例34~実施例39)、147MPa(実施例40)、125MPa(実施例33)とした。
(Examples 32 to 40)
Amorphous silica particles were prepared by thermal spraying. Calcium hydroxide particles and lithium carbonate particles were mixed with the spherical amorphous silica particles (average particle diameter d50: 2.20 μm, circularity 0.93). With respect to the total mass of the mass of spherical amorphous silica, the mass of calcium converted to oxide, and the mass of lithium converted to oxide, 0.90% by mass of calcium hydroxide particles in terms of oxide, and lithium carbonate particles in terms of oxide In conversion, no addition (Examples 32 to 35), 0.01% by mass (Example 36), 0.03% by mass (Example 37), 0.05% by mass (Examples 38 and 39 , Example 40) were mixed. The mixed powder was filled in a BN container and heat-treated at a high isostatic pressure with a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1125°C and the holding time was 12 hours (Example 38), the holding temperature was 1150°C and the holding time was 12 hours (Example 32), the holding temperature was 1200°C and the holding time was 8 hours (Example 33), the holding temperature is 1250°C, the holding time is 8 hours (Examples 34, 36, 37, 39, and 40), the holding temperature is 1300°C, the holding time is 1 hour (Example 35), and the rate of temperature increase was about 600° C./hour. The nitrogen gas holding pressure under the holding temperature was 196 MPa (Example 32, Examples 34 to 39), 147 MPa (Example 40), and 125 MPa (Example 33).
(比較例1~比較例9)
 実施例1~実施例4で用いた非晶質球状シリカ粉体を用いた。このシリカ粉体に炭酸リチウム粉体を混合しない粉体(比較例1、比較例2、比較例7)と、炭酸リチウム粉体を混合した粉体(比較例3~比較例6、比較例8、比較例9)を調整した。炭酸リチウムの混合は、前記球状非晶質シリカの質量とリチウムを酸化物換算した質量の合計の質量に対して、炭酸リチウム粒子を酸化物換算で0.01質量%(比較例3、比較例5、比較例8)、0.05質量%(比較例4、比較例6、比較例9)を混合した。炭酸リチウム粉体を混合しない粉体および混合した粉体をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、1100℃(比較例1、比較例3、比較例4、比較例7)、1350℃(比較例2、比較例5、比較例6、比較例8、比較例9)とした。保持時間は、12時間(比較例1、比較例3、比較例4、比較例7)、1時間(比較例2、比較例5、比較例6、比較例8、比較例9)とした。昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は196MPa(比較例1~比較例6)、147MPa(比較例7~比較例9)とした。
(Comparative Examples 1 to 9)
The amorphous spherical silica powder used in Examples 1 to 4 was used. This silica powder was not mixed with lithium carbonate powder (Comparative Examples 1, 2, and 7), and the powder was mixed with lithium carbonate powder (Comparative Examples 3 to 6, and Comparative Example 8). , Comparative Example 9) were prepared. In the mixing of lithium carbonate, 0.01% by mass of lithium carbonate particles in terms of oxide with respect to the total mass of the mass of the spherical amorphous silica and the mass of lithium in terms of oxide (Comparative Example 3, Comparative Example 5, Comparative Example 8) and 0.05% by mass (Comparative Example 4, Comparative Example 6, Comparative Example 9) were mixed. The powder not mixed with lithium carbonate powder and the powder mixed with lithium carbonate powder were filled in a BN container, and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1100° C. (Comparative Example 1, Comparative Example 3, Comparative Example 4, Comparative Example 7) and 1350° C. (Comparative Example 2, Comparative Example 5, Comparative Example 6, Comparative Example 8, Comparative Example 9). The holding time was 12 hours (Comparative Examples 1, 3, 4, 7) and 1 hour (Comparative Examples 2, 5, 6, 8, 9). The temperature increase rate was about 600°C/hour. The nitrogen gas holding pressure under the holding temperature was 196 MPa (Comparative Examples 1 to 6) and 147 MPa (Comparative Examples 7 to 9).
(比較例10~比較例13)
 実施例1~実施例4で用いた非晶質球状シリカ粉体を使用した。このシリカ粉体に炭酸リチウム粉体を混合しない粉体(比較例10)、炭酸リチウム粉体を混合した粉体(比較例11~比較例13)を調整した。炭酸リチウムの混合は、前記球状非晶質シリカの質量とリチウムを酸化物換算した質量の合計の質量に対して、炭酸リチウム粒子を酸化物換算で0.01質量%(比較例11)、0.03質量%(比較例12)、0.05質量%(比較例13)を混合した。炭酸リチウム粉体を混合しなかった粉体および混合した粉体をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、高い等方圧力で熱処理を行った。保持温度は、1250℃とした。保持時間は、8時間(比較例10~12)、1時間(比較例13)とした。昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は118MPa(比較例10~比較例13)とした。
(Comparative Examples 10 to 13)
The amorphous spherical silica powder used in Examples 1 to 4 was used. A powder (Comparative Example 10) in which lithium carbonate powder was not mixed with this silica powder and a powder in which lithium carbonate powder was mixed (Comparative Examples 11 to 13) were prepared. In the mixing of lithium carbonate, 0.01% by mass of lithium carbonate particles in terms of oxide with respect to the total mass of the mass of the spherical amorphous silica and the mass of lithium in terms of oxide (Comparative Example 11). 03% by mass (Comparative Example 12) and 0.05% by mass (Comparative Example 13) were mixed. The powder not mixed with lithium carbonate powder and the powder mixed with lithium carbonate powder were filled in a BN container, and subjected to heat treatment at high isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1250°C. The holding time was 8 hours (Comparative Examples 10 to 12) and 1 hour (Comparative Example 13). The temperature increase rate was about 600°C/hour. The nitrogen gas holding pressure under the holding temperature was 118 MPa (Comparative Examples 10 to 13).
(比較例14、比較例15)
 実施例1~実施例4で用いた非晶質球状シリカ粉体を使用した。このシリカ粉体に炭酸リチウム粉体を混合しない粉体(比較例14)、炭酸リチウム粉体を混合した粉体(比較例15)を調整した。炭酸リチウムの混合は、前記球状非晶質シリカの質量とリチウムを酸化物換算した質量の合計の質量に対して、炭酸リチウム粒子を酸化物換算で0.05質量%を混合した。炭酸リチウム粉体を混合しなかった粉体および混合した粉体をアルミナ製の容器に充填し、電気炉SUPER-BURN(株式会社モトヤマ社製)を用いて大気雰囲気下(大気圧)で熱処理した。昇温速度は600℃/時で1250℃まで昇温し、8時間(比較例14)、1時間(比較例15)保持した。その後、降温速度約100℃/時で室温まで冷却した。
(Comparative Example 14, Comparative Example 15)
The amorphous spherical silica powder used in Examples 1 to 4 was used. A powder (Comparative Example 14) in which lithium carbonate powder was not mixed with this silica powder and a powder in which lithium carbonate powder was mixed (Comparative Example 15) were prepared. In the mixing of lithium carbonate, 0.05% by mass of lithium carbonate particles in terms of oxide was mixed with respect to the total mass of the mass of the spherical amorphous silica and the mass of lithium in terms of oxide. Powder not mixed with lithium carbonate powder and powder mixed with lithium carbonate powder were filled in an alumina container and heat-treated in an atmospheric atmosphere (atmospheric pressure) using an electric furnace SUPER-BURN (manufactured by Motoyama Co., Ltd.). . The temperature was raised to 1250° C. at a rate of 600° C./hour and held for 8 hours (Comparative Example 14) and 1 hour (Comparative Example 15). After that, it was cooled to room temperature at a cooling rate of about 100° C./hour.
(比較例16~比較例18)
 実施例21~実施例31で用いた非晶質球状シリカ粉体を使用した。当該球状非晶質シリカ粒子(平均粒径d50:30.2μm)に水酸化カルシウム粒子のみ混合した粉体を調整した。球状非晶質シリカの質量とカルシウムを酸化物換算した質量の合計の質量に対して、カルシウムを酸化物換算で0.20質量%を混合した。前記混合粉をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、1100℃(比較例16)、1350℃(比較例17)、1250℃(比較例18)とした。保持時間は12時間(比較例16)、1時間(比較例17)8時間(比較例18)とした。昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は196MPa(比較例16、比較例17)、118MPa(比較例18)とした。
(Comparative Examples 16 to 18)
The amorphous spherical silica powder used in Examples 21 to 31 was used. A powder was prepared by mixing only calcium hydroxide particles with the spherical amorphous silica particles (average particle size d50: 30.2 μm). 0.20% by mass of calcium in terms of oxide was mixed with respect to the total mass of the mass of spherical amorphous silica and the mass of calcium in terms of oxide. The mixed powder was filled in a BN container, and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1100° C. (Comparative Example 16), 1350° C. (Comparative Example 17), and 1250° C. (Comparative Example 18). The holding time was 12 hours (Comparative Example 16), 1 hour (Comparative Example 17), and 8 hours (Comparative Example 18). The temperature increase rate was about 600°C/hour. The nitrogen gas holding pressure under the holding temperature was 196 MPa (Comparative Examples 16 and 17) and 118 MPa (Comparative Example 18).
(比較例19~比較例22)
 実施例21~実施例31で用いた非晶質球状シリカ粉体を使用した。当該球状非晶質シリカ粒子(平均粒径d50:30.2μm)に水酸化カルシウム粒子と炭酸リチウム粒子の両方を混合(比較例19~比較例22)した粉体を調整した。非晶質シリカ粒子に対して水酸化カルシウム粒子のみ混合した粉体では、球状非晶質シリカの質量とカルシウムを酸化物換算した質量の合計の質量に対して、カルシウムを酸化物換算で所定量を混合した。一方、球状非晶質シリカ粒子に対して水酸化カルシウム粒子と炭酸リチウム粒子の両方を混合した粉体した粉体では、球状非晶質シリカの質量とカルシウムを酸化物換算およびリチウムを酸化物換算した質量の合計の質量に対して、水酸化カルシウム粒子をカルシウムが酸化物換算で0.20質量%、また炭酸リチウム粒子をリチウムが酸化物換算で0.01質量%(比較例19、比較例21)、0.05質量%(実施例20、実施例22)となるように混合した。前記混合粉をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、1100℃(比較例19、比較例20)、1350℃(比較例21、比較例22)として、保持時間は12時間(比較例19、比較例20)、1時間(比較例21、比較例22)とした。昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は196MPaとした。
(Comparative Examples 19 to 22)
The amorphous spherical silica powder used in Examples 21 to 31 was used. Powders were prepared by mixing both calcium hydroxide particles and lithium carbonate particles (Comparative Examples 19 to 22) with the spherical amorphous silica particles (average particle size d50: 30.2 μm). In the case of a powder in which only calcium hydroxide particles are mixed with amorphous silica particles, a predetermined amount of calcium in terms of oxide is added to the total mass of the mass of spherical amorphous silica and the mass of calcium in terms of oxide. were mixed. On the other hand, in the powder obtained by mixing both calcium hydroxide particles and lithium carbonate particles with spherical amorphous silica particles, the mass of spherical amorphous silica and calcium are converted to oxides, and lithium is converted to oxides. With respect to the total mass of the mass obtained, the calcium hydroxide particles are 0.20% by mass in terms of calcium oxide, and the lithium carbonate particles are 0.01% by mass in terms of lithium oxide (Comparative Example 19, Comparative Example 21) and 0.05% by mass (Examples 20 and 22). The mixed powder was filled in a BN container, and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1100° C. (Comparative Examples 19 and 20) and 1350° C. (Comparative Examples 21 and 22), and the holding time was 12 hours (Comparative Examples 19 and 20) and 1 hour (Comparative Example 21). , Comparative Example 22). The temperature increase rate was about 600°C/hour. The nitrogen gas holding pressure under the holding temperature was 196 MPa.
(比較例23~比較例25)
 実施例32~実施例40で用いた非晶質球状シリカ粒子を使用した。当該球状非晶質シリカ粒子(平均粒径d50:2.2μm)に水酸化カルシウム粒子のみ混合した粉体を調整した。球状非晶質シリカの質量とカルシウムを酸化物換算した質量の合計の質量に対して、カルシウムを酸化物換算で0.90質量%を混合した。前記混合粉をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、1100℃(比較例23)、1350℃(比較例24)、1250℃(比較例25)として、保持時間は12時間(比較例23)、1時間(比較例24)、8時間(比較例25)とした。昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は196MPa(比較例23、比較例24)、118MPa(比較例25)とした。
(Comparative Examples 23 to 25)
The amorphous spherical silica particles used in Examples 32-40 were used. A powder was prepared by mixing only calcium hydroxide particles with the spherical amorphous silica particles (average particle size d50: 2.2 μm). 0.90% by mass of calcium in terms of oxide was mixed with respect to the total mass of the mass of spherical amorphous silica and the mass of calcium in terms of oxide. The mixed powder was filled in a BN container, and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1100° C. (Comparative Example 23), 1350° C. (Comparative Example 24) and 1250° C. (Comparative Example 25), and the holding time was 12 hours (Comparative Example 23), 1 hour (Comparative Example 24) and 8 hours. (Comparative Example 25). The temperature increase rate was about 600°C/hour. The nitrogen gas holding pressure under the holding temperature was 196 MPa (Comparative Examples 23 and 24) and 118 MPa (Comparative Example 25).
(比較例26~比較例29)
 実施例32~実施例40で用いた非晶質球状シリカ粒子を使用した。当該球状非晶質シリカ粒子(平均粒径d50:2.2μm)に水酸化カルシウム粒子と炭酸リチウム粒子の両方を混合した粉体を調整した。球状非晶質シリカの質量とカルシウムを酸化物換算およびリチウムを酸化物換算した質量の合計の質量に対して、水酸化カルシウム粒子をカルシウムが酸化物換算で0.90質量%、また炭酸リチウム粒子をリチウムが酸化物換算で0.01質量%(比較例26、比較例28)、0.05質量%(実施例27、実施例29)となるように混合した。前記混合粉をBN製の容器に充填し、HIP装置で、窒素ガスを圧力媒体とし、等方圧力下で熱処理を行った。保持温度は、1100℃(比較例26、比較例27)、1350℃(比較例28、比較例29)として、保持時間は12時間(比較例26、比較例27)、1時間(比較例28、比較例29)とした。昇温速度は、約600℃/時とした。保持温度下における窒素ガス保持圧力は196MPaとした。
(Comparative Examples 26 to 29)
The amorphous spherical silica particles used in Examples 32-40 were used. A powder was prepared by mixing both calcium hydroxide particles and lithium carbonate particles with the spherical amorphous silica particles (average particle size d50: 2.2 μm). With respect to the total mass of the mass of spherical amorphous silica, the mass of calcium converted to oxide, and the mass of lithium converted to oxide, calcium hydroxide particles are added in an amount of 0.90% by mass in terms of calcium oxide, and lithium carbonate particles were mixed so that lithium was 0.01% by mass (Comparative Examples 26 and 28) and 0.05% by mass (Examples 27 and 29) in terms of oxide. The mixed powder was filled in a BN container, and heat-treated under isostatic pressure in a HIP apparatus using nitrogen gas as a pressure medium. The holding temperature was 1100° C. (Comparative Examples 26 and 27) and 1350° C. (Comparative Examples 28 and 29), and the holding time was 12 hours (Comparative Examples 26 and 27) and 1 hour (Comparative Example 28). , Comparative Example 29). The temperature increase rate was about 600°C/hour. The nitrogen gas holding pressure under the holding temperature was 196 MPa.
 実施例および比較例で得られたシリカ粒子について、それぞれ表1、2に示す。 The silica particles obtained in Examples and Comparative Examples are shown in Tables 1 and 2, respectively.
表1および2における、各項目の測定方法について、説明する。 The measurement method for each item in Tables 1 and 2 will be described.
(構成相割合)
 熱処理で得られたシリカ粒子の非晶質と結晶質シリカの存在割合ならびに結晶質シリカ種類と、その割合は、XRDで求めた。本発明では、X線回折装置「D2 PHASER」(ブルカー社製)を用いた。リードベルト法による結晶相の定量分析は、結晶構造解析ソフトウエア「TOPAS」(ブルカー社製)にて行った。
 球状結晶質シリカ粒子が非晶質および結晶質シリカから構成される場合、非晶質と結晶質シリカの存在割合ならびに結晶質シリカ種類と、その割合は、XRD測定における結晶質ピークの積分強度の和(Ic)と非晶質のハロー部分の積分強度(Ia)から、以下の式で計算することにより結晶相の割合を求めることができる。より具体的には、球状結晶質シリカ粒子に含まれる結晶質シリカの相の割合を求めることができる。
 X(結晶相割合)=Ic/(Ic+Ia)×100   (%) 
 本発明では、2Θ=10°~90°の範囲でXRD測定を実施した。当該2Θ測定範囲に現れる結晶質ピーク強度の和と、2Θ=22°付近に出現するブロードな非晶質に起因するハロー部分の積分強度から結晶相割合を求めた。
 さらに、リードベルト法による結晶相の定量分析は、標準試料を用いずに定量分析を行った。
(Constituent phase ratio)
The existence ratio of amorphous and crystalline silica in the silica particles obtained by the heat treatment, the type of crystalline silica, and the ratio thereof were determined by XRD. In the present invention, an X-ray diffractometer "D2 PHASER" (manufactured by Bruker) was used. Quantitative analysis of the crystal phase by the Riedveld method was performed using crystal structure analysis software "TOPAS" (manufactured by Bruker).
When the spherical crystalline silica particles are composed of amorphous and crystalline silica, the existence ratio of amorphous and crystalline silica, the type of crystalline silica, and the ratio are determined by the integrated intensity of the crystalline peak in XRD measurement. From the sum (Ic) and the integrated intensity (Ia) of the amorphous halo portion, the ratio of the crystalline phase can be obtained by calculation according to the following formula. More specifically, the proportion of the crystalline silica phase contained in the spherical crystalline silica particles can be determined.
X (crystal phase ratio) = Ic / (Ic + Ia) × 100 (%)
In the present invention, XRD measurements were performed in the range of 2Θ=10° to 90°. The crystalline phase ratio was obtained from the sum of the crystalline peak intensities appearing in the 2Θ measurement range and the integrated intensity of the halo portion caused by the broad amorphous matter appearing around 2Θ=22°.
Furthermore, the quantitative analysis of the crystal phase by the Reedveld method was performed without using a standard sample.
(円形度)
 円形度はフロー式粒子像分析法により求めた。本発明では、フロー式粒子像分析装置「FPIA-3000」(スペクトリス社製)を用いた。
(Circularity)
Circularity was determined by a flow particle image analysis method. In the present invention, a flow type particle image analyzer "FPIA-3000" (manufactured by Spectris) was used.
(平均粒径)
 球状石英粒子の平均粒径(D50)は、レーザー回折・散乱式粒度分布測定法により測定した、本発明では、レーザー回折・散乱式粒度分布測定装置「CILAS920」(シーラス社製)を用いた。
(Average particle size)
The average particle size (D50) of the spherical quartz particles was measured by a laser diffraction/scattering particle size distribution measurement method.
(不純物量または添加物量)
 本発明の、球状シリカ粒子におけるリチウム、カルシウム等の不純物または添加物元素の含有量は、ICP質量分析(ICP-MS)により測定した。具体的には、JIS-K0133に準拠し、ICP-MS(アジレント製「7700X」)を用いて測定した。フッ化水素酸によりシリカ粒子を完全溶解させた水溶液を試料として用いた。ここでは、シリカ粒子中に含まれる不純物元素含有量を、シリカ溶解液中の不純物元素含有量とした。検量線は、試薬のみのベース液を用いた。
(impurity amount or additive amount)
The content of impurities or additive elements such as lithium and calcium in the spherical silica particles of the present invention was measured by ICP mass spectrometry (ICP-MS). Specifically, it was measured using ICP-MS (“7700X” manufactured by Agilent) in accordance with JIS-K0133. An aqueous solution in which silica particles were completely dissolved with hydrofluoric acid was used as a sample. Here, the impurity element content contained in the silica particles was defined as the impurity element content in the silica solution. A standard curve was prepared using a reagent-only base solution.
(非晶質球状シリカ粒子の不純物について)
 実施例および比較例で溶射法にて作製した球状非晶質シリカ粒子の、亜鉛の含有量は、金属含換算で、1.0ppm未満、またアルカリ金属(Li、KおよびNa)の合計は、金属換算で22~38ppmであった。溶射時にカルシウムを添加した実施例1~実施例18、比較例1~比較例15に記載の非晶質球状シリカにはカルシウムが、7931ppm含まれるが、実施例19~実施例28、比較例16~比較例27に用いた非晶質球状シリカのアルカリ土類金属(Ca+Mg+Ba)合計は、11~32ppm、アルミニウム金属は97~8230ppmであった。
(Regarding impurities in amorphous spherical silica particles)
The zinc content of the spherical amorphous silica particles produced by the thermal spraying method in Examples and Comparative Examples is less than 1.0 ppm in terms of metal content, and the total amount of alkali metals (Li, K and Na) is It was 22 to 38 ppm in terms of metal. The amorphous spherical silica described in Examples 1 to 18 and Comparative Examples 1 to 15 in which calcium was added during thermal spraying contains 7931 ppm of calcium, but Examples 19 to 28 and Comparative Example 16. The total amount of alkaline earth metals (Ca+Mg+Ba) in the amorphous spherical silica used in Comparative Example 27 was 11 to 32 ppm, and the amount of aluminum metal was 97 to 8230 ppm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例と比較例について)
 本発明による実施例では、いずれもリチウム含有量が、酸化物換算で0.05質量%以下であり、カルシウム含有量が酸化物換算で、0.10質量以上1.0質量%未満の範囲にあり、かつ全体の質量50%以上が結晶質シリカであり、結晶質シリカの90.0%以上が石英である球状の結晶質シリカ粒子が得られた。本発明による実施例の粒子は、円形度が0.86~0.92であった。平均粒径は、本発明による実施例では平均粒径がそれぞれの27.8μm、30.2μmおよび2.20μmである3種類の非晶質球状シリカを原料として用いた。平均粒径27.8μmである原料を用いた本発明のシリカ粒子の平均粒径は、27.8μm~30.2μmであった。また平均粒径30.2μmである原料を用いた本発明のシリカの平均粒径は32.3μm~33.8μmであった。さらに平均粒径2.2μmである原料を用いた本発明のシリカ粒子の平均粒径は、2.3μm~2.6μmであった。
(Regarding Examples and Comparative Examples)
In the examples according to the present invention, the lithium content is 0.05% by mass or less in terms of oxide, and the calcium content is in the range of 0.10% by mass or more and less than 1.0% by mass in terms of oxide. Spherical crystalline silica particles were obtained in which 50% or more of the mass of the whole was crystalline silica, and 90.0% or more of the crystalline silica was quartz. The particles of the examples according to the invention had a circularity of 0.86 to 0.92. As for the average particle size, three types of amorphous spherical silica having average particle sizes of 27.8 μm, 30.2 μm and 2.20 μm were used as raw materials in the examples according to the present invention. The average particle size of the silica particles of the present invention using a raw material having an average particle size of 27.8 μm was 27.8 μm to 30.2 μm. In addition, the average particle size of the silica of the present invention using a raw material having an average particle size of 30.2 μm was 32.3 μm to 33.8 μm. Furthermore, the average particle size of the silica particles of the present invention using a raw material having an average particle size of 2.2 μm was 2.3 μm to 2.6 μm.
 (熱処理温度について)
 実施例1~実施例20と比較例1~比較例9を比べると、リチウム含有量が、酸化物換算で0.05質量%以下であり、カルシウム含有量が酸化物換算で、0.10質量以上1.0質量%未満となる原料を用いて、雰囲気ガスの等方圧力が125~196MPaにおいて、熱処理温度が1125℃から1300℃以下になって初めて、全体の50%以上が結晶質シリカで、かつ前記結晶質シリカの90%以上が石英となることが分かる。
(About heat treatment temperature)
Comparing Examples 1 to 20 with Comparative Examples 1 to 9, the lithium content is 0.05 mass% or less in terms of oxide, and the calcium content is 0.10 mass in terms of oxide. When the isotropic pressure of the atmosphere gas is 125 to 196 MPa and the heat treatment temperature is from 1125 ° C. to 1300 ° C. or less using raw materials that are less than 1.0% by mass, 50% or more of the whole is crystalline silica. , and 90% or more of the crystalline silica is quartz.
 (原料の非晶質球状シリカ種類について)
 (平均粒径30.2μmの非晶質球状シリカを原料として用いた)実施例21~実施例31と比較例16、比較例17、比較例19~比較例22と比べた場合、さらに(平均粒径2.20μmの非晶質球状シリカを原料として用いた)実施例32~実施例40と比較例23、比較例24、比較例26~比較例29と比べると、リチウム含有量が、酸化物換算で0.05質量%以下であり、カルシウム含有量が酸化物換算で、0.10質量以上1.0質量%未満で、平均粒径の異なる原料を用いた場合においても、雰囲気ガスの等方圧力が125MPa以上、熱処理温度が1125℃から1300℃以下になって初めて、全体の50%以上が結晶質シリカで、かつ前記結晶質シリカの90%以上が石英となることが分かる。
(Regarding the type of amorphous spherical silica used as raw material)
When comparing Examples 21 to 31 (using amorphous spherical silica having an average particle size of 30.2 μm as a raw material) with Comparative Examples 16, 17, and 19 to 22, further (average Compared with Examples 32 to 40 and Comparative Examples 23, 24, and 26 to 29, in which amorphous spherical silica having a particle size of 2.20 μm was used as a raw material, the lithium content was oxidized. It is 0.05% by mass or less in terms of substance, the calcium content is 0.10% by mass or more and less than 1.0% by mass in terms of oxide, and even when using raw materials with different average particle diameters, the atmospheric gas Only when the isotropic pressure is 125 MPa or more and the heat treatment temperature is from 1125° C. to 1300° C. or less, 50% or more of the whole is crystalline silica, and 90% or more of the crystalline silica is quartz.
(雰囲気ガスの等方圧力について)
 実施例3、実施例7、実施例12、実施例17~実施例20と比較例10~比較例15比べると、熱処理保持温度1250℃と同じでも、雰囲気ガスの等方圧力が125MPa以上となって初めて、全体の50%以上が結晶質シリカで、かつ前記結晶質シリカの90%以上が石英となることが分かる。雰囲気の等方圧力が125MPa未満となるとクリストバライトの出現が増加し結晶質シリカに占める石英の割合が90%を下回ることが分かる。雰囲気ガスの等方圧力が125MPa以上、熱処理温度が125℃から1300℃以下が必要であることが分かる。
 また、(平均粒径30.2μmの非晶質球状シリカを原料として用いた)実施例21~実施例31と比較例18、(平均粒径2.20μmの非晶質球状シリカを原料として用いた)実施例32~実施例40と比較例25を比べるとリチウム含有量が、酸化物換算で0.05質量%未満であり、カルシウム含有量が酸化物換算で、0.10質量以上1.0質量%未満で平均粒径の異なる原料を用いた場合においても、雰囲気の等方圧力が125MPa未満となるとクリストバライトの出現が増加し結晶質シリカに占める石英の割合が90%を下回ることが分かる。雰囲気ガスの等方圧力が125MPa以上、熱処理温度が1125℃から1300℃以下が必要であることが分かる。
(Regarding isotropic pressure of atmosphere gas)
Comparing Example 3, Example 7, Example 12, Example 17 to Example 20 with Comparative Example 10 to Comparative Example 15, the isotropic pressure of the atmosphere gas was 125 MPa or more even at the same heat treatment holding temperature of 1250 ° C. 50% or more of the whole is crystalline silica, and 90% or more of the crystalline silica is quartz. It can be seen that when the isotropic pressure of the atmosphere is less than 125 MPa, the appearance of cristobalite increases and the proportion of quartz in the crystalline silica falls below 90%. It can be seen that the isotropic pressure of the atmosphere gas must be 125 MPa or more and the heat treatment temperature must be 125° C. to 1300° C. or less.
Examples 21 to 31 and Comparative Example 18 (using amorphous spherical silica having an average particle size of 30.2 μm as a raw material), and Comparative Example 18 (using amorphous spherical silica having an average particle size of 2.20 μm as a raw material) ) When Examples 32 to 40 and Comparative Example 25 are compared, the lithium content is less than 0.05% by mass in terms of oxide, and the calcium content is 0.10 mass or more in terms of oxide. It can be seen that even when raw materials with less than 0% by mass and different average particle diameters are used, the appearance of cristobalite increases when the isotropic pressure of the atmosphere is less than 125 MPa, and the proportion of quartz in crystalline silica falls below 90%. . It can be seen that the isotropic pressure of the atmosphere gas must be 125 MPa or more and the heat treatment temperature must be 1125° C. to 1300° C. or less.

Claims (8)

  1.  円形度が0.80以上、平均粒径(D50)が1.0μm以上100.0μm以下であり、リチウムを酸化物換算で0.05質量%以下含有し、カルシウムを酸化物換算で0.10~1.00質量%未満含有し、全体の50.0%以上が結晶質シリカであり、かつ前記結晶質シリカの90.0%以上が石英である、球状結晶質シリカ粒子。 Circularity is 0.80 or more, average particle size (D50) is 1.0 μm or more and 100.0 μm or less, lithium is 0.05% by mass or less in terms of oxide, and calcium is 0.10 in terms of oxide. Spherical crystalline silica particles containing less than ~1.00% by mass, 50.0% or more of the whole being crystalline silica, and 90.0% or more of said crystalline silica being quartz.
  2.  リチウムを酸化物換算で0.02質量%以下含有する請求項1に記載の球状結晶質シリカ粒子。 The spherical crystalline silica particles according to claim 1, containing 0.02% by mass or less of lithium in terms of oxide.
  3.  クリストバライトが全体の5.0%以下である、請求項1または2に記載の球状結晶質シリカ粒子。 The spherical crystalline silica particles according to claim 1 or 2, wherein cristobalite accounts for 5.0% or less of the whole.
  4.  アルミニウムを90~9000ppm含有する、請求項1~3のいずれか1項に記載の球状結晶質シリカ粒子。 The spherical crystalline silica particles according to any one of claims 1 to 3, containing 90 to 9000 ppm of aluminum.
  5.  平均粒径(D50)が10.0μm以上である、請求項1~4のいずれか1項に記載の球状結晶質シリカ粒子。 The spherical crystalline silica particles according to any one of claims 1 to 4, having an average particle size (D50) of 10.0 μm or more.
  6.  球状非晶質シリカ粒子に、カルシウム原料を混合して、又はカルシウム原料とリチウム化合物粒子を混合して、原料粉末とする、原料粉末調整工程と、
     前記原料粉末調整工程で得られた原料粉末を、温度が1125℃以上1300℃以下で、かつ、圧力が125MPa以上で、熱間等方圧加圧装置を用いて1時間以上熱処理し、球状結晶質シリカ粒子を生成する、熱処理工程と、
    を含み、
     前記熱処理工程で生成される球状結晶質シリカ粒子において、カルシウムが酸化物換算で0.10~1.00質量%となるように、かつ、リチウムが酸化物換算で0.05質量%以下となるように、
     前記原料粉末調整工程における、カルシウム原料、若しくは、カルシウム原料とリチウム化合物粒子の混合割合を調整する、
    球状結晶質シリカ粒子の製造方法。
    A raw material powder preparation step of mixing spherical amorphous silica particles with a calcium raw material or mixing a calcium raw material and lithium compound particles to obtain a raw material powder;
    The raw material powder obtained in the raw material powder preparation step is heat-treated at a temperature of 1125° C. or higher and 1300° C. or lower and a pressure of 125 MPa or higher using a hot isostatic pressing apparatus for 1 hour or longer to obtain spherical crystals. a heat treatment step to produce fine silica particles;
    including
    In the spherical crystalline silica particles generated in the heat treatment step, calcium is 0.10 to 1.00% by mass in terms of oxide, and lithium is 0.05% by mass or less in terms of oxide. like,
    Adjusting the mixing ratio of the calcium raw material or the calcium raw material and the lithium compound particles in the raw material powder adjusting step,
    A method for producing spherical crystalline silica particles.
  7.  樹脂中に、請求項1~5のいずれか1項に記載された球状結晶質シリカ粒子を含有す
    ることを特徴とする、樹脂複合組成物。
    A resin composite composition comprising the spherical crystalline silica particles according to any one of claims 1 to 5 in a resin.
  8.  請求項7に記載された樹脂複合組成物を硬化してなることを特徴とする、樹脂複合体。 A resin composite obtained by curing the resin composite composition according to claim 7.
PCT/JP2022/045912 2021-12-13 2022-12-13 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same WO2023112928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-202011 2021-12-13
JP2021202011 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023112928A1 true WO2023112928A1 (en) 2023-06-22

Family

ID=86774400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045912 WO2023112928A1 (en) 2021-12-13 2022-12-13 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same

Country Status (2)

Country Link
TW (1) TW202337826A (en)
WO (1) WO2023112928A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203720A (en) * 1983-05-04 1984-11-17 Tokuyama Soda Co Ltd Crystalline metallic oxide and its manufacture
JP2012102016A (en) * 2012-01-23 2012-05-31 Sumitomo Chemical Co Ltd Silica particle and method of manufacturing the same
WO2018186308A1 (en) * 2017-04-05 2018-10-11 新日鉄住金マテリアルズ株式会社 Spherical crystalline silica particles and method for producing same
JP2019064893A (en) * 2017-10-04 2019-04-25 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particle and method for producing the same
WO2020241902A1 (en) * 2019-05-31 2020-12-03 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles, spherical silica particle mixture, and composite material
WO2021235530A1 (en) * 2020-05-20 2021-11-25 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203720A (en) * 1983-05-04 1984-11-17 Tokuyama Soda Co Ltd Crystalline metallic oxide and its manufacture
JP2012102016A (en) * 2012-01-23 2012-05-31 Sumitomo Chemical Co Ltd Silica particle and method of manufacturing the same
WO2018186308A1 (en) * 2017-04-05 2018-10-11 新日鉄住金マテリアルズ株式会社 Spherical crystalline silica particles and method for producing same
JP2019064893A (en) * 2017-10-04 2019-04-25 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particle and method for producing the same
WO2020241902A1 (en) * 2019-05-31 2020-12-03 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles, spherical silica particle mixture, and composite material
WO2021235530A1 (en) * 2020-05-20 2021-11-25 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles and method for producing same

Also Published As

Publication number Publication date
TW202337826A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
KR102595535B1 (en) Spherical crystalline silica particles and method for producing the same
TW202106623A (en) Spherical crystalline silica particles, spherical silica particle mixture, and composite material
WO2014199650A1 (en) Thermosetting resin composition, method for producing thermally conductive sheet, and power module
JP7104503B2 (en) Manufacturing method of massive boron nitride powder and heat dissipation member using it
KR102247230B1 (en) Spherical eukryptite particles and manufacturing method thereof
JP7273587B2 (en) Boron nitride powder and resin composition
JPH11302506A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP7433022B2 (en) Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same
WO1988000573A1 (en) Spherical corundum particles, process for their production, and highly heat-conductive rubber or plastic composition containing them
TWI690484B (en) Manufacturing method of glass-coated aluminum nitride particles and manufacturing method of exothermic resin composition containing glass-coated aluminum nitride particles
JP2023106883A (en) Low-dielectric amorphous silica powder and manufacturing method of the same, and surface-treated low-dielectric silica powder, silica slurry, silica-containing resin composition, silica-containing prepreg and printed circuit board
WO2023112928A1 (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
WO2021235530A1 (en) Spherical crystalline silica particles and method for producing same
JP6739669B2 (en) Glass-coated aluminum nitride particles, method for producing the same, and heat-releasing resin composition containing the same
JP2007077333A (en) Manufacturing method of epoxy resin molding material for sealing, epoxy resin molding material for sealing and electronic part unit
TW202402673A (en) Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same
JP4779269B2 (en) Epoxy resin composition and semiconductor device
JP7468808B1 (en) Gahnite particles and method for producing same
JP7273586B2 (en) Boron nitride powder and resin composition
WO2024071434A1 (en) Spherical silica particles, resin composite composition containing same, and production method thereof
WO2024071430A1 (en) Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same
TW202406850A (en) Zinc spinel particles and manufacturing method thereof, resin composition and molded article
WO2019142353A1 (en) Powder and uses thereof
JP2009215133A (en) Spherical particles, resin composition containing the same and its manufacturing method, as well as filler being aggregate of the spherical particles and semiconductor resin sealing agent containing the filler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567796

Country of ref document: JP