WO2024071430A1 - Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same - Google Patents

Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same Download PDF

Info

Publication number
WO2024071430A1
WO2024071430A1 PCT/JP2023/035844 JP2023035844W WO2024071430A1 WO 2024071430 A1 WO2024071430 A1 WO 2024071430A1 JP 2023035844 W JP2023035844 W JP 2023035844W WO 2024071430 A1 WO2024071430 A1 WO 2024071430A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
alumina
raw material
alumina particles
spherical alumina
Prior art date
Application number
PCT/JP2023/035844
Other languages
French (fr)
Japanese (ja)
Inventor
竜太郎 沼尾
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024071430A1 publication Critical patent/WO2024071430A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints

Definitions

  • the present invention relates to spherical alumina particles, particularly spherical alumina particles with a reduced concentration of metallic Al, a method for producing the same, and a resin composite composition containing the same.
  • thermally conductive inorganic fillers are made from inexpensive aluminum hydroxide and aluminum oxide (hereafter referred to as alumina), as well as materials such as silicon carbide, boron nitride, and aluminum nitride, which are expected to have high thermal conductivity.
  • alumina in particular is often used as a thermally conductive inorganic filler because it is inexpensive and chemically stable.
  • Heat-conductive inorganic fillers such as alumina are also required to be small in particle size and spherical. This is because semiconductor packages such as ICs and CPUs are becoming smaller and thinner, which is leading to thinner bonding wires with smaller diameters and narrower pitches. In other words, heat-conductive inorganic fillers such as alumina used in semiconductor packages are also required to be small in particle size and spherical in order to improve filling ability into narrow spaces inside semiconductors.
  • the most common method for producing spherical alumina is the flame fusion method, which uses aluminum oxide as the raw material.
  • the raw material aluminum oxide is sprayed into a flame, and the surface of the aluminum oxide is heated and melted to form spherical shapes.
  • the molten particles may stick together and form large aggregated particles, and the desired small particle size may not be obtained.
  • Patent Document 1 discloses a method for suppressing the aggregation of aluminum oxide by adding silica particles to the raw aluminum oxide and then thermally spraying the mixture. However, with this method, it is inevitable that silica particles will be mixed into the spherical alumina particles that are ultimately obtained.
  • Patent Document 2 discloses a method of suppressing the aggregation of aluminum oxide by placing a collision plate at the tip of a thermal spray burner, colliding the raw aluminum oxide with the collision plate, and then performing the thermal spraying process.
  • Patent Document 3 discloses that the raw material, fine low-soda aluminum oxide, is passed through a device with a crushing and dispersing function, and immediately after being dispersed in a carrier gas, it is continuously introduced into a flame, resulting in spherical alumina with an average particle size of less than 1 ⁇ m and extremely low metal impurities.
  • the spherical alumina obtained here is said to have a metal Al concentration of ⁇ 0.010%.
  • the crushed and dispersed particles re-agglomerate due to a small amount of moisture in the carrier gas, making it impossible to obtain spherical alumina with a small particle size.
  • the alumina particles contain a large amount of hard alpha alumina, which may wear out the device when passed through the device with a crushing and dispersing function.
  • the basic properties of the obtained spherical alumina such as the specific surface area and circularity, are unclear.
  • the deflagration method (VMC method) is also known. Specifically, it is said that fine alumina particles, for example with a particle size of 2.0 ⁇ m or less, can be obtained by dispersing metallic aluminum powder in an oxygen stream, oxidizing it by igniting it, and using the heat of the reaction to turn the metal and oxide into vapor or liquid, which can then be cooled.
  • an explosive reaction is used, there is a risk of a dust explosion, and there is also a possibility that some of the metallic aluminum will not react, i.e., will not turn into alumina, and the metallic aluminum will remain. In particular, if the remaining metallic aluminum is contained in a semiconductor package, etc., it may lead to serious accidents such as short circuits in the semiconductor. Note that neither Patent Document 1 nor Patent Document 2 mentions or suggests anything about the remaining metallic aluminum.
  • the present invention was made in consideration of the above situation, and its purpose is to provide spherical alumina particles with a low metal Al concentration, a low alpha conversion rate, and a small particle size, a method for producing the same, and a resin composite composition containing the same.
  • the inventors have discovered that by spraying a raw material containing at least one of alumina, boehmite, and aluminum hydroxide having a specified particle size in a flame fusion method, it is possible to obtain small-sized spherical alumina particles with a low concentration of metallic aluminum while suppressing aggregation of the raw material particles.
  • the gist of the present invention is as follows:
  • Spherical alumina particles having a metal Al concentration of 1000 ppm or less, an average particle size of 0.3 to 2.0 ⁇ m, a specific surface area of 2.5 to 5.0 m 2 /g, a circularity of 0.80 or more, and a rate of alpha conversion of 5.0% or less.
  • the method for producing spherical alumina particles comprising the steps of: [4] A resin composite composition comprising the spherical alumina particles according to [1] or [2].
  • at least one inorganic filler selected from amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers.
  • the present invention provides small-diameter spherical alumina particles with a low metallic aluminum concentration, a very low alpha conversion rate, and a controlled specific surface area, as well as a resin composite composition containing the same. Because of their small particle size, they can be used in miniaturized and thinned semiconductor packages, and because of their low metallic aluminum concentration, the occurrence of serious accidents such as short circuits is suppressed. In addition, because the alpha conversion rate is very low, the shape of the alumina particle surface is very smooth, which has the advantage of increasing fluidity and reducing equipment wear. Furthermore, the spherical alumina particles can be easily manufactured by the manufacturing method that is one aspect of the present invention.
  • the spherical alumina particles which are an embodiment of the present invention, have a metal Al concentration of 1000 ppm or less.
  • Alumina is an oxide of metal Al, and can be produced by oxidizing and dehydrating metal Al or an aluminum compound containing it (such as aluminum hydroxide).
  • the metal Al contained in the raw material may not be sufficiently oxidized and may remain as metal Al in the alumina product.
  • the deflagration method uses an explosive reaction to oxidize metal Al, so there is a high possibility that the metal aluminum will not be oxidized evenly, that is, will not change to alumina, and metal aluminum will remain.
  • Metal Al has a much higher electrical conductivity than alumina (aluminum oxide). In applications requiring high insulation, such as semiconductor packages, if metal Al is contained, serious accidents such as unexpected short circuits may occur. From this perspective, the lower the metal Al concentration, the more preferable.
  • the spherical alumina particles which are an embodiment of the present invention, have a metal Al concentration of 1000 ppm or less, which suppresses the occurrence of serious accidents such as short circuits. More preferably, the metal Al concentration may be 800 ppm or less or 700 ppm or less.
  • the lower limit of the metal Al concentration is not particularly limited and may be 0 ppm, but since the burden of production management may be large and difficult, it may be several ppm, specifically 1 ppm or more, or 5 ppm or more. Depending on the actual application and the target allowable range of insulation properties, the lower limit of the metal Al concentration may be adjusted, for example, 10 ppm or more, 20 ppm or more, or 30 ppm or more.
  • the metal Al concentration is analyzed as follows: Approximately 1 g of spherical alumina particle sample is weighed out and placed in a beaker. 60 ml of 1 mol/L hydrochloric acid is added to the beaker and stirred at room temperature for 5 hours. After stirring, the supernatant of the sample solution is removed and the volume is adjusted to 100 ml, and the solution is analyzed for Al content using ICP-MS.
  • the spherical alumina particles according to one embodiment of the present invention have an average particle size of 0.3 to 2.0 ⁇ m. If the particle size is less than 0.3 ⁇ m, the particles tend to aggregate, and the fluidity of the resin composition when used as a filler is significantly reduced, which is undesirable. If the particle size exceeds 2.0 ⁇ m, the particles may get caught in the narrow space between the mounting substrate and the chip in a semiconductor package that is becoming smaller and thinner, which may cause the fluidity of the liquid encapsulant to decrease, resulting in a decrease in moldability.
  • the average particle size refers to the average particle size (D50), and means the median diameter D50 at 50% cumulative volume in the volume-based particle size distribution measured by the laser diffraction/scattering particle size distribution measurement method.
  • the laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion liquid in which spherical alumina particles are dispersed is irradiated with laser light, and the particle size distribution is determined from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion liquid.
  • a laser diffraction/scattering particle size distribution measurement device "Mastersizer 3000" manufactured by Malvern
  • the average particle size of the raw material for spherical alumina particles can also be determined in a similar manner.
  • the alpha-alumina ratio refers to the ratio of alpha-alumina crystals in the crystalline phase.
  • the spherical alumina particles which are one embodiment of the present invention, have an alpha-alumina ratio of 5.0% or less. It is known that alumina becomes crystalline, and alpha-alumina, ⁇ -alumina, and ⁇ -alumina are known as typical crystalline forms.
  • the spherical alumina particles which are one embodiment of the present invention, can be manufactured based on a thermal spraying method in which a raw material is put into a flame, melted, and then quenched, as will be described in detail later.
  • the obtained alumina can have a high amorphous ratio, and spherical alumina particles with an alpha-alumina ratio of 5.0% or less can be easily obtained.
  • the alumina particle surface becomes smooth, and the effect of maintaining high fluidity when mixed with a resin and the amount of hard alpha-alumina particles are small, so that the equipment wear resistance is low.
  • the alpha-alumina ratio is low, the amount of alpha-alumina contained in the alumina particles becomes too small, so that the thermal conductivity of the particles decreases, and the thermal conductivity of the resin composition may also decrease.
  • the lower limit of the alpha-conversion rate is not particularly limited and may be 0.0%, but may be 0.1% or 0.2% from the viewpoint of the burden of production management and the thermal conductivity characteristics of the resin composition.
  • the upper limit of the alpha-conversion rate may be 3.0%, 1.5%, 1.0%, 0.9%, or 0.8%.
  • the alpha-conversion rate of the alumina particle powder is measured using a powder X-ray diffractometer.
  • the integrated area of the obtained diffraction peaks is calculated, and the ratio of the diffraction peak area derived from alpha-alumina to the total is analyzed using the Rietveld method.
  • an X-ray diffraction pattern is obtained using a Bruker D2PHASER in the 2 ⁇ range of 10° to 90°.
  • the alpha-conversion rate is calculated from the obtained pattern using a Bruker DIFFRAC. TOPAS by the Rietveld method.
  • the analysis is performed assuming that only three types of crystal phases, alpha-alumina, delta-alumina, and theta-alumina, are present, and the alpha-alumina content is calculated.
  • the spherical alumina particles of the present invention have a specific surface area, measured by the BET method, of 2.5 m 2 /g or more and 5.0 m 2 /g or less.
  • the specific surface area of the spherical particles is less than 2.5 m 2 /g, the particles are unlikely to form a close-packed structure, and the fluidity of the liquid encapsulant containing the particles may decrease.
  • the specific surface area of the spherical particles is more than 5.0 m 2 /g, the particles may tend to aggregate more easily, and the fluidity of the liquid encapsulant may decrease.
  • the preferred lower limit is 3.0 m 2 /g.
  • the preferred upper limit is 4.0 m 2 /g.
  • the specific surface area of the spherical particles can also be measured by the BET method, and typically, the specific surface area is measured by the following procedure. Approximately 5 g of a sample was weighed out and vacuum dried for 5 minutes at 250° C. Next, the sample was set in an automatic specific surface area measuring device (Macsorb, manufactured by Mountec Co., Ltd.), and the nitrogen gas adsorption amount was measured at a relative pressure P/P0 value of 0.291 at a measurement temperature of 77 K using pure nitrogen and a nitrogen-helium mixed gas (mixture ratio: nitrogen 30%, He 70%), and the BET specific surface area was calculated by the one-point method.
  • Macsorb manufactured by Mountec Co., Ltd.
  • the spherical alumina particles may have a circularity of 0.80 or more.
  • the circularity may be 0.85 or more, 0.90 or more, or 0.93 or more.
  • the upper limit of the circularity is theoretically 1.0, but may be 0.98 or less, or 0.95 or less from the viewpoint of production management.
  • Circularity can be measured using an electron microscope or optical microscope and an image analyzer.
  • Sysmex FPIA These devices are used to measure the circularity of particles (perimeter of equivalent circle/perimeter of projected image of particle). The circularity of 100 or more particles is measured, and the average value is taken as the circularity of the powder.
  • the spherical alumina particles according to one embodiment of the present invention may have a reduced powder resistivity of 3.0 ⁇ 10 9 ⁇ cm or more.
  • Alumina particles may be used in applications requiring high insulation, such as semiconductor packages, and the higher the reduced powder resistivity, the more preferable it is.
  • the reduced powder resistivity of the spherical alumina particles may be 3.1 ⁇ 10 9 ⁇ cm or more, 3.2 ⁇ 10 9 ⁇ cm or more, 4.0 ⁇ 10 9 ⁇ cm or more, or 5.0 ⁇ 10 9 ⁇ cm or more.
  • the upper limit is not particularly limited, but may be 1.0 ⁇ 10 11 ⁇ cm or less, or 1.0 ⁇ 10 10 ⁇ cm or less.
  • the powder resistivity of the alumina particle powder is measured using a powder resistivity measurement system MCP-PD51. As a pretreatment for the measurement, the powder is heated and dried in air at 200°C for 5 hours. The dried powder is introduced into a powder resistivity measurement probe unit, and the sample is gradually pressurized using the attached hydraulic pump. When the load reaches 20 kN, the measurement is performed using a high resistivity meter.
  • the spherical alumina particles which are one embodiment of the present invention, may have a Na 2 O content of 1000 ppm or less.
  • Na 2 O may act as an impurity in a resin composite composition containing the alumina particles, and the desired properties may not be obtained.
  • the lower the Na 2 O content the more preferable it is, and the upper limit of the Na 2 O content may be 750 ppm or less or 500 ppm or less.
  • the lower limit of the Na 2 O content is not particularly limited and may be 0 ppm, but since the burden of production management may be large and difficult, it may be several ppm, specifically 1 ppm or more, or 5 ppm or more.
  • the lower limit of the Na 2 O content may be adjusted according to the actual application and the target properties, and may be, for example, 10 ppm or more, 20 ppm or more, or 30 ppm or more.
  • the Na 2 O content of the spherical alumina particles is measured using an atomic absorption spectrometer.
  • 0.5 g of a sample is placed in a pressure vessel, 10 ml of sulfuric acid (1+3) is added, the vessel is closed, and the vessel is heated at 230° C. for 16 hours in a heating and drying furnace. The heated solution is allowed to cool, and then the solution is diluted to 100 ml and measured using an atomic absorption spectrometer.
  • sulfuric acid (1+3) refers to a solution diluted by adding 3 parts of pure water to 1 part of concentrated sulfuric acid by volume.
  • the spherical alumina particles according to one embodiment of the present invention may be those whose fluidity is evaluated as good, i.e., ⁇ (Good), by the following measurement method.
  • the spherical alumina particles can be used as a filler for a resin composite composition, and it is preferable that the fluidity is within an appropriate range from the viewpoint of manufacturing control.
  • the fluidity varies depending on the conditions of the matrix resin, etc., but the evaluation criteria for the fluidity in this specification are shown as a guideline.
  • the method for evaluating fluidity in this specification is as follows. First, 30 g of a spherical alumina particle sample is weighed out and placed in a bag. 70 g of AZ10-75 (alumina powder manufactured by Nippon Steel Chemical & Material Co., Ltd., average particle size 10 ⁇ m) is then weighed out and placed in the bag containing the spherical alumina particles. The bag is then tied and thoroughly mixed. 43.5 g of the mixed alumina particle powder is weighed out and placed in a 200 ml plastic container. 6.5 g of silicone resin CY52-276A liquid manufactured by Dow Toray is added thereto, and vacuum mixed using a Thinky vacuum mixer "Awatori Rentaro".
  • the mixing conditions are 15 seconds of premixing and 90 seconds of vacuum mixing.
  • the plastic container containing the mixture is placed in a water bath adjusted to 25°C and cooled for 1 hour.
  • 10 g of the compound (resin composite composition) prepared by mixing is placed on a plate with a smooth surface.
  • the plate with the compound placed on it is tilted 60 degrees from the horizontal to check the degree of flow of the compound. In this test, if the compound has flowed 15 cm or more after 5 hours of tilting, the fluidity is evaluated as O (Good), and if the compound has not flowed 15 cm or more, the fluidity is evaluated as ⁇ (Not Good).
  • a method for producing spherical alumina particles which is a method for suitably producing the above-mentioned alumina particles and includes the following steps: (1) a raw material preparation step of preparing a raw material containing at least one of alumina, boehmite, and aluminum hydroxide and having a particle size of 0.3 to 2.00 um; and (2) a surface treatment step of surface-treating the raw material with a silicon atom-containing surface treatment agent; and (3) A spheroidizing step in which the raw material is introduced into a flame to melt it, and then rapidly cooled to form spheroids.
  • the spheroidization process (3) is a process in which the raw material is fed into a flame, melted, and then rapidly cooled to form spheroids.
  • the raw material can be fed into the flame while suspended in a carrier gas. Air, oxygen, propane gas, etc. can be used as the carrier gas.
  • the method of forming the flame is not particularly limited, but the flame can be formed by supplying a fuel (such as propane) that forms a flame to the burner via a route separate from the feed of the raw material, or by pre-mixing fuel and a combustion support gas (air or oxygen) and supplying it to the burner to form the flame, or by mixing the raw material, fuel, and a combustion support gas and supplying it to the burner to form the flame.
  • raw materials to be charged in the spheroidization step (3) are prepared.
  • the raw materials are prepared so as to contain at least one of alumina, boehmite, and aluminum hydroxide and have a particle size of 0.2 to 2.0 ⁇ m.
  • Boehmite is alumina monohydrate, and is represented by the chemical formula Al2O3.H2O
  • aluminum hydroxide is represented by the chemical formula Al(OH) 3 .
  • At least the surface of the alumina ( Al2O3 ) particles melts and is spheroidized.
  • the raw material include calcined alumina obtained by sintering aluminum hydroxide, alumina obtained by electrofusion of aluminum hydroxide, low soda alumina produced from aluminum hydroxide, and high purity alumina produced by ammonia-alum thermal decomposition method, aluminum alkoxide hydrolysis method, aluminum water discharge method, or other methods.
  • Alumina obtained by calcining low soda aluminum hydroxide is more preferable from the viewpoints of productivity and cost.
  • boehmite or aluminum hydroxide contains sufficient moisture (water of hydration or hydroxyl groups), and therefore, as described below, an increase in the particle size of the raw material is particularly effectively suppressed in the spheroidizing step, making it possible to efficiently obtain spherical alumina particles having an average particle size of less than 1 ⁇ m, and therefore these are more preferred.
  • a conventional method for producing spherical alumina involves throwing alumina particles into a flame to spheroidize them.
  • the alumina particles whose surfaces have been melted, fuse together and agglomerate, which can lead to an increase in the particle size of the resulting particles and a decrease in circularity.
  • this embodiment eliminates these problems.
  • the raw material of this embodiment contains moisture (hydration water and hydroxyl groups), it takes time for water vapor (H 2 O) to escape from the entrance of the flame to the middle of the flame. In other words, there is little opportunity (short time) for the surfaces of the alumina particles to melt in the flame, fuse together, and aggregate. As a result, the particle size of the alumina particles after passing through the flame is suppressed from excessively increasing beyond the particle size of the raw material (0.2 to 2.0 um).
  • the water vapor (H 2 O) released from the raw material expands when heated in the flame, and acts to increase the distance between the remaining raw materials, i.e., between the alumina particles. In other words, the chances of the alumina particles fusing together are further reduced. As a result, the particle size of the alumina particles after passing through the flame is prevented from excessively increasing compared to the particle size of the raw material (0.2 to 2.0 um). In addition, since there is little contact between the particles, the spheroidization of each particle is also promoted.
  • the raw material obtained in the raw material preparation step (1) is surface-treated.
  • a silane compound such as a silane coupling agent
  • a silazane such as Al coupling agent, etc.
  • the amount of the surface treatment agent can be appropriately adjusted depending on the material of the raw material, etc., but preferably, by blending these surface treatment agents in an amount of 1 mass% or more with respect to the raw material, it is possible to make it difficult for the raw material powders to adsorb to each other, so that clogging due to adhesion to the burner or piping and variation in the supply amount can be effectively prevented.
  • the treatment agents react with each other and the particles crosslink with each other via the surface treatment agent. There is a risk that the original dispersion effect cannot be obtained, and from the viewpoint of economy, it is not preferable to add an excessive amount of the treatment agent.
  • the preferable upper limit of the blending amount of the surface treatment agent is 10 mass% with respect to the raw material.
  • silicon-containing compounds such as silane coupling agents, alkoxysilane compounds, and silazane compounds (also referred to as "silicon atom surface treatment agents" are preferred from the viewpoints of economy and reactivity.
  • silicon atom surface treatment agents can be made of known substances.
  • silane coupling agents include vinyltrimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane.
  • alkoxysilane compounds include hexyltrimethoxysilane and octyltriethoxysilane.
  • silazane compounds include hexamethyldisilazane and trimethylsilane. From the viewpoint of excellent reactivity, silazane compounds are more preferred. Hexamethyldisilazane and trimethylsilane are more preferred.
  • the surface treatment method includes the following first step (heating step) and second step (surface treatment step).
  • First process heating process
  • the raw powder containing any one of alumina, aluminum hydroxide, and boehmite is heated at a temperature of 100°C to 500°C for 30 minutes or more.
  • the preferred heating conditions are 150°C or higher for 2 hours or 5 hours.
  • the drying temperature is preferably 500°C or less in order to obtain the effect of suppressing the coarsening of particle size due to moisture generated from the raw material during spheroidization as described above. By heating at 500°C or higher, moisture is completely removed from the aluminum hydroxide or boehmite, and moisture is not generated during spheroidization.
  • the lower limit of the drying temperature is preferably 100°C or higher in order to evaporate moisture.
  • Second process surface treatment process
  • the raw material powder heat-treated in the previous step is put into an arbitrary mixer and stirred. When stirring, it may be stirred at room temperature or heated. In order to increase the reactivity of the silane compound, it is preferable to heat the mixture to preferably 50°C or higher, more preferably 80°C or higher, and then stir. After stirring for about 30 seconds to 10 minutes, the surface treatment agent is sprayed while stirring.
  • the types of surface treatment agents are as described above, and preferably include hexamethyldisilazane and trimethylsilane.
  • the amount of the surface treatment agent to be sprayed is preferably 1 to 5 times the amount calculated from the minimum coverage area of the surface treatment agent, the specific surface area of the raw material powder being treated, and the input weight (see the formula below).
  • Amount of surface treatment agent to be sprayed (specific surface area of raw material powder) x (feed weight of raw material powder) / (minimum coverage area of surface treatment agent)
  • the method for mixing the surface treatment agent is not important, but a method in which the surface treatment agent, such as the silane coupling agent, is mixed into the raw material powder using a commonly used mixer such as a ball mill, vibration mill, planetary grinder, jet mill, mechanical stirring blade mixer, or container rotary mixer is preferable.
  • the raw materials may also be heated during mixing.
  • the heating method is not important, but the outside of the mixing container may be covered with a jacket and heated with steam, heated water, oil, etc. Heating can increase the reactivity of the surface treatment agent, making it possible to efficiently surface treat the raw materials.
  • the raw material may be passed through an apparatus having a crushing/dispersing function as an auxiliary.
  • the device having the crushing and dispersion function includes a device that swirls in a high-speed airflow such as a jet mill to crush powder by collision, and a device that causes dust-containing gases to collide with each other in counterflows to crush powder by collision.
  • the device includes a high-pressure wet jet mill type crushing device that crushes slurry by collision, and an ultrasonic dispersion device that can irradiate strong ultrasonic waves into the slurry delivery pipe.
  • the material for the lining is not particularly limited, but examples include urethane, boron carbide, alumina, silicon carbide, and Teflon (registered trademark). However, since alumina particles are a very hard material, alumina lining is more preferable as the material for the lining.
  • the raw material in this embodiment may contain at least one of boehmite and aluminum hydroxide, which contain more surface OH groups than alumina and are therefore easier to treat and the effects of surface treatment are more likely to appear.
  • the raw materials are more effectively dispersed, and as a result, spherical alumina particles with the desired small particle size and high circularity can be obtained more easily.
  • the raw material according to this embodiment may contain components other than boehmite or aluminum hydroxide, for example, alumina, as long as the effects of the present invention are not affected.
  • the raw material in this embodiment is adjusted to a particle size equal to or slightly smaller than the particle size of the alumina particles to be produced, i.e., 0.2 to 2.0 ⁇ m. Preferably, it may be 0.3 ⁇ m or more, or 1.9 ⁇ m or less.
  • the particle size may be adjusted by crushing or classification to obtain the desired particle size.
  • the particle size distribution of the raw material is generally inherited as the particle size distribution of the alumina particle material to be produced.
  • the composite composition of the finally obtained spherical alumina particles and resin can be produced.
  • the composition of the resin composite composition will be described in more detail below.
  • a slurry composition containing spherical alumina particles and a resin By using a slurry composition containing spherical alumina particles and a resin, it is possible to obtain resin composite compositions such as semiconductor encapsulants (particularly solid encapsulants) and interlayer insulating films. Furthermore, by curing these resin composite compositions, it is possible to obtain resin composites such as encapsulants (cured bodies) and substrates for semiconductor packages.
  • the resin composite composition for example, in addition to the spherical alumina particles and resin, a curing agent, a curing accelerator, a flame retardant, a silane coupling agent, etc. are mixed as necessary, and the mixture is compounded by a known method such as kneading. The mixture is then molded into pellets, films, etc., depending on the application.
  • inorganic fillers When producing the resin composite composition, other inorganic fillers may be blended in addition to the spherical alumina particles and resin.
  • the inorganic fillers include amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers.
  • the resin composite composition when the resin composite composition is cured to produce a resin composite, for example, the resin composite composition is heated to melt it, processed into a shape according to the intended use, and then heated to a temperature higher than that at the time of melting to completely cure it.
  • a known method such as a transfer molding method can be used.
  • epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin, etc. can be used.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin
  • biphenyl type epoxy resin phenol novolac type epoxy resin
  • cresol novolac type epoxy resin cresol novolac type epoxy resin
  • naphthalene type epoxy resin phenoxy type epoxy resin, etc.
  • epoxy resins having two or more epoxy groups in one molecule are preferred from the viewpoints of curability, heat resistance, etc.
  • biphenyl type epoxy resins phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, epoxidized novolac resins of phenols and aldehydes, glycidyl ethers of bisphenol A, bisphenol F, bisphenol S, etc.
  • glycidyl ester acid epoxy resins obtained by reacting polybasic acids such as phthalic acid and dimer acid with epochlorohydrin, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, alkyl-modified polyfunctional epoxy resins, ⁇ -naphthol novolac type epoxy resins, 1,6-dihydroxynaphthalene type epoxy resins, 2,7-dihydroxynaphthalene type epoxy resins, bishydroxybiphenyl type epoxy resins, and epoxy resins into which halogens such as bromine have been introduced to impart flame retardancy.
  • these epoxy resins having two or more epoxy groups in one molecule
  • resins other than epoxy resins can be used in applications other than composite materials for semiconductor encapsulation, such as prepregs for printed circuit boards and various engineering plastics, as resin composite compositions.
  • resins that can be used other than epoxy resins include silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyesters, polysulfones, liquid crystal polymers, polyethersulfones, polycarbonates, maleimide-modified resins, ABS resins, AAS (acrylonitrile-acrylic rubber-styrene) resins, and AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resins.
  • the curing agent used in the resin composite composition may be any known curing agent for curing the resin, for example, a phenol-based curing agent.
  • a phenol-based curing agent phenol novolac resin, alkylphenol novolac resin, polyvinylphenols, etc.
  • phenol novolac resin phenol novolac resin, alkylphenol novolac resin, polyvinylphenols, etc.
  • phenol novolac resin alkylphenol novolac resin
  • polyvinylphenols, etc. may be used alone or in combination of two or more kinds.
  • the amount of the phenolic hardener to be blended is preferably such that the equivalent ratio to the epoxy resin (phenolic hydroxyl group equivalent/epoxy group equivalent) is 0.1 or more and less than 1.0. This eliminates the residue of unreacted phenolic hardener and improves moisture absorption and heat resistance.
  • the amount of the spherical alumina particles of the present invention added to the resin composite composition is preferably large from the viewpoint of heat resistance and thermal expansion coefficient, but is usually 70% by mass to 95% by mass, preferably 80% by mass to 95% by mass, and more preferably 85% by mass to 95% by mass.
  • the amount of spherical alumina particles is too small, it is difficult to obtain effects such as improving the strength of the sealing material and suppressing thermal expansion, and conversely, if the amount is too large, segregation due to aggregation of the spherical alumina particles is likely to occur in the composite material regardless of the surface treatment of the spherical alumina particles, and the viscosity of the composite material becomes too high, making it difficult to use as a sealing material.
  • the preferred amount added to the resin composite composition is the total amount of the spherical alumina particles and the "other filler".
  • additives such as silane coupling agents, hardeners, colorants, hardening retarders, and other known additives can be used.
  • any known coupling agent may be used, but it is preferable to use one that has an epoxy-based functional group.
  • a slurry composition containing spherical alumina particles and resin can be used to produce heat dissipation sheets, heat dissipation grease, etc.
  • the spherical alumina particles, resin, and additives are appropriately mixed and compounded using a known method such as kneading.
  • the resulting composite is molded into a sheet using a known method.
  • known resins can be used as the resin for the resin composite composition, and specific examples include silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide, polyetherimide, polyester such as polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin.
  • silicone resin there are no particular limitations on the silicone resin, but for example, peroxide curing type, addition curing type, condensation curing type, ultraviolet curing type, etc. can be used.
  • additives such as silane coupling agents, hardeners, colorants, hardening retarders, and other known additives can be used.
  • the spherical alumina particles, resin, and additives are appropriately mixed and compounded using a known method such as kneading.
  • the resin used in the heat dissipating grease is also called the base oil.
  • known resins can be used in the resin composite composition, specifically silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin, mineral oil, synthetic hydrocarbon oil, ester oil, polyglycol oil, silicone oil, and fluorine oil.
  • silicone resin phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin
  • polyamides such as polyimide, polyamideimide, and polyetherimide
  • polyesters such
  • additives such as silane coupling agents, colorants, thickeners, and other known additives can be used.
  • the thickeners that can be used include known ones such as calcium soap, lithium soap, aluminum soap, calcium complex, aluminum complex, lithium complex, barium complex, bentonite, urea, PTFE, sodium terephthalamate, silica gel, and organic bentonite.
  • Table 1 shows the physical properties of the spherical alumina particles produced.
  • the laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion liquid in which spherical alumina particles are dispersed is irradiated with laser light, and the particle size distribution is obtained from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion liquid.
  • a laser diffraction/scattering particle size distribution measurement device "Mastersizer 3000" (manufactured by Malvern) was used.
  • the specific surface area is measured by the BET method. Typically, the specific surface area is measured by the following procedure. Approximately 5 g of a sample was weighed out and vacuum dried for 5 minutes at 250° C. Next, the sample was set in an automatic specific surface area measuring device (Macsorb, manufactured by Mountec Co., Ltd.), and the nitrogen gas adsorption amount was measured at a relative pressure P/P0 value of 0.291 at a measurement temperature of 77 K using pure nitrogen and a nitrogen-helium mixed gas (mixture ratio: nitrogen 30%, He 70%), and the BET specific surface area was calculated by the one-point method.
  • Macsorb manufactured by Mountec Co., Ltd.
  • the circularity can be measured using an electron microscope or optical microscope and an image analyzer. For example, Sysmex FPIA. Using these devices, the circularity of the particles (perimeter of the equivalent circle/perimeter of the projected image of the particle) is measured. The circularity of 100 or more particles is measured, and the average value is taken as the circularity of the powder.
  • the alpha-conversion rate of the alumina particle powder is measured using a powder X-ray diffractometer.
  • the integrated area of the obtained diffraction peaks is calculated, and the ratio of the diffraction peak area derived from alpha-alumina to the total is analyzed by the Rietveld method.
  • an X-ray diffraction pattern is obtained using a D2PHASER manufactured by Bruker Corporation in the range of 2 ⁇ from 10° to 90°.
  • the alpha-conversion rate is calculated from the obtained pattern by the Rietveld method using a DIFFRAC.TOPAS manufactured by Bruker Corporation.
  • analysis is performed assuming that only three types of crystal phases, alpha-alumina, delta-alumina, and ⁇ -alumina, are present, and the content of alpha-alumina is calculated.
  • the amount of metallic Al remaining in the alumina particles is measured using the following procedure. Approximately 1 g of a spherical alumina particle sample is weighed out and placed in a beaker. 60 ml of 1 mol/L hydrochloric acid is added to the beaker and stirred at room temperature for 5 hours. After stirring, the supernatant of the sample solution is taken and the volume is adjusted to 100 ml, and the solution is analyzed for Al content using ICP-MS.
  • the powder resistivity of the alumina particle powder was measured using a powder resistivity measurement system MCP-PD51. As a pretreatment for the measurement, the powder was heated and dried for 5 hours under a condition of 200°C in the atmosphere. The dried powder was introduced into a powder resistivity measurement probe unit, and the sample was gradually pressurized using an attached hydraulic pump. When the load reached 20 kN, the measurement was performed using a high resistivity meter.
  • Na2O content of the alumina particles was measured using an atomic absorption spectrometer. 0.5 g of a sample was placed in a pressure vessel, 10 ml of sulfuric acid (1+3) was added, and the vessel was then covered with a lid, and heated in a heating and drying oven at 230°C for 16 hours. The heated solution was allowed to cool, then the solution was diluted to 100 ml and measured with an atomic absorption spectrometer.
  • the plastic container containing the kneaded material is placed in a water bath adjusted to 25 ° C. and cooled for 1 hour.
  • 10 g of the compound (resin composite composition) prepared by kneading is placed on a plate with a smooth surface.
  • the plate on which the compound is placed is tilted 60 degrees from the horizontal to check the flowability of the compound. In this test, if the compound flows 15 cm or more after 5 hours from tilting, the fluidity is evaluated as O (Good), and if the compound does not flow 15 cm or more, the fluidity is evaluated as ⁇ (Not Good).
  • the spherical alumina particles of the present invention have a small particle size and can therefore be used in miniaturized and thinned semiconductor packages, and because they have a low metallic aluminum concentration, the occurrence of serious accidents such as short circuits is suppressed. Furthermore, the spherical alumina particles can be easily manufactured by the manufacturing method which is one aspect of the present invention.
  • a resin composite composition containing the spherical alumina particles exhibits good fluidity and can be used for other purposes as well, without being limited to semiconductor encapsulation materials. Specifically, they can also be used as prepregs for printed circuit boards, various engineering plastics, etc.

Abstract

Provided are: spherical alumina particles having a low metal Al concentration and small particle size; a manufacturing method therefor; and a resin composite composition containing the same. The present invention provides: spherical alumina particles in which the metal Al concentration is equal to or less than 1000 ppm, the average particle size is 0.3-2.0 µm, the specific surface area is 2.5-5.0 m2/g, the circularity is equal to or greater than 0.80, and the rate of transformation to α-alumina is equal to or less than 5.0%; a manufacturing method therefor; and a resin composite composition containing the same.

Description

球状アルミナ粒子、その製造方法、および、それを含有する樹脂複合組成物Spherical alumina particles, their production method, and resin composite composition containing the same
 本発明は、球状アルミナ粒子、特に金属Al濃度が低減された球状アルミナ粒子、その製造方法、およびそれを含有する樹脂複合組成物に関する。 The present invention relates to spherical alumina particles, particularly spherical alumina particles with a reduced concentration of metallic Al, a method for producing the same, and a resin composite composition containing the same.
 近年、携帯電話などの電子機器の高機能化、高速化によって、電子機器内部の電子部品から発せられる熱量が増大している。電子機器の正常な動作のために、発せられる熱を効率よく外部へ放散させることが重要な課題となっている。熱放散のために多用されているのが放熱シートや放熱接着剤と呼ばれるものである。これらは発熱体と放熱フィンの間に貼り付け或いは塗布し圧着することで発熱体と放熱フィンとの隙間をなくし、効率よく熱を発散することができる。また電子部品の内部にある、半導体自体も同様の高機能化、高速化による発熱が著しく、半導体を保護する封止材についても熱放散性を付与することが求められている。 In recent years, the amount of heat generated by electronic components inside electronic devices has increased due to the increasing functionality and speed of electronic devices such as mobile phones. To ensure that electronic devices operate normally, it is important to efficiently dissipate the generated heat to the outside. Heat dissipation sheets and heat dissipation adhesives are widely used for heat dissipation. These are attached or applied between the heating element and the heat dissipation fins and then pressed together to eliminate the gap between the heating element and the heat dissipation fins, allowing heat to be dissipated efficiently. Furthermore, the semiconductors themselves inside electronic components also generate significant amounts of heat due to their high functionality and high speed, and there is a demand for the encapsulating material that protects the semiconductors to also have heat dissipation properties.
 一般に放熱シートや放熱接着剤、半導体封止材は熱伝導性無機フィラーと樹脂とで構成されている。熱伝導性無機フィラーは安価な水酸化アルミニウムや酸化アルミニウム(以下、アルミナ)、さらに高熱伝導を期待した炭化ケイ素や窒化ホウ素、窒化アルミニウムといった素材が使われている。特にアルミナは安価であり化学的に安定であることから、熱伝導性無機フィラーとしてよく用いられる。 In general, heat dissipation sheets, heat dissipation adhesives, and semiconductor encapsulants are composed of thermally conductive inorganic fillers and resins. Thermally conductive inorganic fillers are made from inexpensive aluminum hydroxide and aluminum oxide (hereafter referred to as alumina), as well as materials such as silicon carbide, boron nitride, and aluminum nitride, which are expected to have high thermal conductivity. Alumina in particular is often used as a thermally conductive inorganic filler because it is inexpensive and chemically stable.
 アルミナ等の熱伝導性無機フィラーは、小粒径で球状であることも求められている。これは、ICやCPUなどの半導体パッケージの小型化、薄型化が進んでおり、これに伴いボンディングワイヤの細径化、狭ピッチ化が進んでいるためである。すなわち、半導体パッケージに用いられるアルミナ等の熱伝導性無機フィラーも、半導体内部の狭小部への充填性を高めるため、小粒径で球状あることが求められている。 Heat-conductive inorganic fillers such as alumina are also required to be small in particle size and spherical. This is because semiconductor packages such as ICs and CPUs are becoming smaller and thinner, which is leading to thinner bonding wires with smaller diameters and narrower pitches. In other words, heat-conductive inorganic fillers such as alumina used in semiconductor packages are also required to be small in particle size and spherical in order to improve filling ability into narrow spaces inside semiconductors.
特許第6771078号公報Patent No. 6771078 特許第5036984号公報Patent No. 5036984 特開2008-120673号公報JP 2008-120673 A
 小粒径、典型的には粒径2.0μm以下の球状アルミナ粒子を製造するためのいくつかの方法が公知である。 Several methods are known for producing small spherical alumina particles, typically with a particle size of 2.0 μm or less.
 球状アルミナの一般的製法として酸化アルミニウムを原料とする火炎溶融法が挙げられる。原料の酸化アルミニウムを火炎中に溶射して、酸化アルミニウムの表面を加熱溶融し、球状化するものであるが、溶融した粒子どうしが固着し、粒径の大きな凝集粒子となることがあり、所望する小粒径の粒子が得られないことがある。 The most common method for producing spherical alumina is the flame fusion method, which uses aluminum oxide as the raw material. The raw material aluminum oxide is sprayed into a flame, and the surface of the aluminum oxide is heated and melted to form spherical shapes. However, the molten particles may stick together and form large aggregated particles, and the desired small particle size may not be obtained.
 特許文献1は、原料の酸化アルミニウムに、シリカ粒子を加えた上で、溶射することにより、酸化アルミニウムの凝集を抑制する手法を開示している。ただし、この手法では、最終的に得られる、球状アルミナ粒子中にシリカ粒子が混入することが避けられない。 Patent Document 1 discloses a method for suppressing the aggregation of aluminum oxide by adding silica particles to the raw aluminum oxide and then thermally spraying the mixture. However, with this method, it is inevitable that silica particles will be mixed into the spherical alumina particles that are ultimately obtained.
 特許文献2は、溶射バーナの先端に衝突板を配置し、当該衝突板に原料の酸化アルミニウムを衝突させた上で、溶射工程を行うことにより、酸化アルミニウムの凝集を抑制する手法を開示している。 Patent Document 2 discloses a method of suppressing the aggregation of aluminum oxide by placing a collision plate at the tip of a thermal spray burner, colliding the raw aluminum oxide with the collision plate, and then performing the thermal spraying process.
 特許文献3は、原料の微粒低ソーダ酸化アルミニウムに、原料粉体を解砕・分散機能を有する装置を経由させて、キャリアガス中に分散させた直後に、連続的に火炎中に導入し、金属不純物が極めて少ない平均粒子径1μm未満の球状アルミナが得られることを開示している。ここで得られた球状アルミナは金属Al濃度が<0.010%であるとされている。ただしこの手法では、キャリアガス中のわずかな水分によって解砕分散した粒子が再凝集し、小粒径の球状アルミナを得られない、また、アルミナ粒子が硬いαアルミナを多く含むため、解砕・分散機能を有する装置を経由した際に装置を摩耗させるという懸念がある。また、得られた球状アルミナは比表面積、円形度等の基本的な性状が明らかではない。 Patent Document 3 discloses that the raw material, fine low-soda aluminum oxide, is passed through a device with a crushing and dispersing function, and immediately after being dispersed in a carrier gas, it is continuously introduced into a flame, resulting in spherical alumina with an average particle size of less than 1 μm and extremely low metal impurities. The spherical alumina obtained here is said to have a metal Al concentration of <0.010%. However, with this method, the crushed and dispersed particles re-agglomerate due to a small amount of moisture in the carrier gas, making it impossible to obtain spherical alumina with a small particle size. In addition, there is a concern that the alumina particles contain a large amount of hard alpha alumina, which may wear out the device when passed through the device with a crushing and dispersing function. In addition, the basic properties of the obtained spherical alumina, such as the specific surface area and circularity, are unclear.
 火炎溶融法以外の方法として、爆燃法(VMC法)も知られている。具体的には、金属アルミニウム粉末を酸素の気流中に分散させ、着火することで酸化させ、その反応熱で金属及び酸化物を蒸気または液体にし、冷却することで、微細な、例えば粒径2.0μm以下のアルミナ粒子を得ることができるといわれている。ただし、爆発的な反応を利用するため、粉塵爆発の危険があり、また、金属アルミニウムの一部が反応せず、すなわちアルミナに変化せず、金属アルミニウムが残存する可能性もある。特に、残存する金属アルミニウムは、半導体パッケージ等に含まれる場合、半導体の短絡等の重大な事故につながるおそれがある。なお、特許文献1、2のいずれについても、残存する金属アルミニウムについての記載や示唆はない。 In addition to the flame fusion method, the deflagration method (VMC method) is also known. Specifically, it is said that fine alumina particles, for example with a particle size of 2.0 μm or less, can be obtained by dispersing metallic aluminum powder in an oxygen stream, oxidizing it by igniting it, and using the heat of the reaction to turn the metal and oxide into vapor or liquid, which can then be cooled. However, since an explosive reaction is used, there is a risk of a dust explosion, and there is also a possibility that some of the metallic aluminum will not react, i.e., will not turn into alumina, and the metallic aluminum will remain. In particular, if the remaining metallic aluminum is contained in a semiconductor package, etc., it may lead to serious accidents such as short circuits in the semiconductor. Note that neither Patent Document 1 nor Patent Document 2 mentions or suggests anything about the remaining metallic aluminum.
 本発明は、上記の状況に鑑みてなされたものであり、その目的は、金属Al濃度が低く、α化率が低く、かつ、小粒径の球状アルミナ粒子、その製造方法、およびそれを含む樹脂複合組成物を提供することである。 The present invention was made in consideration of the above situation, and its purpose is to provide spherical alumina particles with a low metal Al concentration, a low alpha conversion rate, and a small particle size, a method for producing the same, and a resin composite composition containing the same.
 本発明者らは、火炎溶融法において、所定の粒径を有するアルミナ、ベーマイト、または水酸化アルミニウムの少なくとも一つを含む原料を、溶射することにより、原料粒子どうしの凝集を抑制しつつ、金属アルミニウム濃度が低く、小粒径の球状アルミナ粒子が得られることを見出した。 The inventors have discovered that by spraying a raw material containing at least one of alumina, boehmite, and aluminum hydroxide having a specified particle size in a flame fusion method, it is possible to obtain small-sized spherical alumina particles with a low concentration of metallic aluminum while suppressing aggregation of the raw material particles.
 上記の知見に基づく、本発明の要旨は以下のとおりである。 Based on the above findings, the gist of the present invention is as follows:
[1] 金属Al濃度が1000ppm以下であり、平均粒径が0.3~2.0umであり、比表面積が2.5~5.0m/gであり、円形度が0.80以上であり、α化率が5.0%以下である、球状アルミナ粒子。
[2] α化率が1.0%以下、である、[1]に記載の球状アルミナ粒子。
[3] アルミナ、ベーマイト、または水酸化アルミニウムの少なくとも一つを含み、粒径が0.2~2.0umである原料を調製する原料調製工程と、
 前記原料を珪素原子含有表面処理剤により表面処理する表面処理工程と、
 前記表面処理された原料を火炎中に投入して溶融させた後、急冷することで球状化する球状化工程と、
 を有する、球状アルミナ粒子の製造方法。
[4] [1]または[2]に記載の球状アルミナ粒子を含有していることを特徴とする樹脂複合組成物。
[5] 非晶質球状シリカ粒子、結晶質球状シリカ粒子、チタニア粒子、マグネシア粒子、窒化アルミニウム粒子、窒化ホウ素粒子、チタン酸バリウム粒子、チタン酸カルシウム粒子、カーボンファイバーから選ばれる、少なくとも1種類以上の無機フィラーをさらに含有する、[4]に記載の樹脂複合組成物。
[1] Spherical alumina particles having a metal Al concentration of 1000 ppm or less, an average particle size of 0.3 to 2.0 μm, a specific surface area of 2.5 to 5.0 m 2 /g, a circularity of 0.80 or more, and a rate of alpha conversion of 5.0% or less.
[2] The spherical alumina particles according to [1], having a gelatinization rate of 1.0% or less.
[3] A raw material preparation step of preparing a raw material containing at least one of alumina, boehmite, and aluminum hydroxide and having a particle size of 0.2 to 2.0 um;
a surface treatment step of surface-treating the raw material with a silicon atom-containing surface treatment agent;
a spheroidizing step in which the surface-treated raw material is introduced into a flame to melt it, and then rapidly cooled to form spheroids;
The method for producing spherical alumina particles comprising the steps of:
[4] A resin composite composition comprising the spherical alumina particles according to [1] or [2].
[5] The resin composite composition according to [4], further comprising at least one inorganic filler selected from amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers.
 本発明により、金属アルミニウム濃度が低く、α化率が非常に低く、比表面積が制御された、小粒径の球状アルミナ粒子、およびそれを含有する樹脂複合組成物が得られる。それらは、小粒径であるために、小型化・薄型化された半導体パッケージ等にも利用でき、また、金属アルミニウム濃度が低いので、短絡等の重大な事故の発生が抑制される。また、α化率が非常に低いのでアルミナ粒子表面の形状が非常に平滑なため、流動性が高まる効果や設備摩耗性が低くなるという利点がある。さらに、本発明の一態様である製造方法により、当該球状アルミナ粒子を容易に製造することができる。 The present invention provides small-diameter spherical alumina particles with a low metallic aluminum concentration, a very low alpha conversion rate, and a controlled specific surface area, as well as a resin composite composition containing the same. Because of their small particle size, they can be used in miniaturized and thinned semiconductor packages, and because of their low metallic aluminum concentration, the occurrence of serious accidents such as short circuits is suppressed. In addition, because the alpha conversion rate is very low, the shape of the alumina particle surface is very smooth, which has the advantage of increasing fluidity and reducing equipment wear. Furthermore, the spherical alumina particles can be easily manufactured by the manufacturing method that is one aspect of the present invention.
[球状アルミナ粒子]
(金属Al濃度)
 本発明の一実施態様である、球状アルミナ粒子は、金属Al濃度が1000ppm以下である。アルミナは、金属Alの酸化物であり、金属Alまたはそれを含むアルミニウム化合物(水酸化アルミニウム等)を酸化、脱水することにより製造することができる。アルミナの製造過程で、原料中に含まれる金属Alが十分に酸化されずに、製品のアルミナ中に金属Alとして残留することがある。特に、爆燃法(VMC法)は、爆発的な反応を利用して金属Alを酸化するため、均等に酸化せず、すなわちアルミナに変化せず、金属アルミニウムが残存する可能性が高い。金属Alは、アルミナ(酸化アルミニウム)に比べて、電気伝導性が遙かに高い。高い絶縁性が求められる用途、例えば半導体パッケージ等において、金属Alが含まれると、予期せぬ短絡等の重大な事故が生じることがある。その観点から、金属Al濃度は低いほど好ましい。本発明の一実施態様である、球状アルミナ粒子は、金属Al濃度が1000ppm以下であり、短絡等の重大な事故の発生が抑制される。より好ましくは、金属Al濃度は、800ppm以下または700ppm以下であってもよい。金属Al濃度の下限値は特に限定されるものではなく、0ppmであってもよいが、製造管理の負担が大きく困難な場合があるので、数ppm、具体的には1ppm以上としてもよく、5ppm以上としてもよい。実際の用途や目標とする絶縁性の許容範囲に応じて、金属Al濃度の下限を調整してもよく、例えば、10ppm以上、20ppm以上、または30ppm以上としてもよい。
[Spherical alumina particles]
(Metal Al Concentration)
The spherical alumina particles, which are an embodiment of the present invention, have a metal Al concentration of 1000 ppm or less. Alumina is an oxide of metal Al, and can be produced by oxidizing and dehydrating metal Al or an aluminum compound containing it (such as aluminum hydroxide). In the process of producing alumina, the metal Al contained in the raw material may not be sufficiently oxidized and may remain as metal Al in the alumina product. In particular, the deflagration method (VMC method) uses an explosive reaction to oxidize metal Al, so there is a high possibility that the metal aluminum will not be oxidized evenly, that is, will not change to alumina, and metal aluminum will remain. Metal Al has a much higher electrical conductivity than alumina (aluminum oxide). In applications requiring high insulation, such as semiconductor packages, if metal Al is contained, serious accidents such as unexpected short circuits may occur. From this perspective, the lower the metal Al concentration, the more preferable. The spherical alumina particles, which are an embodiment of the present invention, have a metal Al concentration of 1000 ppm or less, which suppresses the occurrence of serious accidents such as short circuits. More preferably, the metal Al concentration may be 800 ppm or less or 700 ppm or less. The lower limit of the metal Al concentration is not particularly limited and may be 0 ppm, but since the burden of production management may be large and difficult, it may be several ppm, specifically 1 ppm or more, or 5 ppm or more. Depending on the actual application and the target allowable range of insulation properties, the lower limit of the metal Al concentration may be adjusted, for example, 10 ppm or more, 20 ppm or more, or 30 ppm or more.
 金属Al濃度の分析は、以下により行われる。球状アルミナ粒子試料を約1g測りとり、ビーカーに入れる。ビーカーに1mol/Lの塩酸を60ml加え、室温中で5時間撹拌する。撹拌後の試料溶液の上澄みをとり100mlに定容し、溶液をICP-MSにてAl分を分析する。 The metal Al concentration is analyzed as follows: Approximately 1 g of spherical alumina particle sample is weighed out and placed in a beaker. 60 ml of 1 mol/L hydrochloric acid is added to the beaker and stirred at room temperature for 5 hours. After stirring, the supernatant of the sample solution is removed and the volume is adjusted to 100 ml, and the solution is analyzed for Al content using ICP-MS.
(粒径)
 本発明の一実施態様である、球状アルミナ粒子は、平均粒径が0.3~2.0umである。粒径が0.3μm未満であると、粒子の凝集性が大きくなり、フィラーとして用いたときなどに樹脂組成物の流動性が著しく低下するため、好ましくない。粒径が2.0μmを超えると、小型化・薄型化の進んだ半導体パッケージ等において、実装基板とチップとの狭小部に粒子が引っかかってしまい、液状封止材の流動性が悪くなって成型性が低下することがある。
(Particle size)
The spherical alumina particles according to one embodiment of the present invention have an average particle size of 0.3 to 2.0 μm. If the particle size is less than 0.3 μm, the particles tend to aggregate, and the fluidity of the resin composition when used as a filler is significantly reduced, which is undesirable. If the particle size exceeds 2.0 μm, the particles may get caught in the narrow space between the mounting substrate and the chip in a semiconductor package that is becoming smaller and thinner, which may cause the fluidity of the liquid encapsulant to decrease, resulting in a decrease in moldability.
 ここで、平均粒径とは、平均粒子径(D50)を指し、レーザー回折・散乱式粒度分布測定法により測定した、体積基準の粒度分布において、累積体積が50%のメジアン径D50を意味する。なお、レーザー回折・散乱式粒度分布測定法は、球状アルミナ粒子を分散させた分散液にレーザー光を照射し、分散液から発せられる回折・散乱光の強度分布パターンから粒度分布を求める方法である。本発明では、レーザー回折・散乱式粒度分布測定装置「Mastersizer3000」(Malvern社製)を用いる。なお、球状アルミナ粒子の原料についても、同様にその平均粒子径を求めることができる。 Here, the average particle size refers to the average particle size (D50), and means the median diameter D50 at 50% cumulative volume in the volume-based particle size distribution measured by the laser diffraction/scattering particle size distribution measurement method. The laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion liquid in which spherical alumina particles are dispersed is irradiated with laser light, and the particle size distribution is determined from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion liquid. In the present invention, a laser diffraction/scattering particle size distribution measurement device "Mastersizer 3000" (manufactured by Malvern) is used. The average particle size of the raw material for spherical alumina particles can also be determined in a similar manner.
 (α化率)
 ここで、α化率とは、結晶質相の内のα-アルミナ結晶の割合を指す。本発明の一実施態様である、球状アルミナ粒子は、α化率が5.0%以下である。アルミナは結晶質となることが知られており、典型的な結晶質の形態としてα-アルミナ、θ-アルミナ、δ-アルミナが知られている。本発明の一実施形態である、球状アルミナ粒子は、詳細は後述するが、原料を火炎中に投入して溶融させた後、急冷する溶射法に基づいて、製造することができる。その場合、得られるアルミナは非晶質の割合を多くすることができ、容易に、α化率が5.0%以下の球状アルミナ粒子を得ることができる。この範囲に制御することでアルミナ粒子表面が平滑になり、樹脂と混合した際の流動性を高く保つ効果や硬いαアルミナ粒子量が少ないため、設備摩耗性が低いことに優れる。一方α化率が低いとアルミナ粒子に含まれるαアルミナの量が少なくなりすぎるために、粒子の熱伝導率が低下し、樹脂組成物の熱伝導率も低下する恐れがある。α化率の下限は、特に制限されるものではなく、0.0%であってもよいが、製造管理の負担の観点及び樹脂組成物の熱伝導率特性の観点から、0.1%であってもよく、0.2%であってもよい。また、α化率の上限は3.0%であってもよく、1.5%であってもよく、1.0%であってもよく、0.9%であってもよく、0.8%であってもよい。
(Alpha conversion rate)
Here, the alpha-alumina ratio refers to the ratio of alpha-alumina crystals in the crystalline phase. The spherical alumina particles, which are one embodiment of the present invention, have an alpha-alumina ratio of 5.0% or less. It is known that alumina becomes crystalline, and alpha-alumina, θ-alumina, and δ-alumina are known as typical crystalline forms. The spherical alumina particles, which are one embodiment of the present invention, can be manufactured based on a thermal spraying method in which a raw material is put into a flame, melted, and then quenched, as will be described in detail later. In this case, the obtained alumina can have a high amorphous ratio, and spherical alumina particles with an alpha-alumina ratio of 5.0% or less can be easily obtained. By controlling the ratio within this range, the alumina particle surface becomes smooth, and the effect of maintaining high fluidity when mixed with a resin and the amount of hard alpha-alumina particles are small, so that the equipment wear resistance is low. On the other hand, if the alpha-alumina ratio is low, the amount of alpha-alumina contained in the alumina particles becomes too small, so that the thermal conductivity of the particles decreases, and the thermal conductivity of the resin composition may also decrease. The lower limit of the alpha-conversion rate is not particularly limited and may be 0.0%, but may be 0.1% or 0.2% from the viewpoint of the burden of production management and the thermal conductivity characteristics of the resin composition. The upper limit of the alpha-conversion rate may be 3.0%, 1.5%, 1.0%, 0.9%, or 0.8%.
 アルミナ粒子粉末のα化率は、粉末X線回折装置を用いて測定する。得られた回折ピークの積分面積を求め、その合計に対してαアルミナ由来の回折ピーク面積の割合をリートベルト法によって解析する。具体的にはBruker社製のD2PHASERを用いてX線回折パターンを2θが10°から90°の範囲で取得する。取得したパターンをBruker社製のDIFFRAC.TOPASを用いてリートベルト法にてα化率を算出する。算出の際にはαアルミナ、δアルミナ、θアルミナの3種類の結晶相のみが存在すると仮定して解析し、αアルミナの含有率を算出する。 The alpha-conversion rate of the alumina particle powder is measured using a powder X-ray diffractometer. The integrated area of the obtained diffraction peaks is calculated, and the ratio of the diffraction peak area derived from alpha-alumina to the total is analyzed using the Rietveld method. Specifically, an X-ray diffraction pattern is obtained using a Bruker D2PHASER in the 2θ range of 10° to 90°. The alpha-conversion rate is calculated from the obtained pattern using a Bruker DIFFRAC. TOPAS by the Rietveld method. When calculating, the analysis is performed assuming that only three types of crystal phases, alpha-alumina, delta-alumina, and theta-alumina, are present, and the alpha-alumina content is calculated.
 (比表面積)
 本発明の球状アルミナ粒子は、BET法により測定された比表面積が2.5m/g以上5.0m/g以下である。
(Specific surface area)
The spherical alumina particles of the present invention have a specific surface area, measured by the BET method, of 2.5 m 2 /g or more and 5.0 m 2 /g or less.
 球状粒子の比表面積が2.5m/g未満であると、粒子が最密充填構造を形成しにくくなるために、当該粒子を含む液状封止材の流動性が低下することがある。一方、球状粒子の比表面積が5.0m/g超であると、粒子間の凝集傾向が増して同様に液状封止材の流動性が低下することがある。好ましい下限は3.0m/gである。好ましい上限は4.0m/gである。 If the specific surface area of the spherical particles is less than 2.5 m 2 /g, the particles are unlikely to form a close-packed structure, and the fluidity of the liquid encapsulant containing the particles may decrease. On the other hand, if the specific surface area of the spherical particles is more than 5.0 m 2 /g, the particles may tend to aggregate more easily, and the fluidity of the liquid encapsulant may decrease. The preferred lower limit is 3.0 m 2 /g. The preferred upper limit is 4.0 m 2 /g.
 球状粒子の比表面積は、BET法により測定することもでき、典型的には、以下の手順で比表面積を測定する。
 約5gの試料を測り採り、250℃で5分真空乾燥した。ついで、自動比表面積測定装置(マウンテック社製、Macsorb)に試料をセットし、純窒素及び窒素-ヘリウム混合ガス(混合比率窒素30%、He70%)を用いて77Kの測定温度で相対圧P/P0が0.291の値の窒素ガス吸着量を測定し、1点法にてBET比表面積を算出する。
The specific surface area of the spherical particles can also be measured by the BET method, and typically, the specific surface area is measured by the following procedure.
Approximately 5 g of a sample was weighed out and vacuum dried for 5 minutes at 250° C. Next, the sample was set in an automatic specific surface area measuring device (Macsorb, manufactured by Mountec Co., Ltd.), and the nitrogen gas adsorption amount was measured at a relative pressure P/P0 value of 0.291 at a measurement temperature of 77 K using pure nitrogen and a nitrogen-helium mixed gas (mixture ratio: nitrogen 30%, He 70%), and the BET specific surface area was calculated by the one-point method.
 (円形度)
 本発明の一実施態様では、球状アルミナ粒子は、円形度が0.80以上であってもよい。
球状粒子の円形度が高いほど、当該アルミナ粒子を含む樹脂複合組成物の粘度を低下させ、成形性も向上させることができる。円形度は、0.85以上であってもよく、0.90以上であってもよく、0.93以上であってもよい。円形度の上限は理論的には1.0であるが、製造管理の観点から0.98以下、または0.95以下としてもよい。
(Circularity)
In one embodiment of the present invention, the spherical alumina particles may have a circularity of 0.80 or more.
The higher the circularity of the spherical particles, the lower the viscosity of the resin composite composition containing the alumina particles and the more improved the moldability. The circularity may be 0.85 or more, 0.90 or more, or 0.93 or more. The upper limit of the circularity is theoretically 1.0, but may be 0.98 or less, or 0.95 or less from the viewpoint of production management.
 円形度の測定は電子顕微鏡や光学顕微鏡と画像解析装置を用いて測定することができる。例えばシスメックス社製FPIA等である。これら装置を用いて粒子の円形度(相当円の周囲長/粒子の投映像の周囲長)を測定する。100個以上の粒子について円形度を測定し、その平均値をその粉末の円形度とする。 Circularity can be measured using an electron microscope or optical microscope and an image analyzer. For example, Sysmex FPIA. These devices are used to measure the circularity of particles (perimeter of equivalent circle/perimeter of projected image of particle). The circularity of 100 or more particles is measured, and the average value is taken as the circularity of the powder.
 (換算粉体抵抗率)
 本発明の一実施態様である、球状アルミナ粒子は、換算粉体抵抗率が3.0×10Ω・cm以上であってもよい。アルミナ粒子は、高い絶縁性が求められる用途、例えば半導体パッケージ等に用いられることがあり、換算粉体抵抗率が高いほど好ましい。その点で、球状アルミナ粒子の換算粉体抵抗率は、3.1×10Ω・cm以上、3.2×10Ω・cm以上、4.0×10Ω・cm以上、5.0×10Ω・cm以上であってもよい。上限は特に限定されないが、1.0×1011Ω・cm以下、1.0×1010Ω・cm以下
であってもよい。
(Converted powder resistivity)
The spherical alumina particles according to one embodiment of the present invention may have a reduced powder resistivity of 3.0×10 9 Ω·cm or more. Alumina particles may be used in applications requiring high insulation, such as semiconductor packages, and the higher the reduced powder resistivity, the more preferable it is. In this respect, the reduced powder resistivity of the spherical alumina particles may be 3.1×10 9 Ω·cm or more, 3.2×10 9 Ω·cm or more, 4.0×10 9 Ω·cm or more, or 5.0×10 9 Ω·cm or more. The upper limit is not particularly limited, but may be 1.0×10 11 Ω·cm or less, or 1.0×10 10 Ω·cm or less.
 アルミナ粒子粉末の換算粉体抵抗率(以下、単に「換算粉体抵抗率」ともいう。)は、粉体抵抗率と粒子のNaOの含有量を掛け合わせることで求める。つまり、(換算粉体抵抗率)=(アルミナ粒子粉末の粉体抵抗率)×(球状アルミナ粒子のNa2O含有量)の式によって算出される。アルミナ粒子粉末の粉体抵抗率は、粉体抵抗率測定システムMCP-PD51を用いて測定する。測定の前処理として大気中で200℃の条件下で5時間加熱乾燥する。乾燥した粉末を粉体抵抗率測定プローブユニットへ導入し、付属の油圧ポンプを用いて試料を徐々に加圧する。荷重が20kNに達したところで、高抵抗率計にて測定を行う。 The converted powder resistivity of the alumina particle powder (hereinafter, simply referred to as "converted powder resistivity") is calculated by multiplying the powder resistivity by the Na 2 O content of the particles. In other words, it is calculated by the formula: (converted powder resistivity) = (powder resistivity of alumina particle powder) x (Na 2 O content of spherical alumina particles). The powder resistivity of the alumina particle powder is measured using a powder resistivity measurement system MCP-PD51. As a pretreatment for the measurement, the powder is heated and dried in air at 200°C for 5 hours. The dried powder is introduced into a powder resistivity measurement probe unit, and the sample is gradually pressurized using the attached hydraulic pump. When the load reaches 20 kN, the measurement is performed using a high resistivity meter.
(NaO含有量)
 本発明の一実施態様である、球状アルミナ粒子は、NaO含有量が1000ppm以下であってもよい。球状アルミナ粒子にNaOが含まれる場合、当該アルミナ粒子を含有する樹脂複合組成物においてNaOが不純物として作用し、所望する性状が得られないおそれがある。その点で、NaO含有量は低いほど好ましく、NaO含有量の上限値は750ppm以下または500ppm以下であってもよい。NaO含有量の下限値は特に限定されるものではなく、0ppmであってもよいが、製造管理の負担が大きく困難な場合があるので、数ppm、具体的には1ppm以上としてもよく、5ppm以上としてもよい。実際の用途や目標とする性状に応じて、NaO含有量の下限を調整してもよく、例えば、10ppm以上、20ppm以上、または30ppm以上としてもよい。
( Na2O content)
The spherical alumina particles, which are one embodiment of the present invention, may have a Na 2 O content of 1000 ppm or less. When the spherical alumina particles contain Na 2 O, Na 2 O may act as an impurity in a resin composite composition containing the alumina particles, and the desired properties may not be obtained. In this respect, the lower the Na 2 O content, the more preferable it is, and the upper limit of the Na 2 O content may be 750 ppm or less or 500 ppm or less. The lower limit of the Na 2 O content is not particularly limited and may be 0 ppm, but since the burden of production management may be large and difficult, it may be several ppm, specifically 1 ppm or more, or 5 ppm or more. The lower limit of the Na 2 O content may be adjusted according to the actual application and the target properties, and may be, for example, 10 ppm or more, 20 ppm or more, or 30 ppm or more.
 球状アルミナ粒子のNaOの含有量は原子吸光度計を用いて測定する。試料0.5gを加圧容器に入れ、硫酸(1+3)を10ml加え蓋をした後、加熱乾燥炉にて230℃の温度で16時間加熱する。加熱した溶液を放冷後、溶液を100mlにメスアップした後、原子吸光光度計にて測定する。なお、硫酸(1+3)とは、濃硫酸1に対して純水を体積比で3加えて希釈した溶液を指す。 The Na 2 O content of the spherical alumina particles is measured using an atomic absorption spectrometer. 0.5 g of a sample is placed in a pressure vessel, 10 ml of sulfuric acid (1+3) is added, the vessel is closed, and the vessel is heated at 230° C. for 16 hours in a heating and drying furnace. The heated solution is allowed to cool, and then the solution is diluted to 100 ml and measured using an atomic absorption spectrometer. Note that sulfuric acid (1+3) refers to a solution diluted by adding 3 parts of pure water to 1 part of concentrated sulfuric acid by volume.
 (流動性)
 本発明の一実施態様である、球状アルミナ粒子は、以下の測定方法による流動性の評価が良好、すなわち〇(Good)であるものであってもよい。球状アルミナ粒子は、樹脂複合組成物のフィラー等として用いることができ、製造管理の観点から流動性が適当な範囲にあることが好ましい。流動性は、マトリックス樹脂等の条件に応じて変化するものであるが、一つの目安として、本明細書における流動性の評価基準を示す。
(Liquidity)
The spherical alumina particles according to one embodiment of the present invention may be those whose fluidity is evaluated as good, i.e., ◯ (Good), by the following measurement method. The spherical alumina particles can be used as a filler for a resin composite composition, and it is preferable that the fluidity is within an appropriate range from the viewpoint of manufacturing control. The fluidity varies depending on the conditions of the matrix resin, etc., but the evaluation criteria for the fluidity in this specification are shown as a guideline.
 本明細書における流動性の評価手法は以下のとおりである。まず、球状アルミナ粒子試料を30g測りとり、袋に入れる。さらにAZ10-75(日鉄ケミカル&マテリアル株式会社製アルミナ粉末 平均粒径10μm)70gを測りとり、先ほど球状アルミナ粒子を入れた袋に入れる。その後袋を縛り、十分にかくはん混合する。混合後のアルミナ粒子混合粉末を43.5g測りとり、200mlのプラスチック製容器に入れる。そこにダウ東レ製シリコーン樹脂CY52-276A液6.5gを加え、シンキー製真空混錬機「泡取り練太郎」にて真空混錬する。混錬条件は予備混錬15秒、真空混錬90秒にて実施する。混錬後、混錬物の入ったプラスチック製容器を25℃に調整したウォーターバスに入れ1時間冷却する。混錬し調製したコンパウンド(樹脂複合組成物)10gを表面が平滑な板にのせる。板の材質に特段の制限はないが、本実施例では鉄板を用いた。コンパウンドをのせた板を水平方向に対して60°傾けコンパウンドの流れ度合いを確認する。本試験では傾けて5時間後に15cm以上流れた場合は流動性が〇(Good)、15cm以上流れなかった場合は流動性が×(Not Good)と評価する。 The method for evaluating fluidity in this specification is as follows. First, 30 g of a spherical alumina particle sample is weighed out and placed in a bag. 70 g of AZ10-75 (alumina powder manufactured by Nippon Steel Chemical & Material Co., Ltd., average particle size 10 μm) is then weighed out and placed in the bag containing the spherical alumina particles. The bag is then tied and thoroughly mixed. 43.5 g of the mixed alumina particle powder is weighed out and placed in a 200 ml plastic container. 6.5 g of silicone resin CY52-276A liquid manufactured by Dow Toray is added thereto, and vacuum mixed using a Thinky vacuum mixer "Awatori Rentaro". The mixing conditions are 15 seconds of premixing and 90 seconds of vacuum mixing. After mixing, the plastic container containing the mixture is placed in a water bath adjusted to 25°C and cooled for 1 hour. 10 g of the compound (resin composite composition) prepared by mixing is placed on a plate with a smooth surface. There are no particular restrictions on the material of the plate, but an iron plate was used in this example. The plate with the compound placed on it is tilted 60 degrees from the horizontal to check the degree of flow of the compound. In this test, if the compound has flowed 15 cm or more after 5 hours of tilting, the fluidity is evaluated as O (Good), and if the compound has not flowed 15 cm or more, the fluidity is evaluated as × (Not Good).
[球状アルミナ粒子の製造方法]
 本発明の一実施態様では、球状アルミナ粒子の製造方法が提供される。当該製造方法は、上述したアルミナ粒子を好適に製造できる方法であり、以下の工程を含む。
(1)アルミナ、ベーマイト、または水酸化アルミニウムの少なくとも一つを含み、粒径が0.3~2.00umである原料を調製する原料調製工程、および、
(2)前記原料を珪素原子含有表面処理剤により表面処理する表面処理工程、および、
(3)前記原料を火炎中に投入して溶融させた後、急冷することで球状化する球状化工程。
[Method of producing spherical alumina particles]
In one embodiment of the present invention, there is provided a method for producing spherical alumina particles, which is a method for suitably producing the above-mentioned alumina particles and includes the following steps:
(1) a raw material preparation step of preparing a raw material containing at least one of alumina, boehmite, and aluminum hydroxide and having a particle size of 0.3 to 2.00 um; and
(2) a surface treatment step of surface-treating the raw material with a silicon atom-containing surface treatment agent; and
(3) A spheroidizing step in which the raw material is introduced into a flame to melt it, and then rapidly cooled to form spheroids.
 工程の順序が前後するが、先に(3)の球状化工程について説明する。 The order of the steps may change, but we will first explain the spheronization step (3).
 (3)の球状化工程は、原料を火炎中に投入して溶融させた後、急冷することで球状化する工程である。原料は、キャリアガス中に浮遊させた状態で火炎中に投入することができる。キャリアガスとしては、空気、酸素、プロパンガスなどが採用できる。火炎の形成方法としては特に限定しないが、原料の投入とは別の経路で火炎を形成する燃料(プロパンなど)をバーナに供給して火炎を形成したり、燃料と助燃ガス(空気や酸素)を予め混合してバーナに供給して火炎を形成したり、原料、燃料、助燃ガスを混合してバーナに供給して火炎を形成したりすることができる。火炎の形成は耐熱炉内にて行うことが好ましい。耐熱炉の上部にて火炎を形成し、その火炎中に原料を供給して、形成されるアルミナ粒子材料が重力により沈降していくのを下方から回収することが好ましい。耐熱炉中の下方には火炎を形成しないようにすることで、下方に沈降したアルミナ粒子材料は急冷されて粒子化する。 The spheroidization process (3) is a process in which the raw material is fed into a flame, melted, and then rapidly cooled to form spheroids. The raw material can be fed into the flame while suspended in a carrier gas. Air, oxygen, propane gas, etc. can be used as the carrier gas. The method of forming the flame is not particularly limited, but the flame can be formed by supplying a fuel (such as propane) that forms a flame to the burner via a route separate from the feed of the raw material, or by pre-mixing fuel and a combustion support gas (air or oxygen) and supplying it to the burner to form the flame, or by mixing the raw material, fuel, and a combustion support gas and supplying it to the burner to form the flame. It is preferable to form the flame in a heat-resistant furnace. It is preferable to form a flame in the upper part of the heat-resistant furnace, supply the raw material into the flame, and collect the alumina particle material formed as it settles due to gravity from below. By preventing the formation of a flame in the lower part of the heat-resistant furnace, the alumina particle material that settles to the lower part is rapidly cooled and granulated.
 (1)の原料調製工程では、(3)球状化工程で投入する原料を調製する。当該原料は、アルミナ、ベーマイト、または水酸化アルミニウムの少なくとも一つを含み、粒径が0.2~2.0umであるように、調製される。
 ベーマイトは、アルミナ・1水和物であり、Al・HOの化学式で表され、水酸化アルミニウムはAl(OH)の化学式で表される。いずれも(3)球状化工程で、火炎中に投入されると、まず、原料中の水和分(HO)または水酸基(OH)が、水蒸気(HO)として離脱し、アルミナ(Al)粒子が生成する。アルミナ(Al)粒子は、少なくとも表面が溶融し、球状化される。
 また、当該原料としてアルミナを使用する場合、水酸化アルミニウムを焼結して得られる仮焼アルミナ、または水酸化アルミニウムを電融して得られるアルミナ、水酸化アルミニウムから製造された低ソーダアルミナ、アンモニア明礬熱分解法やアルミニウムアルコキシド加水分解法、アルミニウム水中放電法、または他の方法により製造された高純度アルミナが挙げられる。より好ましくは、生産性、コストの観点から低ソーダ水酸化アルミニウムを焼成して得られるアルミナである。
 上記原料のうち、ベーマイトまたは水酸化アルミニウムは水分(水和水や水酸基)を十分に含む、そのため、後述の通り、球状化工程において原料の粒径の増大が特に有効に抑えられるので、平均粒径1μm未満の球状アルミナ粒子を効率的に得ることができるので、より好ましい。
In the raw material preparation step (1), raw materials to be charged in the spheroidization step (3) are prepared. The raw materials are prepared so as to contain at least one of alumina, boehmite, and aluminum hydroxide and have a particle size of 0.2 to 2.0 μm.
Boehmite is alumina monohydrate, and is represented by the chemical formula Al2O3.H2O , and aluminum hydroxide is represented by the chemical formula Al(OH) 3 . When either of these materials is fed into the flame in the spheroidization step ( 3 ), the hydrated portion ( H2O ) or hydroxyl group (OH) in the raw material is first released as water vapor ( H2O ), and alumina ( Al2O3 ) particles are generated. At least the surface of the alumina ( Al2O3 ) particles melts and is spheroidized.
When alumina is used as the raw material, examples of the raw material include calcined alumina obtained by sintering aluminum hydroxide, alumina obtained by electrofusion of aluminum hydroxide, low soda alumina produced from aluminum hydroxide, and high purity alumina produced by ammonia-alum thermal decomposition method, aluminum alkoxide hydrolysis method, aluminum water discharge method, or other methods. Alumina obtained by calcining low soda aluminum hydroxide is more preferable from the viewpoints of productivity and cost.
Of the above raw materials, boehmite or aluminum hydroxide contains sufficient moisture (water of hydration or hydroxyl groups), and therefore, as described below, an increase in the particle size of the raw material is particularly effectively suppressed in the spheroidizing step, making it possible to efficiently obtain spherical alumina particles having an average particle size of less than 1 μm, and therefore these are more preferred.
 従来、球状アルミナの製造方法として、アルミナ粒子を火炎中に投入して、球状化するものが知られているが、その球状化工程では、表面が溶融したアルミナ粒子どうしが、融着し、凝集することにより、得られる粒子の粒径の増大や、円形度の低下につながることがある。しかしながら、本実施態様では、それらの不具合が解消される。 A conventional method for producing spherical alumina involves throwing alumina particles into a flame to spheroidize them. However, during this spheroidization process, the alumina particles, whose surfaces have been melted, fuse together and agglomerate, which can lead to an increase in the particle size of the resulting particles and a decrease in circularity. However, this embodiment eliminates these problems.
 まず、本実施態様の原料は、水分(水和水や水酸基)を含んでいるので、まず火炎の入口から火炎の半ばまでは水蒸気(HO)の離脱に時間を要する。つまり、火炎の中でアルミナ粒子の表面が溶融して、アルミナ粒子どうしが融着し、凝集する機会が少ない(時間が短い)。その結果、火炎通過後のアルミナ粒子の粒径が、原料の粒径(0.2~2.0um)より過度に増大することが抑制される。 First, since the raw material of this embodiment contains moisture (hydration water and hydroxyl groups), it takes time for water vapor (H 2 O) to escape from the entrance of the flame to the middle of the flame. In other words, there is little opportunity (short time) for the surfaces of the alumina particles to melt in the flame, fuse together, and aggregate. As a result, the particle size of the alumina particles after passing through the flame is suppressed from excessively increasing beyond the particle size of the raw material (0.2 to 2.0 um).
 さらに、原料から離脱した水蒸気(HO)は、火炎中で加熱されることにより膨張し、残った原料どうし、すなわちアルミナ粒子どうし、の間隔を遠ざけるように作用する。つまり、アルミナ粒子どうしの融着の機会はさらに減少する。その結果、火炎通過後のアルミナ粒子の粒径が、原料の粒径(0.2~2.0um)より過度に増大することが抑制される。また、粒子どうしの接触が少ないので、各粒子の球状化も促進される。 Furthermore, the water vapor (H 2 O) released from the raw material expands when heated in the flame, and acts to increase the distance between the remaining raw materials, i.e., between the alumina particles. In other words, the chances of the alumina particles fusing together are further reduced. As a result, the particle size of the alumina particles after passing through the flame is prevented from excessively increasing compared to the particle size of the raw material (0.2 to 2.0 um). In addition, since there is little contact between the particles, the spheroidization of each particle is also promoted.
 次に(2)の表面処理工程について説明する。 Next, we will explain the surface treatment process (2).
 (2)の表面処理工程では、(3)球状化工程に先立ち、(1)の原料調製工程で得られた原料を表面処理する。原料の表面処理剤としては、シラン化合物(シランカップリング剤など)、シラザン、Alカップリング剤などを採用することができる。表面処理剤の処理量は原料の材質等により適宜調整できるが、好ましくは、これらの表面処理剤を原料に対して1質量%以上配合することによって、原料粉末同士が吸着しにくくすることができるのでバーナや配管への付着による目詰まりや供給量のばらつきを効果的に防止することができる。更に、原料粉末どうしの凝集による粗大化を効果的に防止することができる。一方、表面処理剤が過剰に存在すると処理剤同士が反応し粒子同士が表面処理剤を介して架橋することによって。本来の分散効果を得られない恐れがあり、また経済性の観点からも過剰に処理剤を添加することは好ましくない。表面処理剤の配合量の好ましい上限は、原料に対して10質量%である。
 上記表面処理剤のうち、シランカップリング剤、アルコキシシラン化合物、シラザン化合物等の珪素原子含有化合物(「珪素原子表面処理剤」ともいう。)は、経済性、反応性の観点から好ましい。これらの珪素原子表面処理剤は公知の物質を採用することができる。シランカップリング剤としては、ビニルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランが挙げられる。アルコキシシラン化合物としてはヘキシルトリメトキシシラン、オクチルトリエトキシシランが挙げられる。シラザン化合物はヘキサメチルジシラザン、トリメチルシランが挙げられる。反応性に優れるという観点ではシラザン化合物がより好ましい。より好ましくはヘキサメチルジシラザン、トリメチルシランである。
In the surface treatment step (2), prior to the spheroidization step (3), the raw material obtained in the raw material preparation step (1) is surface-treated. As the surface treatment agent for the raw material, a silane compound (such as a silane coupling agent), a silazane, an Al coupling agent, etc. can be adopted. The amount of the surface treatment agent can be appropriately adjusted depending on the material of the raw material, etc., but preferably, by blending these surface treatment agents in an amount of 1 mass% or more with respect to the raw material, it is possible to make it difficult for the raw material powders to adsorb to each other, so that clogging due to adhesion to the burner or piping and variation in the supply amount can be effectively prevented. Furthermore, it is possible to effectively prevent coarsening due to aggregation of the raw material powders. On the other hand, if there is an excessive amount of the surface treatment agent, the treatment agents react with each other and the particles crosslink with each other via the surface treatment agent. There is a risk that the original dispersion effect cannot be obtained, and from the viewpoint of economy, it is not preferable to add an excessive amount of the treatment agent. The preferable upper limit of the blending amount of the surface treatment agent is 10 mass% with respect to the raw material.
Among the above surface treatment agents, silicon-containing compounds such as silane coupling agents, alkoxysilane compounds, and silazane compounds (also referred to as "silicon atom surface treatment agents") are preferred from the viewpoints of economy and reactivity. These silicon atom surface treatment agents can be made of known substances. Examples of silane coupling agents include vinyltrimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane. Examples of alkoxysilane compounds include hexyltrimethoxysilane and octyltriethoxysilane. Examples of silazane compounds include hexamethyldisilazane and trimethylsilane. From the viewpoint of excellent reactivity, silazane compounds are more preferred. Hexamethyldisilazane and trimethylsilane are more preferred.
 表面処理の手法は、以下の第一工程(加熱工程)及び第二工程(表面処理工程)を含む。
第一工程(加熱工程)
 アルミナ、水酸化アルミニウム、ベーマイトのいずれかを含む原料粉を100℃~500℃の温度で30分以上加熱する。好ましい加熱条件は150℃以上で2時間もしくは5時間加熱するとよい。本工程で原料粉を加熱することによって、粉末粒子表面に存在する余分な水分を除去することによって、後工程の表面処理工程において、処理剤と粒子粉末の反応性を高めることができる。これは原料表面に水分が付着していると、付着している水分と表面処理剤が反応してしまい、表面処理剤が適切に原料と反応することができなくなってしまう。原料の加熱方法は特に問わないが、一般的に用いられる、電気乾燥炉、トンネルキルン、シャトルキルンなどを用いて、原料粉末を乾燥させる方法が好ましい。乾燥温度は先述した球状化時に原料から発生する水分による粒径の粗大化抑制効果を得るために500℃以下が望ましい。500℃以上で加熱することによって、水酸化アルミニウム、もしくはベーマイトから完全に水分が脱離してしまい、球状化時に水分が発生しなくなってしまう。乾燥温度の下限は水分を蒸発させるために、100℃以上が望ましい。加熱後、冷却して次工程に使用してもよいし、冷却しなくてもよい。好ましくは、冷却せず次の工程の表面処理工程を実施する。
The surface treatment method includes the following first step (heating step) and second step (surface treatment step).
First process (heating process)
The raw powder containing any one of alumina, aluminum hydroxide, and boehmite is heated at a temperature of 100°C to 500°C for 30 minutes or more. The preferred heating conditions are 150°C or higher for 2 hours or 5 hours. By heating the raw powder in this step, excess moisture present on the surface of the powder particles can be removed, thereby increasing the reactivity of the treatment agent and the particle powder in the subsequent surface treatment step. If moisture adheres to the surface of the raw material, the moisture reacts with the surface treatment agent, and the surface treatment agent cannot react appropriately with the raw material. There is no particular restriction on the method of heating the raw material, but a method of drying the raw material powder using a commonly used electric drying furnace, tunnel kiln, shuttle kiln, etc. is preferred. The drying temperature is preferably 500°C or less in order to obtain the effect of suppressing the coarsening of particle size due to moisture generated from the raw material during spheroidization as described above. By heating at 500°C or higher, moisture is completely removed from the aluminum hydroxide or boehmite, and moisture is not generated during spheroidization. The lower limit of the drying temperature is preferably 100°C or higher in order to evaporate moisture. After heating, the product may be cooled before use in the next step, or it may not be cooled. Preferably, the product is not cooled before use in the next step, which is the surface treatment step.
第二工程(表面処理工程)
 前工程によって加熱処理した原料粉を任意のミキサーに投入し攪拌する。撹拌する際、常温で攪拌しても、加熱して撹拌してもよい。シラン化合物の反応性を高めるために、好ましくは50℃以上より好ましくは80℃以上に加熱して攪拌するとよい。30秒から10分程度撹拌した後、撹拌を行いながら、表面処理剤を噴霧する。表面処理剤の種類は上述のとおりであり、好ましくはヘキサメチルジシラザン、トリメチルシランがある。また噴霧する量は表面処理剤の最小被覆面積と処理している原料粉の比表面積と投入重量から求められる量(下記式参照)の1~5倍量を噴霧するとよい。

噴霧する表面処理剤量=(原料粉の比表面積)×(原料粉の投入重量)/(表面処理剤の最小被覆面積)
Second process (surface treatment process)
The raw material powder heat-treated in the previous step is put into an arbitrary mixer and stirred. When stirring, it may be stirred at room temperature or heated. In order to increase the reactivity of the silane compound, it is preferable to heat the mixture to preferably 50°C or higher, more preferably 80°C or higher, and then stir. After stirring for about 30 seconds to 10 minutes, the surface treatment agent is sprayed while stirring. The types of surface treatment agents are as described above, and preferably include hexamethyldisilazane and trimethylsilane. The amount of the surface treatment agent to be sprayed is preferably 1 to 5 times the amount calculated from the minimum coverage area of the surface treatment agent, the specific surface area of the raw material powder being treated, and the input weight (see the formula below).

Amount of surface treatment agent to be sprayed = (specific surface area of raw material powder) x (feed weight of raw material powder) / (minimum coverage area of surface treatment agent)
 表面処理剤の攪拌方法は問わないが、一般に用いられるボールミル、振動ミル、遊星粉砕機、ジェットミル、機械撹拌ブレード式ミキサー、容器回転式ミキサー等の混合機を用いて原料粉末に前述のシランカップリング剤等の表面処理剤を混合する方法が好ましい。また混合時に原料を加熱してもよい。加熱方法は問わないが混合容器の外部をジャケットで覆い、蒸気や加熱した水、油等で加熱してもよい。加熱することによって、表面処理剤の反応性を高めることができ、効率的に原料を表面処理することが可能になる。 The method for mixing the surface treatment agent is not important, but a method in which the surface treatment agent, such as the silane coupling agent, is mixed into the raw material powder using a commonly used mixer such as a ball mill, vibration mill, planetary grinder, jet mill, mechanical stirring blade mixer, or container rotary mixer is preferable. The raw materials may also be heated during mixing. The heating method is not important, but the outside of the mixing container may be covered with a jacket and heated with steam, heated water, oil, etc. Heating can increase the reactivity of the surface treatment agent, making it possible to efficiently surface treat the raw materials.
 また、(2)の表面処理工程の前に、補助的に、原料を、解砕・分散機能を有する装置を経由させてもよい。
 解砕・分散機能を有する装置は、乾式法の場合には、ジェットミル等の高速気流内で旋回させ粉体を衝突粉砕する装置、含塵ガス同士を対向流で衝突させることで粉体同士を衝突粉砕する装置等が挙げられる。また、湿式法の場合には、スラリーを衝突させ粉砕する高圧湿式ジェットミル型粉砕装置、スラリー送液管内に強力な超音波を照射できる超音波分散装置等が挙げられる。解砕・分散機能を有する上記装置を経由する場合はアルミナ粒子と装置の金属部分が接触し摩耗させないために、装置の接粉部分をライニング処理することが望ましい。ライニング処理する場合の部材は特に限定しないが、ウレタン、炭化ホウ素、アルミナ、炭化ケイ素、テフロン(登録商標)が挙げられるが、アルミナ粒子は非常に硬い物質なため、ライニング処理する素材としてアルミナライニングがより好ましい。
Furthermore, prior to the surface treatment step (2), the raw material may be passed through an apparatus having a crushing/dispersing function as an auxiliary.
In the case of the dry method, the device having the crushing and dispersion function includes a device that swirls in a high-speed airflow such as a jet mill to crush powder by collision, and a device that causes dust-containing gases to collide with each other in counterflows to crush powder by collision. In the case of the wet method, the device includes a high-pressure wet jet mill type crushing device that crushes slurry by collision, and an ultrasonic dispersion device that can irradiate strong ultrasonic waves into the slurry delivery pipe. When passing through the above device having the crushing and dispersion function, it is desirable to line the powder contact part of the device to prevent the alumina particles from coming into contact with the metal part of the device and wearing it. The material for the lining is not particularly limited, but examples include urethane, boron carbide, alumina, silicon carbide, and Teflon (registered trademark). However, since alumina particles are a very hard material, alumina lining is more preferable as the material for the lining.
 本実施態様による原料は、ベーマイト、または水酸化アルミニウムの少なくとも一つを含んでよく、これらは、アルミナに比べて、表面OH基を多く含むので、表面処理がされやすく、その効果も現れやすい。すなわち、原料どうしの分散効果が高く、結果として、所望する粒径が小さく、円形度の高い、球状アルミナ粒子を、さらに容易に得ることができる。 The raw material in this embodiment may contain at least one of boehmite and aluminum hydroxide, which contain more surface OH groups than alumina and are therefore easier to treat and the effects of surface treatment are more likely to appear. In other words, the raw materials are more effectively dispersed, and as a result, spherical alumina particles with the desired small particle size and high circularity can be obtained more easily.
 なお、本実施態様による原料は、本発明の効果に影響を与えない範囲で、ベーマイト、または水酸化アルミニウム以外の成分を含んでもよく、例えば、アルミナを含んでもよい。 The raw material according to this embodiment may contain components other than boehmite or aluminum hydroxide, for example, alumina, as long as the effects of the present invention are not affected.
 また、本実施態様による原料は、製造するアルミナ粒子の粒径と同等の粒径、または若干小さい粒径、すなわち、0.2~2.0μmに調節する。好ましくは、0.3μm以上であってもよく、1.9μm以下であってもよい。目的とする粒径になるように粉砕や分級により粒径を調節してもよい。上述のとおり、本実施態様による製造方法では、原料の粒度分布が概ね製造されるアルミナ粒子材料の粒度分布として引き継がれる。 Furthermore, the raw material in this embodiment is adjusted to a particle size equal to or slightly smaller than the particle size of the alumina particles to be produced, i.e., 0.2 to 2.0 μm. Preferably, it may be 0.3 μm or more, or 1.9 μm or less. The particle size may be adjusted by crushing or classification to obtain the desired particle size. As described above, in the manufacturing method according to this embodiment, the particle size distribution of the raw material is generally inherited as the particle size distribution of the alumina particle material to be produced.
[樹脂複合組成物]
 本発明の一実施態様によって、最終的に得られた球状アルミナ粒子と樹脂との複合組成物を製造することができる。樹脂複合組成物の組成等について、以下により詳細に説明する。
[Resin composite composition]
According to one embodiment of the present invention, the composite composition of the finally obtained spherical alumina particles and resin can be produced. The composition of the resin composite composition will be described in more detail below.
 球状アルミナ粒子と樹脂とを含むスラリー組成物を用いて、半導体封止材(特に固形封止材)、層間絶縁フィルム等の樹脂複合組成物を得ることができる。さらには、これらの樹脂複合体組成物を硬化させることで、封止材(硬化体)、半導体パッケージ用基板等の樹脂複合体を得ることができる。 By using a slurry composition containing spherical alumina particles and a resin, it is possible to obtain resin composite compositions such as semiconductor encapsulants (particularly solid encapsulants) and interlayer insulating films. Furthermore, by curing these resin composite compositions, it is possible to obtain resin composites such as encapsulants (cured bodies) and substrates for semiconductor packages.
 前記樹脂複合組成物を製造する場合、例えば、球状アルミナ粒子及び樹脂の他に、硬化剤、硬化促進剤、難燃剤、シランカップリング剤等を必要により配合し、混錬等の公知の方法で複合化する。そして、ペレット状、フィルム状等、用途に応じて成型する。 When producing the resin composite composition, for example, in addition to the spherical alumina particles and resin, a curing agent, a curing accelerator, a flame retardant, a silane coupling agent, etc. are mixed as necessary, and the mixture is compounded by a known method such as kneading. The mixture is then molded into pellets, films, etc., depending on the application.
 また、前記樹脂複合組成物を製造する場合、球状アルミナ粒子及び樹脂の他に、他の無機フィラーを配合してもよい、前記無機フィラーとしては、非晶質球状シリカ粒子、結晶質球状シリカ粒子、チタニア粒子、マグネシア粒子、窒化アルミニウム粒子、窒化ホウ素粒子、チタン酸バリウム粒子、チタン酸カルシウム粒子、カーボンファイバーが挙げられる。前記無機フィラーの配合比は、樹脂複合組成物の用途に応じて適宜調整できるが、本発明の球状アルミナ粒子の効果を発現させるという観点で、(球状アルミナ粒子の配合重量):(他の無機フィラーの配合重量)=95:5~60:40であることが好ましい。 When producing the resin composite composition, other inorganic fillers may be blended in addition to the spherical alumina particles and resin. Examples of the inorganic fillers include amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers. The blending ratio of the inorganic fillers can be adjusted appropriately depending on the application of the resin composite composition, but from the viewpoint of exerting the effect of the spherical alumina particles of the present invention, it is preferable that (blended weight of spherical alumina particles): (blended weight of other inorganic fillers) = 95:5 to 60:40.
 さらに、前記樹脂複合組成物を硬化して樹脂複合体を製造する場合、例えば、樹脂複合組成物に熱を加えて溶融して、用途に応じた形状に加工し、溶融時よりも高い熱を加えて完全に硬化させる。この場合、トランスファーモールド法等の公知の方法を使用することができる。 Furthermore, when the resin composite composition is cured to produce a resin composite, for example, the resin composite composition is heated to melt it, processed into a shape according to the intended use, and then heated to a temperature higher than that at the time of melting to completely cure it. In this case, a known method such as a transfer molding method can be used.
 例えば、パッケージ用基板や層間絶縁フィルム等の半導体関連材料を製造する場合には、樹脂複合組成物に使用する樹脂として、公知の樹脂が適用できるが、エポキシ樹脂を採用することが好ましい。エポキシ樹脂は、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノキシ型エポキシ樹脂等を用いることができる。これらの中の1種類を単独で用いることもできるし、異なる分子量を有する2種類以上を併用することもできる。これらの中でも、硬化性、耐熱性等の観点から、1分子中にエポキシ基を2個以上有するエポキシ樹脂が好ましい。具体的には、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF及びビスフェノールS等のグリシジルエーテル、フタル酸やダイマー酸等の多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、β-ナフトールノボラック型エポキシ樹脂、1,6-ジヒドロキシナフタレン型エポキシ樹脂、2,7-ジヒドロキシナフタレン型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素等のハロゲンを導入したエポキシ樹脂等が挙げられる。これら1分子中にエポキシ基を2個以上有するエポキシ樹脂中でも特にビスフェノールA型エポキシ樹脂が好ましい。 For example, when manufacturing semiconductor-related materials such as packaging substrates and interlayer insulating films, known resins can be used as the resin for the resin composite composition, but it is preferable to use an epoxy resin. The epoxy resin is not particularly limited, but for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, phenoxy type epoxy resin, etc. can be used. One of these can be used alone, or two or more types with different molecular weights can be used in combination. Among these, epoxy resins having two or more epoxy groups in one molecule are preferred from the viewpoints of curability, heat resistance, etc. Specifically, biphenyl type epoxy resins, phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, epoxidized novolac resins of phenols and aldehydes, glycidyl ethers of bisphenol A, bisphenol F, bisphenol S, etc., glycidyl ester acid epoxy resins obtained by reacting polybasic acids such as phthalic acid and dimer acid with epochlorohydrin, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, alkyl-modified polyfunctional epoxy resins, β-naphthol novolac type epoxy resins, 1,6-dihydroxynaphthalene type epoxy resins, 2,7-dihydroxynaphthalene type epoxy resins, bishydroxybiphenyl type epoxy resins, and epoxy resins into which halogens such as bromine have been introduced to impart flame retardancy. Among these epoxy resins having two or more epoxy groups in one molecule, bisphenol A type epoxy resins are particularly preferred.
 また、半導体封止材用複合材料以外の用途、例えば、プリント基板用のプリプレグ、各種エンジニアプラスチックス等の樹脂複合組成物に使用する樹脂としては、エポキシ系以外の樹脂も適用できる。具体的には、エポキシ樹脂の他には、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂が挙げられる。 In addition, resins other than epoxy resins can be used in applications other than composite materials for semiconductor encapsulation, such as prepregs for printed circuit boards and various engineering plastics, as resin composite compositions. Specific examples of resins that can be used other than epoxy resins include silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyesters, polysulfones, liquid crystal polymers, polyethersulfones, polycarbonates, maleimide-modified resins, ABS resins, AAS (acrylonitrile-acrylic rubber-styrene) resins, and AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resins.
 樹脂複合組成物に用いられる硬化剤としては、前記樹脂を硬化するために、公知の硬化剤を用いればよいが、例えばフェノール系硬化剤を使用することができる。フェノール系硬化剤としては、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ポリビニルフェノール類等を、単独あるいは2種以上組み合わせて使用することができる。 The curing agent used in the resin composite composition may be any known curing agent for curing the resin, for example, a phenol-based curing agent. As the phenol-based curing agent, phenol novolac resin, alkylphenol novolac resin, polyvinylphenols, etc., may be used alone or in combination of two or more kinds.
 前記フェノール硬化剤の配合量は、エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が0.1以上、1.0未満が好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。 The amount of the phenolic hardener to be blended is preferably such that the equivalent ratio to the epoxy resin (phenolic hydroxyl group equivalent/epoxy group equivalent) is 0.1 or more and less than 1.0. This eliminates the residue of unreacted phenolic hardener and improves moisture absorption and heat resistance.
 本発明の球状アルミナ粒子の、樹脂複合組成物における添加量は、耐熱性、熱膨張率の観点から、多いことが好ましいが、通常、70質量%以上95質量%以下、好ましくは80質量%以上95質量%以下、更に好ましくは85質量%以上95質量%以下であるのが適当である。これは、球状アルミナ粒子の配合量が少なすぎると、封止材料の強度向上や熱膨張抑制などの効果が得られにくいためであり、また逆に多すぎると、球状アルミナ粒子の表面処理に関わらず複合材料において球状アルミナ粒子の凝集による偏析が起きやすく、複合材料の粘度も大きくなりすぎるなどの問題から、封止材料として実用が困難となるためである。なお、前述の「他のフィラー」を併用する場合、前記樹脂複合組成物における好ましい添加量は球状アルミナ粒子及び「他のフィラー」の合計量である。 The amount of the spherical alumina particles of the present invention added to the resin composite composition is preferably large from the viewpoint of heat resistance and thermal expansion coefficient, but is usually 70% by mass to 95% by mass, preferably 80% by mass to 95% by mass, and more preferably 85% by mass to 95% by mass. This is because if the amount of spherical alumina particles is too small, it is difficult to obtain effects such as improving the strength of the sealing material and suppressing thermal expansion, and conversely, if the amount is too large, segregation due to aggregation of the spherical alumina particles is likely to occur in the composite material regardless of the surface treatment of the spherical alumina particles, and the viscosity of the composite material becomes too high, making it difficult to use as a sealing material. Note that when the above-mentioned "other filler" is used in combination, the preferred amount added to the resin composite composition is the total amount of the spherical alumina particles and the "other filler".
 また樹脂のほかに、添加材、例えばシランカップリング剤、硬化剤、着色剤、硬化遅延材等の公知の添加剤を使用することができる。 In addition to the resin, additives such as silane coupling agents, hardeners, colorants, hardening retarders, and other known additives can be used.
 また、シランカップリング剤については、公知のカップリング剤を用いればよいが、エポキシ系官能基を有するものが好ましい。 As for the silane coupling agent, any known coupling agent may be used, but it is preferable to use one that has an epoxy-based functional group.
 球状アルミナ粒子と樹脂とを含むスラリー組成物を用いて、放熱シート、放熱グリース等を得ることができる。 A slurry composition containing spherical alumina particles and resin can be used to produce heat dissipation sheets, heat dissipation grease, etc.
 前記放熱シートを得る際には、球状アルミナ粒子と、樹脂のほかに、添加剤を適宜配合し、混錬等の公知の方法で複合化する。得られた複合体を公知の方法で、シート状に成型する。 When obtaining the heat dissipation sheet, the spherical alumina particles, resin, and additives are appropriately mixed and compounded using a known method such as kneading. The resulting composite is molded into a sheet using a known method.
 例えば、放熱シートを製造する場合には、樹脂複合組成物に使用する樹脂として、公知の樹脂が適用できるが、具体的にシリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂が挙げられる。中でもシリコーン樹脂を用いることが好ましい。シリコーン樹脂は特に限定されないが、例えば、過酸化物硬化型、付加硬化型、縮合硬化型、紫外線硬化型等を用いることができる。 For example, when manufacturing a heat dissipation sheet, known resins can be used as the resin for the resin composite composition, and specific examples include silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide, polyetherimide, polyester such as polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin. Of these, it is preferable to use silicone resin. There are no particular limitations on the silicone resin, but for example, peroxide curing type, addition curing type, condensation curing type, ultraviolet curing type, etc. can be used.
 また樹脂のほかに、添加材、例えばシランカップリング剤、硬化剤、着色剤、硬化遅延材等の公知の添加剤を使用することができる。 In addition to the resin, additives such as silane coupling agents, hardeners, colorants, hardening retarders, and other known additives can be used.
 前記放熱グリースを得る際には、球状アルミナ粒子と、樹脂のほかに、添加剤を適宜配合し、混錬等の公知の方法で複合化する。ここで、放熱グリースに使用する樹脂は基油ともいう。 When obtaining the heat dissipating grease, the spherical alumina particles, resin, and additives are appropriately mixed and compounded using a known method such as kneading. Here, the resin used in the heat dissipating grease is also called the base oil.
 例えば、放熱グリースを製造する場合には、樹脂複合組成物に使用する樹脂として、公知の樹脂ができるが、具体的にはシリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、鉱油、合成炭化水素油、エステル油、ポリグリコール油、シリコーン油、フッ素油が挙げられる。 For example, when manufacturing heat dissipating grease, known resins can be used in the resin composite composition, specifically silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin, mineral oil, synthetic hydrocarbon oil, ester oil, polyglycol oil, silicone oil, and fluorine oil.
 また樹脂のほかに、添加材、例えばシランカップリング剤、着色剤、増ちょう剤等の公知の添加剤を使用することができる。増ちょう剤は、カルシウム石けん、リチウム石けん、アルミニウム石けん、カルシウムコンプレックス、アルミニウムコンプレックス、リチウムコンプレックス、バリウムコンプレックス、ベントナイト、ウレア、PTFE、ナトリウムテレフタラメート、シリカゲル、有機化ベントナイト等の公知のものを使用できる。 In addition to the resin, additives such as silane coupling agents, colorants, thickeners, and other known additives can be used. The thickeners that can be used include known ones such as calcium soap, lithium soap, aluminum soap, calcium complex, aluminum complex, lithium complex, barium complex, bentonite, urea, PTFE, sodium terephthalamate, silica gel, and organic bentonite.
 以下の実施例・比較例を通じて、本発明について説明する。ただし、本発明は、以下の実施例に限定して解釈されるものではない。 The present invention will be explained through the following examples and comparative examples. However, the present invention should not be interpreted as being limited to the following examples.
 (実施例1)
 ベーマイト原料(D50=0.4μm)を事前に150℃の加熱炉で5時間加熱し、加熱した原料をヘンシェルミキサーに投入した。投入後攪拌しながらヘキサメチルジシラザンを投入し表面処理した。ヘキサメチルジシラザンの投入量は原料の重量に対して1.5wt%添加した。その後LPGと酸素との燃焼により形成される高温火炎中に酸素をキャリアガスとして用いて供給し、溶融・球状化処理を行って、表1の実施例1に記載の球状アルミナ粒子を製造した。
Example 1
The boehmite raw material (D50 = 0.4 μm) was heated in advance in a heating furnace at 150 ° C for 5 hours, and the heated raw material was charged into a Henschel mixer. After charging, hexamethyldisilazane was charged while stirring to perform surface treatment. The amount of hexamethyldisilazane added was 1.5 wt % based on the weight of the raw material. Then, oxygen was supplied as a carrier gas into a high-temperature flame formed by the combustion of LPG and oxygen, and melting and spheroidization treatment were performed to produce spherical alumina particles described in Example 1 of Table 1.
 (実施例2)
 原料にアルミナ粉末(D50=0.7μm)を用いる以外には実施例1と同様の操作で表1の実施例2に記載の球状アルミナ粒子を製造した。
Example 2
The spherical alumina particles shown in Example 2 in Table 1 were produced in the same manner as in Example 1, except that alumina powder (D50=0.7 μm) was used as the raw material.
 (実施例3)
 原料にベーマイト原料(D50=0.2μm)を用いる以外には実施例1と同様の操作で表1の実施例3に記載の球状アルミナ粒子を製造した。
Example 3
The spherical alumina particles shown in Example 3 of Table 1 were produced in the same manner as in Example 1, except that boehmite raw material (D50 = 0.2 μm) was used as the raw material.
 (比較例1~7)
 表1に記載の条件で、原料である種々の材料(金属アルミニウム粉末、ベーマイト、またはアルミナ)をLPGと酸素との燃焼により形成される高温火炎中に空気をキャリアガスとして用いて供給し、酸化・球状化処理を行って、表1の比較例に記載の球状アルミナ粒子を製造した。
(Comparative Examples 1 to 7)
Under the conditions shown in Table 1, various raw materials (metallic aluminum powder, boehmite, or alumina) were supplied to a high-temperature flame formed by the combustion of LPG and oxygen using air as a carrier gas, and oxidation and spheroidization treatment were carried out to produce spherical alumina particles shown in the comparative examples in Table 1.
 (実施例4)
 実施例1で得られた球状アルミナ粒子と窒化アルミニウム粒子(D50=30μm)とを、(球状アルミナ粒子の配合重量):(窒化アルミニウム粒子の配合重量)=90:10となるように混合し、球状アルミナ粒子混合物Aを作製した。さらに、樹脂複合組成物における球状アルミナ粒子混合物Aの添加量が90質量%となるように、球状アルミナ粒子混合物Aとダウ東レ製シリコーン樹脂CY52-276A液とを混合し、シンキー製真空混錬機「泡取り練太郎」にて真空混錬し、樹脂複合組成物を得た。混錬条件は予備混錬15秒、真空混錬90秒にて実施した。
Example 4
The spherical alumina particles obtained in Example 1 and aluminum nitride particles (D50 = 30 μm) were mixed so that the ratio of the spherical alumina particles to the aluminum nitride particles was 90:10, to prepare a spherical alumina particle mixture A. Furthermore, the spherical alumina particle mixture A was mixed with Dow Toray's silicone resin CY52-276A liquid so that the amount of the spherical alumina particle mixture A added in the resin composite composition was 90 mass %, and the mixture was vacuum kneaded using a Thinky vacuum kneader "Awatori Rentaro" to obtain a resin composite composition. The kneading conditions were preliminary kneading for 15 seconds and vacuum kneading for 90 seconds.
 (実施例5)
 実施例2で得られた球状アルミナ粒子と窒化ホウ素粒子(D50=20μm)とを、(球状アルミナ粒子の配合重量):(窒化ホウ粒子の配合重量)=90:10となるように混合し、球状アルミナ粒子混合物Bを作製した。さらに、樹脂複合組成物における球状アルミナ粒子混合物Bの添加量が90質量%となるように、球状アルミナ粒子混合物Bとダウ東レ製シリコーン樹脂CY52-276A液とを混合し、シンキー製真空混錬機「泡取り練太郎」にて真空混錬し、樹脂複合組成物を得た。混錬条件は予備混錬15秒、真空混錬90秒にて実施した。
Example 5
The spherical alumina particles obtained in Example 2 and boron nitride particles (D50 = 20 μm) were mixed so that the ratio of the spherical alumina particles to the boron nitride particles was 90:10, to prepare a spherical alumina particle mixture B. Furthermore, the spherical alumina particle mixture B was mixed with Dow Toray's silicone resin CY52-276A liquid so that the amount of the spherical alumina particle mixture B added in the resin composite composition was 90 mass %, and the mixture was vacuum kneaded using a Thinky vacuum kneader "Awatori Rentaro" to obtain a resin composite composition. The kneading conditions were preliminary kneading for 15 seconds and vacuum kneading for 90 seconds.
 表1に、製造された球状アルミナ粒子の物性値を示す。 Table 1 shows the physical properties of the spherical alumina particles produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各物性値の測定方法を以下に記す。 The measurement methods for each physical property are described below.
(レーザー回折散乱法による平均粒径)
 レーザー回折・散乱式粒度分布測定法は、球状アルミナ粒子を分散させた分散液にレーザー光を照射し、分散液から発せられる回折・散乱光の強度分布パターンから粒度分布を求める方法である。本発明では、レーザー回折・散乱式粒度分布測定装置「Mastersizer3000」(Malvern社製)を用いた。
(Average particle size measured by laser diffraction scattering method)
The laser diffraction/scattering particle size distribution measurement method is a method in which a dispersion liquid in which spherical alumina particles are dispersed is irradiated with laser light, and the particle size distribution is obtained from the intensity distribution pattern of the diffracted/scattered light emitted from the dispersion liquid. In the present invention, a laser diffraction/scattering particle size distribution measurement device "Mastersizer 3000" (manufactured by Malvern) was used.
(比表面積)
比表面積はBET法にて測定する。典型的には、以下の手順で比表面積を測定する。
 約5gの試料を測り採り、250℃で5分真空乾燥した。ついで、自動比表面積測定装置(マウンテック社製、Macsorb)に試料をセットし、純窒素及び窒素-ヘリウム混合ガス(混合比率窒素30%、He70%)を用いて77Kの測定温度で相対圧P/P0が0.291の値の窒素ガス吸着量を測定し、1点法にてBET比表面積を算出する。
(Specific surface area)
The specific surface area is measured by the BET method. Typically, the specific surface area is measured by the following procedure.
Approximately 5 g of a sample was weighed out and vacuum dried for 5 minutes at 250° C. Next, the sample was set in an automatic specific surface area measuring device (Macsorb, manufactured by Mountec Co., Ltd.), and the nitrogen gas adsorption amount was measured at a relative pressure P/P0 value of 0.291 at a measurement temperature of 77 K using pure nitrogen and a nitrogen-helium mixed gas (mixture ratio: nitrogen 30%, He 70%), and the BET specific surface area was calculated by the one-point method.
(円形度)
 円形度の測定は電子顕微鏡や光学顕微鏡と画像解析装置を用いて測定することができる。例えばシスメックス社製FPIA等である。これら装置を用いて粒子の円形度(相当円の周囲長/粒子の投映像の周囲長)を測定する。100個以上の粒子について円形度を測定し、その平均値をその粉末の円形度とする。
(Circularity)
The circularity can be measured using an electron microscope or optical microscope and an image analyzer. For example, Sysmex FPIA. Using these devices, the circularity of the particles (perimeter of the equivalent circle/perimeter of the projected image of the particle) is measured. The circularity of 100 or more particles is measured, and the average value is taken as the circularity of the powder.
(α化率)
 アルミナ粒子粉末のα化率は、粉末X線回折装置を用いて測定する。得られた回折ピークの積分面積を求め、その合計に対してαアルミナ由来の回折ピーク面積の割合をリートベルト法によって解析する。具体的にはBruker社製のD2PHASERを用いてX線回折パターンを2θが10°から90°の範囲で取得する。取得したパターンをBruker社製のDIFFRAC.TOPASを用いてリートベルト法にてα化率を算出する。算出の際にはαアルミナ、δアルミナ、θアルミナの3種類の結晶相のみが存在すると仮定して解析し、αアルミナの含有率を算出する。
(Alpha conversion rate)
The alpha-conversion rate of the alumina particle powder is measured using a powder X-ray diffractometer. The integrated area of the obtained diffraction peaks is calculated, and the ratio of the diffraction peak area derived from alpha-alumina to the total is analyzed by the Rietveld method. Specifically, an X-ray diffraction pattern is obtained using a D2PHASER manufactured by Bruker Corporation in the range of 2θ from 10° to 90°. The alpha-conversion rate is calculated from the obtained pattern by the Rietveld method using a DIFFRAC.TOPAS manufactured by Bruker Corporation. During the calculation, analysis is performed assuming that only three types of crystal phases, alpha-alumina, delta-alumina, and θ-alumina, are present, and the content of alpha-alumina is calculated.
 (金属Al濃度)
 アルミナ粒子中に残留する金属Alを以下の手順で測定する。球状アルミナ粒子試料を約1g測りとり、ビーカーに入れる。ビーカーに1mol/Lの塩酸を60ml加え、室温中で5時間撹拌する。撹拌後の試料溶液の上澄みをとり100mlに定容し、溶液をICP-MSにてAl分を分析する。
(Metal Al Concentration)
The amount of metallic Al remaining in the alumina particles is measured using the following procedure. Approximately 1 g of a spherical alumina particle sample is weighed out and placed in a beaker. 60 ml of 1 mol/L hydrochloric acid is added to the beaker and stirred at room temperature for 5 hours. After stirring, the supernatant of the sample solution is taken and the volume is adjusted to 100 ml, and the solution is analyzed for Al content using ICP-MS.
 (換算粉体抵抗率)
 アルミナ粒子粉末の換算粉体抵抗率(以下、単に「換算粉体抵抗率」ともいう。)は、粉体抵抗率と粒子のNaOの含有量を掛け合わせることで求めた。つまり、(換算粉体抵抗率)=(アルミナ粒子粉末の粉体抵抗率)×(球状アルミナ粒子のNaO含有量)の式によって算出される。アルミナ粒子粉末の粉体抵抗率は、粉体抵抗率測定システムMCP-PD51を用いて測定する。測定の前処理として大気中で200℃の条件下で5時間加熱乾燥した。乾燥した粉末を粉体抵抗率測定プローブユニットへ導入し、付属の油圧ポンプを用いて試料を徐々に加圧した。荷重が20kNに達したところで、高抵抗率計にて測定を行った。
(Converted powder resistivity)
The converted powder resistivity of the alumina particle powder (hereinafter, simply referred to as "converted powder resistivity") was obtained by multiplying the powder resistivity by the Na 2 O content of the particles. In other words, it was calculated by the formula: (converted powder resistivity) = (powder resistivity of alumina particle powder) x (Na 2 O content of spherical alumina particles). The powder resistivity of the alumina particle powder was measured using a powder resistivity measurement system MCP-PD51. As a pretreatment for the measurement, the powder was heated and dried for 5 hours under a condition of 200°C in the atmosphere. The dried powder was introduced into a powder resistivity measurement probe unit, and the sample was gradually pressurized using an attached hydraulic pump. When the load reached 20 kN, the measurement was performed using a high resistivity meter.
 (粒子のNaOの含有量)
 アルミナ粒子のNaOの含有量は原子吸光度計を用いて測定した。試料0.5gを加圧容器に入れ、硫酸(1+3)を10ml加え蓋をした後、加熱乾燥炉にて230℃の温度で16時間加熱する。加熱した溶液を放冷後、溶液を100mlにメスアップした後、原子吸光光度計にて測定した。
(Na 2 O Content of Particles)
The Na2O content of the alumina particles was measured using an atomic absorption spectrometer. 0.5 g of a sample was placed in a pressure vessel, 10 ml of sulfuric acid (1+3) was added, and the vessel was then covered with a lid, and heated in a heating and drying oven at 230°C for 16 hours. The heated solution was allowed to cool, then the solution was diluted to 100 ml and measured with an atomic absorption spectrometer.
 (流動性)
 球状アルミナ粒子試料を30g測りとり、袋に入れる。さらにAZ10-75(日鉄ケミカル&マテリアル株式会社製アルミナ粉末 平均粒径10μm)を70gを測りとり、先ほど球状アルミナ粒子を入れた袋に入れる。その後袋を縛り、十分にかくはん混合する。混合後のアルミナ粒子混合粉末43.5gを測りとり、200mlのプラスチック製容器に入れる。そこにダウ東レ製シリコーン樹脂CY52-276A液6.5gを加え、シンキー製真空混錬機「泡取り練太郎」にて真空混錬する。混錬条件は予備混錬15秒、真空混錬90秒にて実施する。混錬後、混錬物の入ったプラスチック製容器を25℃に調整したウォーターバスに入れ1時間冷却する。混錬し調製したコンパウンド(樹脂複合組成物)10gを表面が平滑な板にのせる。板の材質に特段の制限はないが、本実施例では鉄板を用いた。コンパウンドをのせた板を水平方向に対して60°傾けコンパウンドの流れ度合いを確認する。本試験では傾けて5時間後に15cm以上流れた場合は流動性が〇(Good)、15cm以上流れなかった場合は流動性が×(Not Good)と評価する。
(Liquidity)
30 g of spherical alumina particle sample is weighed and placed in a bag. 70 g of AZ10-75 (alumina powder, average particle size 10 μm, manufactured by Nippon Steel Chemical & Material Co., Ltd.) is further weighed and placed in the bag containing the spherical alumina particles. The bag is then tied and thoroughly mixed. 43.5 g of the mixed alumina particle mixed powder is weighed and placed in a 200 ml plastic container. 6.5 g of silicone resin CY52-276A liquid manufactured by Dow Toray is added thereto, and vacuum mixed using a vacuum mixer "Awatori Rentaro" manufactured by Thinky. The mixing conditions are 15 seconds of premixing and 90 seconds of vacuum mixing. After mixing, the plastic container containing the kneaded material is placed in a water bath adjusted to 25 ° C. and cooled for 1 hour. 10 g of the compound (resin composite composition) prepared by kneading is placed on a plate with a smooth surface. There is no particular restriction on the material of the plate, but an iron plate was used in this embodiment. The plate on which the compound is placed is tilted 60 degrees from the horizontal to check the flowability of the compound. In this test, if the compound flows 15 cm or more after 5 hours from tilting, the fluidity is evaluated as O (Good), and if the compound does not flow 15 cm or more, the fluidity is evaluated as × (Not Good).
 金属アルミニウム濃度が低く、α化率が低く、かつ小粒径の球状アルミナ粒子、を得られることを確認した。また、当該球状アルミナ粒子を含有する樹脂複合組成物、を得られることを確認した It was confirmed that spherical alumina particles with a low metallic aluminum concentration, a low alpha conversion rate, and small particle size could be obtained. It was also confirmed that a resin composite composition containing the spherical alumina particles could be obtained.
 本発明の球状アルミナ粒子は、小粒径であるために、小型化・薄型化された半導体パッケージ等にも利用でき、また、金属アルミニウム濃度が低いので、短絡等の重大な事故の発生が抑制される。さらに、本発明の一態様である製造方法により、当該球状アルミナ粒子を容易に製造することができる。当該球状アルミナ粒子を含有する樹脂複合組成物は、良好な流動性を示し、半導体封止用材に限定されず、他の用途にも用いることができる。具体的には、プリント基板用のプリプレグや、各種エンジニアリングプラスチックス等として使用することも可能である。 The spherical alumina particles of the present invention have a small particle size and can therefore be used in miniaturized and thinned semiconductor packages, and because they have a low metallic aluminum concentration, the occurrence of serious accidents such as short circuits is suppressed. Furthermore, the spherical alumina particles can be easily manufactured by the manufacturing method which is one aspect of the present invention. A resin composite composition containing the spherical alumina particles exhibits good fluidity and can be used for other purposes as well, without being limited to semiconductor encapsulation materials. Specifically, they can also be used as prepregs for printed circuit boards, various engineering plastics, etc.

Claims (5)

  1.  金属Al濃度が1000ppm以下であり、平均粒径が0.3~2.0umであり、比表面積が2.5~5.0m/gであり、円形度が0.80以上であり、α化率が5.0%以下であることを特徴とする、球状アルミナ粒子。 The spherical alumina particles have a metallic Al concentration of 1000 ppm or less, an average particle size of 0.3 to 2.0 μm, a specific surface area of 2.5 to 5.0 m 2 /g, a circularity of 0.80 or more, and an alpha conversion rate of 5.0% or less.
  2.  α化率が1.0%未満である、請求項1に記載の球状アルミナ粒子。 The spherical alumina particles according to claim 1, having a gelatinization rate of less than 1.0%.
  3.  アルミナ、ベーマイト、または水酸化アルミニウムの少なくとも一つを含み、粒径が0.2~2.0umである原料を調製する原料調製工程と、
     前記原料を珪素原子含有表面処理剤により表面処理する表面処理工程と、
     前記表面処理された原料を火炎中に投入して溶融させた後、急冷することで球状化する球状化工程と、
     を有する、球状アルミナ粒子の製造方法。
    A raw material preparation step of preparing a raw material containing at least one of alumina, boehmite, and aluminum hydroxide and having a particle size of 0.2 to 2.0 um;
    a surface treatment step of surface-treating the raw material with a silicon atom-containing surface treatment agent;
    a spheroidizing step in which the surface-treated raw material is introduced into a flame to melt it, and then rapidly cooled to form spheroids;
    The method for producing spherical alumina particles comprising the steps of:
  4.  請求項1または2に記載の球状アルミナ粒子を含有していることを特徴とする樹脂複合組成物。 A resin composite composition containing the spherical alumina particles according to claim 1 or 2.
  5.  非晶質球状シリカ粒子、結晶質球状シリカ粒子、チタニア粒子、マグネシア粒子、窒化アルミニウム粒子、窒化ホウ素粒子、チタン酸バリウム粒子、チタン酸カルシウム粒子、カーボンファイバーから選ばれる、少なくとも1種類以上の無機フィラーをさらに含有する、請求項4に記載の樹脂複合組成物。 The resin composite composition according to claim 4, further comprising at least one inorganic filler selected from amorphous spherical silica particles, crystalline spherical silica particles, titania particles, magnesia particles, aluminum nitride particles, boron nitride particles, barium titanate particles, calcium titanate particles, and carbon fibers.
PCT/JP2023/035844 2022-09-30 2023-10-02 Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same WO2024071430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-159062 2022-09-30
JP2022159062 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071430A1 true WO2024071430A1 (en) 2024-04-04

Family

ID=90478220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035844 WO2024071430A1 (en) 2022-09-30 2023-10-02 Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same

Country Status (1)

Country Link
WO (1) WO2024071430A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199579A (en) * 2004-12-24 2006-08-03 Micron:Kk Spherical alumina powder and its production method
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
JP2007015884A (en) * 2005-07-07 2007-01-25 Micron:Kk Method and apparatus for manufacturing spherical fine inorganic powder
JP2012020900A (en) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk Spherical alumina powder, and method of production and application thereof
JP2021038125A (en) * 2019-09-04 2021-03-11 株式会社アドマテックス Alumina particle material and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199579A (en) * 2004-12-24 2006-08-03 Micron:Kk Spherical alumina powder and its production method
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
JP2007015884A (en) * 2005-07-07 2007-01-25 Micron:Kk Method and apparatus for manufacturing spherical fine inorganic powder
JP2012020900A (en) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk Spherical alumina powder, and method of production and application thereof
JP2021038125A (en) * 2019-09-04 2021-03-11 株式会社アドマテックス Alumina particle material and its manufacturing method

Similar Documents

Publication Publication Date Title
CN111511679B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
JP7096921B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
TWI412506B (en) Ceramic powder and uses thereof
JP6822836B2 (en) Hexagonal boron nitride powder, its manufacturing method, resin composition and resin sheet
KR20160078340A (en) Resin composition, heat-dissipating material, and heat-dissipating member
TWI734552B (en) Manufacturing method of silicon dioxide-coated boron nitride particles and manufacturing method of heat-dissipating resin composition
JPWO2005033215A1 (en) Spherical coated magnesium oxide powder, method for producing the same, and resin composition containing the powder
JP7109275B2 (en) Hexagonal boron nitride powder and method for producing the same
WO2021200491A1 (en) Alumina powder, resin composition, and heat dissipation component
JPH10237311A (en) Alumina-charged resin or rubber composition
TWI402214B (en) An amorphous silica powder, a method for manufacturing the same, and a semiconductor sealing material
TW202142491A (en) Alumina powder, resin composition, andheat dissipation component
JP2002053736A (en) Filler of high thermal conductivity and its use
WO2024071430A1 (en) Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same
WO2009154186A1 (en) Amorphous siliceous powder, process for production thereof, resin composition, and semiconductor encapsulation material
WO2021235530A1 (en) Spherical crystalline silica particles and method for producing same
WO2022102697A1 (en) Resin composition for semiconductor encapsulation, and semiconductor device
JP2023146761A (en) Spherical alumina particle, method for producing the same, surface treatment method for spherical alumina particle raw material, resin composite composition including spherical alumina particle, and resin composite composition
WO2024071431A1 (en) Spherical alumina particles, production method of same, and resin composite composition comprising same
JP7325670B2 (en) Spherical alumina particle mixture, method for producing same, and resin composite composition and resin composite containing said spherical alumina particle mixture
JP2021113270A (en) Resin composition, method for producing resin composition, and inorganic particles used therefor
WO2020189711A1 (en) Resin composition for molding material, molded body, and structure
JP7468808B1 (en) Gahnite particles and method for producing same
JP2023146705A (en) Oil impregnated alumina particle powder and method for producing the same, and resin composite composition using the oil impregnated alumina particle powder
TW202406847A (en) High-purity spinel particles and manufacturing method thereof, resin composition and molded article