JP2007015884A - Method and apparatus for manufacturing spherical fine inorganic powder - Google Patents

Method and apparatus for manufacturing spherical fine inorganic powder Download PDF

Info

Publication number
JP2007015884A
JP2007015884A JP2005198189A JP2005198189A JP2007015884A JP 2007015884 A JP2007015884 A JP 2007015884A JP 2005198189 A JP2005198189 A JP 2005198189A JP 2005198189 A JP2005198189 A JP 2005198189A JP 2007015884 A JP2007015884 A JP 2007015884A
Authority
JP
Japan
Prior art keywords
raw material
powder
inorganic
fine powder
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005198189A
Other languages
Japanese (ja)
Other versions
JP5036984B2 (en
Inventor
Takeshi Kobayashi
健 小林
Hideki Takami
秀樹 鷹見
Takayuki Kashiwabara
孝行 柏原
Katsumasa Yagi
克昌 矢木
Mutsuto Tanaka
睦人 田中
Masanori Ae
正徳 阿江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Co Ltd
Original Assignee
Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Co Ltd filed Critical Micron Co Ltd
Priority to JP2005198189A priority Critical patent/JP5036984B2/en
Publication of JP2007015884A publication Critical patent/JP2007015884A/en
Application granted granted Critical
Publication of JP5036984B2 publication Critical patent/JP5036984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing easily a spherical fine inorganic powder comprising an oxide such as silica or alumina and having an average particle diameter of 0.5 to 3 μm. <P>SOLUTION: The method for manufacturing the spherical fine inorganic powder is one comprising spheroidizing an inorganic raw material powder by spraying it into a flame, wherein the inorganic raw material powder of 0.5-3 μm average particle diameter is mixed with a dispersible surface treating agent, and the resultant mixture is sprayed into the flame of a thermal spray burner, whereupon the inorganic raw material powder can be prevented from adhering to the thermal spray burner and to piping and from agglomerating into particles with increased diameters during thermal spraying. The manufacturing apparatus used therefor is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機質原料粉末を火炎中に溶射して球状化する球状無機質微粉末の製造方法およびそれに用いる製造装置に関する。
具体的には、例えばシリカやアルミナなどの酸化物からなる無機質原料粉末を火炎中に溶射して球状化する球状無機質微粉末の製造方法およびそれに用いる製造装置に関する。
The present invention relates to a method for producing a spherical inorganic fine powder in which an inorganic raw material powder is sprayed into a flame to be spheroidized, and a production apparatus used therefor.
Specifically, the present invention relates to a method for producing a spherical inorganic fine powder in which an inorganic raw material powder made of an oxide such as silica or alumina is sprayed into a flame to be spheroidized, and a production apparatus used therefor.

シリカやアルミナなどの球状無機質微粉末の製造方法としては、無機質原料粉末を火炎中に溶射して球状化する方法が従来から知られている。
しかし、3μm以下の無機質原料粉末を乾式のまま火炎中に噴霧すると、無機質原料粉末の粒子同士がバーナーや配管等に付着して目詰まりを起こすという問題があった。
また、粉体自身の凝集により球状粒子が粗大化して粒径がばらつくため、均一な粒径を確保するために分級による製造を余儀なくされ生産性が低下するうえ、分級工程が増加するのでそれだけ製造コストが高くなるという問題点があった。
As a method for producing a spherical inorganic fine powder such as silica or alumina, a method in which an inorganic raw material powder is sprayed into a flame to form a spheroid is conventionally known.
However, when an inorganic raw material powder of 3 μm or less is sprayed into a flame while being dry, there is a problem that the particles of the inorganic raw material powder adhere to a burner, a pipe or the like and cause clogging.
In addition, since the spherical particles become coarse due to the aggregation of the powder itself and the particle size varies, it is necessary to manufacture by classification in order to ensure a uniform particle size, and the productivity is reduced, and the number of classification processes increases, so that it is manufactured as much. There was a problem of high costs.

そこで、シリカやアルミナなどの酸化物からなる平均粒径0.5〜3μmの球状無機質微粉末の製造方法に関しては従来から種々の提案がなされている。
例えば、特公平1-55201号公報には、化学炎中に金属粉末を投入して粉塵爆発を起こさせて酸化物超微粒子を製造する方法が記載されている。
しかし、特公平1-55201号公報に記載された方法は、金属粉末を原料とするため原料を金属化する工程が必要になり多大なエネルギーコストがかかるという問題点があるうえ、未燃焼金属が残るため環境への影響が問題となっていた。
また、特開2004−51409号公報には、平均一次粒子径5μm以下の無機質原料粉末と水分1%以下のメタノールからなるスラリーを高温火炎に噴霧して球状化することにより平均粒子径0.01〜3μmの球状無機質微粉粉を製造する方法が記載されている。
しかし、特開2004−51409号公報に記載された方法は、原料粉末をスラリー化する工程が必要となるうえ、液状分を蒸発、完全燃焼させるために余分なエネルギーが必要となるという問題点があった。
特公平1-55201号公報 特開2004−51409号公報
Therefore, various proposals have conventionally been made for a method for producing a spherical inorganic fine powder having an average particle diameter of 0.5 to 3 μm made of an oxide such as silica or alumina.
For example, Japanese Patent Publication No. 1-55201 describes a method of producing ultrafine oxide particles by introducing a metal powder into a chemical flame and causing a dust explosion.
However, the method described in Japanese Patent Publication No. 1-55201 uses a metal powder as a raw material, which requires a step of metallizing the raw material, which requires a lot of energy cost, The impact on the environment was a problem because it remained.
Japanese Patent Application Laid-Open No. 2004-51409 discloses that an average particle size of 0.01 to 3 μm is obtained by spraying a slurry composed of an inorganic raw material powder having an average primary particle size of 5 μm or less and methanol having a water content of 1% or less onto a high-temperature flame to form a spheroid. A method for producing a spherical inorganic fine powder is described.
However, the method described in Japanese Patent Application Laid-Open No. 2004-51409 has a problem that a step of slurrying raw material powder is required, and extra energy is required to evaporate and completely burn the liquid component. there were.
Japanese Patent Publication No. 1-55201 JP 2004-51409 A

本発明は、前述のような従来技術の問題点を解決し、シリカやアルミナなどの酸化物からなる平均粒径0.5〜3μmの球状無機質微粉末を容易に製造することができる方法およびそれに用いる製造装置を提供することを課題とする。   The present invention solves the problems of the prior art as described above, and a method capable of easily producing a spherical inorganic fine powder having an average particle size of 0.5 to 3 μm made of an oxide such as silica or alumina, and a production used therefor It is an object to provide an apparatus.

本発明は、前述の課題を解決するために鋭意検討の結果、平均粒径0.5〜3μmの無機質原料粉末に、平均粒径0.1μm以下の超微粉またはシランカップリング剤からなる分散系表面処理剤を混合した後、溶射バーナーの火炎に噴霧することにより、シリカやアルミナなどの酸化物からなる平均粒径0.5〜3μmの球状無機質微粉末を容易に製造することができる方法およびそれに用いる製造装置を提供するものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1) 無機質原料粉末を火炎中に溶射して球状化する球状無機質微粉末の製造方法であって、平均粒径0.5〜3μmの無機質原料粉末に分散系表面処理剤を混合した後、溶射バーナーの火炎に噴霧することにより、溶射バーナーや配管への前記無機質原料粉末の付着を防止するとともに、該原料粉末の凝集による溶射時の粒子の増大化を防止することを特徴とする球状無機質微粉末の製造方法。
(2)前記分散系表面処理剤として、平均粒径0.1μm以下の無機質粉末を2質量%以上配合することを特徴とする(1)に記載の球状無機質微粉末の製造方法。
(3)前記分散系表面処理剤として、シランカップリング剤を1質量%以上配合することを特徴とする(1)に記載の球状無機質微粉末の製造方法。
(4)(1)乃至(3)のいずれかに記載の製造方法に用いる球状無機質微粉末の製造装置であって、前記溶射バーナーの先端部に衝突板を配置し、該衝突板に前記無機質原料粉末を衝突させて解砕した後に、前記溶射バーナーの火炎中に噴霧できるようにしたことを特徴とする無機質微粉末の製造装置。
As a result of intensive investigations to solve the above-mentioned problems, the present invention is a dispersion surface treatment agent comprising an inorganic raw material powder having an average particle size of 0.5 to 3 μm, an ultrafine powder having an average particle size of 0.1 μm or less, or a silane coupling agent. A method for easily producing spherical inorganic fine powder having an average particle size of 0.5 to 3 μm made of an oxide such as silica and alumina by spraying on a flame of a thermal spray burner and a production apparatus used therefor What is provided is the gist of the following contents as described in the claims.
(1) A method for producing a spherical inorganic fine powder in which an inorganic raw material powder is sprayed into a flame to form a spheroid, and after the dispersion surface treatment agent is mixed with the inorganic raw material powder having an average particle size of 0.5 to 3 μm, a thermal spray burner is used. A spherical inorganic fine powder characterized by preventing the inorganic raw material powder from adhering to a thermal spray burner and piping by spraying it on the flame of the above, and preventing increase of particles during thermal spraying due to aggregation of the raw material powder Manufacturing method.
(2) The method for producing a spherical inorganic fine powder according to (1), wherein 2% by mass or more of an inorganic powder having an average particle size of 0.1 μm or less is blended as the dispersion surface treatment agent.
(3) The method for producing a spherical inorganic fine powder according to (1), wherein 1% by mass or more of a silane coupling agent is blended as the dispersion surface treatment agent.
(4) A spherical inorganic fine powder manufacturing apparatus used in the manufacturing method according to any one of (1) to (3), wherein a collision plate is disposed at a tip portion of the thermal spray burner, and the inorganic material is disposed on the collision plate. An apparatus for producing an inorganic fine powder, characterized in that the raw powder can be sprayed into the flame of the thermal spray burner after colliding with the raw powder.

本発明によれば、平均粒径0.5〜3μmの無機質原料粉末に、分散系表面処理剤を混合した後、溶射バーナーの火炎に噴霧することにより、微粉の無機質原料が溶射バーナーや配管などに付着しにくくなるので、乾式のまま溶射し微粉のまま球状化することができ、例えばシリカやアルミナなどの酸化物からなる平均粒径0.5〜3μmの球状無機質微粉末を容易に製造することができる方法およびそれに用いる製造装置を提供することができるなど、産業上有用な著しい効果を奏する。   According to the present invention, after mixing the dispersion surface treatment agent with the inorganic raw material powder having an average particle size of 0.5 to 3 μm, and spraying it on the flame of the thermal spray burner, the fine inorganic raw material adheres to the thermal spray burner, piping, etc. A method that can be easily sprayed into a fine powder and can be spheroidized with an average particle size of 0.5 to 3 μm made of an oxide such as silica or alumina. In addition, it is possible to provide a manufacturing apparatus used therefor, and there are significant industrially useful effects.

発明を実施するための最良の形態について、以下に説明する。
本発明は、無機質原料粉末を火炎中に溶射して球状化する球状無機質微粉末の製造方法であって、平均粒径0.5〜3μmの無機質原料粉末に分散系表面処理剤を混合した後、溶射バーナーの火炎に噴霧することにより、溶射バーナーや配管への前記無機質原料粉末の付着を防止することを特徴とする。
The best mode for carrying out the invention will be described below.
The present invention is a method for producing a spherical inorganic fine powder in which an inorganic raw material powder is sprayed into a flame to form a spheroid, and after the dispersion surface treatment agent is mixed with the inorganic raw material powder having an average particle size of 0.5 to 3 μm, the thermal spraying is performed. By spraying on the flame of a burner, adhesion of the said inorganic raw material powder to a thermal spray burner or piping is prevented, It is characterized by the above-mentioned.

図1は、本説明における球状無機質微粉末の製造装置を例示する図である。
図1において、1は溶射炉、2はバーナー、3は可燃ガス供給管、4は支燃ガス供給管、5は原料供給管、6はサイクロン、7はバグフィルター、8はブロワーを示す。
図1に示すように、本発明における球状無機質微粉末の製造装置は、溶射炉1の頂上部にバーナー2をセットし、それには可燃ガス供給管3、支燃ガス供給管4、原料供給管5が接続されており、シリカなどの無機質原料粉末を原料供給管5から吹き込んで火炎中に溶射することによって、角張った無機質原料粉末が球状化されて球状無機質微粉末を製造することができる。
溶射炉を通過した粉末は、ブロワー8で吸引され、サイクロン6並びにバグフィルター7で回収され、このバグフィルター7で回収された粉末が、球状無機質微粉末である。
本発明の無機質原料粉末の種類は特に限定しないが、高充填性の樹脂用フィラーとして使用することができる平均粒径0.5〜3μmのシリカまたはアルミナが好ましい。
また、本発明に用いる分散系表面処理剤の種類は問わないが、平均粒径0.1μm以下のシリカまたはアルミナなどの無機質粉末を2質量%以上、好ましくは5質量%以上配合することが好ましい。
FIG. 1 is a diagram illustrating an apparatus for producing a spherical inorganic fine powder in the present description.
In FIG. 1, 1 is a thermal spray furnace, 2 is a burner, 3 is a combustible gas supply pipe, 4 is a combustion gas supply pipe, 5 is a raw material supply pipe, 6 is a cyclone, 7 is a bag filter, and 8 is a blower.
As shown in FIG. 1, the apparatus for producing spherical inorganic fine powder according to the present invention has a burner 2 set at the top of a thermal spraying furnace 1, which includes a combustible gas supply pipe 3, a support gas supply pipe 4, and a raw material supply pipe. 5 is connected, and an inorganic raw material powder such as silica is blown from the raw material supply pipe 5 and sprayed into a flame, whereby the angular inorganic raw material powder is spheroidized to produce a spherical inorganic fine powder.
The powder that has passed through the thermal spraying furnace is sucked by the blower 8 and collected by the cyclone 6 and the bag filter 7. The powder collected by the bag filter 7 is a spherical inorganic fine powder.
Although the kind of the inorganic raw material powder of the present invention is not particularly limited, silica or alumina having an average particle diameter of 0.5 to 3 μm that can be used as a highly filling filler for resin is preferable.
Further, the type of the dispersion surface treating agent used in the present invention is not limited, but it is preferable to blend 2% by mass or more, preferably 5% by mass or more of inorganic powder such as silica or alumina having an average particle size of 0.1 μm or less.

平均粒径0.5〜3μmの無機質原料粉末に0.1μm以下のシリカまたはアルミナなどの無機質粉末を2質量%以上配合することによって、無機質粉末同士が吸着しにくくすることができるのでバーナーや配管への付着による目詰まりや供給量のばらつきを防止することができる。更に、球状無機質粉末の凝集による粗大化を防止することができる。
ここに、無機質原料粉末に0.1μm以下のシリカまたはアルミナなどの無機質粉末を2質量%以上配合するのは、粒径が小さく、配合割合が多いほど分散効果が大きく、本発明等が種々の条件で実験したところ、シリカまたはアルミナなどの無機質粉末の粒径を0.1μm以下、配合割合を2質量%以上とすることによって吸着による付着や凝集による粗大化が発生しにくく、この効果は無機質粉末を5質量%以上配合することによりさらに著しくなることが判明した。
By blending 2% by mass or more of inorganic powder such as silica or alumina of 0.1μm or less into inorganic raw material powder with an average particle size of 0.5-3μm, it is possible to make it difficult for the inorganic powder to adsorb to each other, so it adheres to the burner and piping. It is possible to prevent clogging and variation in the supply amount due to. Furthermore, coarsening due to aggregation of the spherical inorganic powder can be prevented.
Here, 2% by mass or more of inorganic powder such as silica or alumina having a particle size of 0.1 μm or less is blended in the inorganic raw material powder. The smaller the particle size and the larger the blending ratio, the greater the dispersion effect. When the particle size of the inorganic powder such as silica or alumina is 0.1 μm or less and the blending ratio is 2% by mass or more, it is difficult to cause adhesion due to adsorption or aggregation due to aggregation. It became clear that it became more remarkable by mix | blending 5 mass% or more.

また、前記分散系表面処理剤として、シランカップリング剤を1質量%以上配合しても前述の0.1μm以下のシリカまたはアルミナなどの無機質粉末を2質量%以上配合した場合と同様の効果を得ることができる。
本発明においては、分散系表面処理剤の混合方法は問わないが、一般に用いられるボールミル、振動ミル、遊星粉砕機、ジェットミル、機械撹拌ブレード式ミキサー、容器回転式ミキサー等の混合機を用いて平均粒径0.5〜3μmの無機質原料粉末に前述の平均粒径0.1μm以下のシリカまたはアルミナなどの無機質粉末やシリコンオイルを混合する方法が好ましい。
次に、分散系表面処理剤を混合した0.5〜3μmの無機質原料粉末を、乾式で高温火炎中に噴霧して溶射することにより球状化して回収する。
Moreover, even if 1% by mass or more of the silane coupling agent is blended as the dispersion surface treating agent, the same effect as that obtained when 2% by mass or more of the inorganic powder such as silica or alumina of 0.1 μm or less is blended. be able to.
In the present invention, the mixing method of the dispersion surface treatment agent is not limited, but a generally used mixer such as a ball mill, a vibration mill, a planetary pulverizer, a jet mill, a mechanical stirring blade type mixer, a container rotating type mixer or the like is used. A method of mixing the inorganic raw material powder having an average particle size of 0.5 to 3 μm with the inorganic powder such as silica or alumina having the average particle size of 0.1 μm or less or silicon oil is preferable.
Next, the 0.5 to 3 μm inorganic raw material powder mixed with the dispersion surface treatment agent is spheroidized by spraying it into a high-temperature flame in a dry manner and recovered.

図2は、本発明における球状無機質微粉末の溶射バーナーを例示する図である。
図2に示すように、分散系表面処理剤を混合した0.5〜3μmの無機質原料粉末を衝突板に衝突させて無機質原料粉末を解砕した後に、LPGなどの燃料を燃やした火炎中に噴霧することにより、凝集による粒子の粗大化を防止することができる。
ここに、解砕とは凝集した粒子をほぐして再びバラバラにすることをいう。
衝突板は図1に示すような管路の屈曲部に設けることが好ましいが、例えば流路を遮る邪魔板状のような構造でもかまわない。
また、衝突板の材質は、衝突による磨耗を防止するために硬度を高くすることが好ましい。
本発明により保管・貯蔵・輸送中、また、設備中のスクリューフィーダー、テーブルフィーダーや配管中で凝集した原料を、バーナー中に配置した衝突板で解砕し、そのまま火炎中に噴霧することによってシリカやアルミナなどの酸化物からなる平均粒径0.5〜3μmの原料粉末の粒径と同等の大きさの球状無機質微粉末を容易に製造することができる。
FIG. 2 is a diagram illustrating a thermal spray burner of spherical inorganic fine powder in the present invention.
As shown in FIG. 2, the inorganic raw material powder of 0.5 to 3 μm mixed with the dispersion surface treatment agent is collided with the collision plate to crush the inorganic raw material powder, and then sprayed into a flame in which fuel such as LPG is burned. Thus, coarsening of particles due to aggregation can be prevented.
Here, crushing means loosening the aggregated particles and breaking them apart.
The collision plate is preferably provided at the bent portion of the pipe line as shown in FIG. 1, but may have a baffle plate-like structure that blocks the flow path, for example.
Further, the material of the collision plate is preferably increased in hardness in order to prevent wear due to collision.
Silica is obtained by crushing raw materials agglomerated in screw feeders, table feeders and pipes in equipment during storage, storage and transportation according to the present invention with a collision plate placed in a burner and spraying it directly into a flame. Spherical inorganic fine powder having a size equivalent to that of the raw material powder having an average particle diameter of 0.5 to 3 μm made of an oxide such as alumina can be easily produced.

前述の図1および図2に示す装置を用いて、球状無機質微粉末の例としてシリカ微粉末を製造する実験を行った。
実験については、可燃ガスとしてLPG60Nm3/Hr、支燃ガスとして酸素200Nm3/Hrの条件で、1500℃以上の高温火炎を形成した。
原料粉末の搬送ガスとして酸素100Nm3/Hrで原料粉末200Kg/Hrの速度で、火炎中に吐出した。
また、サイクロンに流入するガス(燃焼ガス含む)は、1000Nm3/Hr
以上とし、サイクロン流入ガス速度を10m/sec以上を確保した。このことにより、5μm以上の粗粉については、サイクロンで捕集され、平均粒径3μm以下の微粉がバグフィルターで捕集される。
An experiment for producing silica fine powder as an example of spherical inorganic fine powder was conducted using the apparatus shown in FIGS.
In the experiment, a high-temperature flame of 1500 ° C. or higher was formed under the conditions of LPG 60 Nm 3 / Hr as the combustible gas and oxygen 200 Nm 3 / Hr as the combustion support gas.
As a carrier gas for the raw material powder, oxygen was discharged at 100 Nm3 / Hr into the flame at a speed of the raw material powder of 200 kg / hr.
The gas (including combustion gas) flowing into the cyclone is 1000 Nm3 / Hr.
With the above, the cyclone inflow gas velocity was secured at 10 m / sec or more. As a result, coarse powder of 5 μm or more is collected by a cyclone, and fine powder having an average particle diameter of 3 μm or less is collected by a bag filter.

表1に実験に使用した分散性表面処理を施す前のシリカ原料を示す。
表2に分散性表面処理を施した後のシリカ原料を示す。
平均粒径測定は、表5に示すように、堀場製作所製LA-920レーサ゛ー式粒度分布測定機で行った。また、表5に示すように、比表面積測定は、湯浅アイオニクス製マルチソーブ16で行い、分散性の測定は、Freeman Technology Co.,Ltd.製パウダーレオメーターFT4で行った。
また、表面処理剤としては、シリカ超微粉として、比表面積が50〜400m2/g、平均粒径15〜80μmの乾式の微粉末シリカである塩野義製薬製FPS-3、日本アエロジル製AR-200、AR-380PEを用い、シランカップリング剤として、東レダウコーニング製SH6040を使用し、表面処理はボールミルで行った。
分散性表面処理を行った原料を図1、2の製造装置で溶射した結果を表3に、また評価基準を表6に示す。
Table 1 shows the silica raw material before the dispersible surface treatment used in the experiment.
Table 2 shows the silica raw material after the dispersible surface treatment.
As shown in Table 5, the average particle size was measured with an LA-920 laser type particle size distribution measuring machine manufactured by Horiba. Further, as shown in Table 5, the specific surface area was measured with Yuasa Ionics Multisorb 16 and the dispersibility was measured with Freeman Technology Co., Ltd. powder rheometer FT4.
In addition, as the surface treatment agent, as silica ultrafine powder, FPS-3 manufactured by Shionogi & Co., which is dry fine powder silica having a specific surface area of 50 to 400 m 2 / g and an average particle size of 15 to 80 μm, AR- manufactured by Nippon Aerosil Co., Ltd. 200, AR-380PE was used, SH6040 manufactured by Toray Dow Corning was used as the silane coupling agent, and the surface treatment was performed with a ball mill.
Table 3 shows the results of thermal spraying the raw material subjected to dispersive surface treatment with the manufacturing apparatus shown in FIGS. 1 and 2, and Table 6 shows the evaluation criteria.

表3に示すように、分散性表面処理を行った発明例1〜8では、平均粒径1.5〜1.8μmの球状シリカ粉末を55%以上の高い回収率で得ることができた。
また、表2に示す分散性を6/J以上にした発明例1、2、4、5、6、8では、より高い操業の安定性(○)と高い回収率(62%以上)が得られた。
これらの結果から、本発明の効果を得るには分散性は2以上が必要であり、好ましくは6以上であることが判明した。また、分散系表面処理剤の添加料は2mass%以上が必要であり、好ましくは5mass%以上であることが判明した。
As shown in Table 3, in Invention Examples 1 to 8 subjected to dispersive surface treatment, spherical silica powder having an average particle size of 1.5 to 1.8 μm could be obtained with a high recovery rate of 55% or more.
In Invention Examples 1, 2, 4, 5, 6, and 8 in which the dispersibility shown in Table 2 was 6 / J or higher, higher operational stability (◯) and higher recovery rate (62% or higher) were obtained. It was.
From these results, it was found that the dispersibility needs to be 2 or more, preferably 6 or more, in order to obtain the effect of the present invention. Further, it has been found that the additive for the dispersion surface treatment agent needs to be 2 mass% or more, and preferably 5 mass% or more.

一方、前述の発明例と同条件で、分散性表面処理を行わなかった原料シリカAを用いた比較例1は、原料供給配管、バーナー内での付着が大きく、溶射が不可能であり操業ができなかった(×)。
バーナーでの解砕効果の実験を行った結果を表4に、また評価基準を表6に示す。
表4の発明例6,9,10に示すように、衝突板への衝突速度を80m/s以上に高くし、解砕効率を上げることによって高い回収率(61%以上)が得られた。
一方、衝突板を設置しない場合(比較例2)、解砕不足の場合(比較例3)は原料の凝集により粒子の増大化が大きく、微粉の回収率が50%以下に下がっている。
以上の実験結果により、本発明の効果が確認された。

Figure 2007015884
Figure 2007015884
Figure 2007015884
Figure 2007015884
Figure 2007015884
Figure 2007015884
On the other hand, in Comparative Example 1 using the raw material silica A which was not subjected to dispersive surface treatment under the same conditions as the above-described invention examples, adhesion in the raw material supply pipe and the burner was large, and spraying was impossible and operation was Could not (×).
Table 4 shows the results of experiments on the effect of crushing with a burner, and Table 6 shows the evaluation criteria.
As shown in Invention Examples 6, 9, and 10 in Table 4, a high recovery rate (61% or more) was obtained by increasing the collision speed to the collision plate to 80 m / s or more and increasing the crushing efficiency.
On the other hand, when the collision plate is not installed (Comparative Example 2) and when crushing is insufficient (Comparative Example 3), the increase of particles is large due to the aggregation of raw materials, and the fine powder recovery rate is reduced to 50% or less.
From the above experimental results, the effect of the present invention was confirmed.
Figure 2007015884
Figure 2007015884
Figure 2007015884
Figure 2007015884
Figure 2007015884
Figure 2007015884

本発明における球状無機質微粉末の製造装置を例示する図である。It is a figure which illustrates the manufacturing apparatus of the spherical inorganic fine powder in this invention. 本発明における球状無機質微粉末の溶射バーナーを例示する図である。It is a figure which illustrates the thermal spray burner of the spherical inorganic fine powder in this invention.

符号の説明Explanation of symbols

1 溶射炉
2 バーナー
3 可燃ガス供給管
4 支燃ガス供給管
5 原料供給管
6 サイクロン
7 バグフィルター
DESCRIPTION OF SYMBOLS 1 Thermal spray furnace 2 Burner 3 Combustible gas supply pipe 4 Combustion gas supply pipe 5 Raw material supply pipe 6 Cyclone 7 Bag filter

Claims (4)

無機質原料粉末を火炎中に溶射して球状化する球状無機質微粉末の製造方法であって、
平均粒径0.5〜3μmの無機質原料粉末に分散系表面処理剤を混合した後、溶射バーナーの火炎に噴霧することにより、溶射バーナーや配管への前記無機質原料粉末の付着を防止するとともに、該原料粉末の凝集による溶射時の粒子の増大化を防止することを特徴とする球状無機質微粉末の製造方法。
A method for producing a spherical inorganic fine powder in which an inorganic raw material powder is sprayed into a flame to be spheroidized,
After mixing the dispersion surface treatment agent with the inorganic raw material powder having an average particle size of 0.5 to 3 μm, spraying it on the flame of the thermal spray burner prevents the inorganic raw material powder from adhering to the thermal spray burner and piping, and the raw material A method for producing a spherical inorganic fine powder, characterized in that an increase in particles during thermal spraying due to powder aggregation is prevented.
前記分散系表面処理剤として、平均粒径0.1μm以下の無機質粉末を2質量%以上配合することを特徴とする請求項1に記載の球状無機質微粉末の製造方法。   2. The method for producing a spherical inorganic fine powder according to claim 1, wherein 2% by mass or more of an inorganic powder having an average particle size of 0.1 μm or less is blended as the dispersion surface treatment agent. 前記分散系表面処理剤として、シランカップリング剤を1質量%以上配合することを特徴とする請求項1に記載の球状無機質微粉末の製造方法。   2. The method for producing a spherical inorganic fine powder according to claim 1, wherein 1% by mass or more of a silane coupling agent is blended as the dispersion surface treatment agent. 請求項1乃至請求項3のいずれかに記載の製造方法に用いる球状無機質微粉末の製造装置であって、前記溶射バーナーの先端部に衝突板を配置し、該衝突板に前記無機質原料粉末を衝突させて解砕した後に、前記溶射バーナーの火炎中に噴霧できるようにしたことを特徴とする無機質微粉末の製造装置。
It is a manufacturing apparatus of the spherical inorganic fine powder used for the manufacturing method in any one of Claims 1 thru | or 3, Comprising: A collision board is arrange | positioned at the front-end | tip part of the said thermal spray burner, The said inorganic raw material powder is put on this collision board. An apparatus for producing an inorganic fine powder, characterized in that it can be sprayed into the flame of the thermal spray burner after being crushed by collision.
JP2005198189A 2005-07-07 2005-07-07 Method for producing spherical inorganic fine powder Active JP5036984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198189A JP5036984B2 (en) 2005-07-07 2005-07-07 Method for producing spherical inorganic fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198189A JP5036984B2 (en) 2005-07-07 2005-07-07 Method for producing spherical inorganic fine powder

Publications (2)

Publication Number Publication Date
JP2007015884A true JP2007015884A (en) 2007-01-25
JP5036984B2 JP5036984B2 (en) 2012-09-26

Family

ID=37753372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198189A Active JP5036984B2 (en) 2005-07-07 2005-07-07 Method for producing spherical inorganic fine powder

Country Status (1)

Country Link
JP (1) JP5036984B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207695A (en) * 2010-03-30 2011-10-20 Admatechs Co Ltd Method for producing spherical silica particle
JP2012206077A (en) * 2011-03-30 2012-10-25 Taiyo Nippon Sanso Corp Method for producing inorganic spheroidized particle, inorganic spheroidized particle-producing burner, and inorganic spheroidized particle production device
JP2012250869A (en) * 2011-06-01 2012-12-20 Denki Kagaku Kogyo Kk Spherical alumina powder, manufacturing method therefor and composition using this powder
CN108190898A (en) * 2018-03-27 2018-06-22 乐山师范学院 A kind of reactor for preparing silica
WO2024071430A1 (en) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171988B2 (en) 2019-11-05 2022-11-16 ゲイツ・ユニッタ・アジア株式会社 Cable end processing device and cable end processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748118A (en) * 1993-06-02 1995-02-21 Nippon Sanso Kk Burner for producing inorganic spherical particle
JP2000191317A (en) * 1998-12-25 2000-07-11 Tokuyama Corp Production of fused spherical silica
JP2004262674A (en) * 2003-01-24 2004-09-24 Showa Denko Kk Surface modification method of inorganic oxide powder, powder prepared through the same, and its use
JP2005008504A (en) * 2003-06-23 2005-01-13 Tdk Corp Method of manufacturing spherical powder, spherical oxide powder and oxide powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748118A (en) * 1993-06-02 1995-02-21 Nippon Sanso Kk Burner for producing inorganic spherical particle
JP2000191317A (en) * 1998-12-25 2000-07-11 Tokuyama Corp Production of fused spherical silica
JP2004262674A (en) * 2003-01-24 2004-09-24 Showa Denko Kk Surface modification method of inorganic oxide powder, powder prepared through the same, and its use
JP2005008504A (en) * 2003-06-23 2005-01-13 Tdk Corp Method of manufacturing spherical powder, spherical oxide powder and oxide powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207695A (en) * 2010-03-30 2011-10-20 Admatechs Co Ltd Method for producing spherical silica particle
JP2012206077A (en) * 2011-03-30 2012-10-25 Taiyo Nippon Sanso Corp Method for producing inorganic spheroidized particle, inorganic spheroidized particle-producing burner, and inorganic spheroidized particle production device
JP2012250869A (en) * 2011-06-01 2012-12-20 Denki Kagaku Kogyo Kk Spherical alumina powder, manufacturing method therefor and composition using this powder
CN108190898A (en) * 2018-03-27 2018-06-22 乐山师范学院 A kind of reactor for preparing silica
CN108190898B (en) * 2018-03-27 2019-07-23 乐山师范学院 A kind of reactor preparing silica
WO2024071430A1 (en) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 Spherical alumina particles, manufacturing method therefor, and resin composite composition containing same

Also Published As

Publication number Publication date
JP5036984B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5036984B2 (en) Method for producing spherical inorganic fine powder
CN101084080B (en) Method for producing superfine metal powder
US6254981B1 (en) Fused glassy particulates obtained by flame fusion
US6045913A (en) At least partly fused particulates and methods of making them by flame fusion
CA2935621C (en) Process and apparatus for dry granulation of slag with reduced formation of slag wool
US20110230334A1 (en) Composition, Production And Use Of Sorbent Particles For Flue Gas Desulfurization
JPH1157520A (en) Method and device for dry-crushing solid process for treating combustion gas to remove sox and nox and method and device for eliminating particles from gas stream
Jiang et al. A novel reactive P-containing composite with an ordered porous structure for suppressing nano-Al dust explosions
TW200938596A (en) Process for aftertreating carbon black
AU707863B2 (en) Methods of making fused particulates by flame fusion
JP3957581B2 (en) Method for producing spherical silica powder
JP4162704B2 (en) Foamed glass and manufacturing method thereof
TW202225095A (en) Method for manufacturing spherical particle material
JP2008120673A5 (en)
CN111701441B (en) Dry-type desulfurization superfine powder for synergistically realizing ultralow emission of flue gas and preparation method and application thereof
JP2003175329A (en) Method for manufacturing spherical inorganic powder
JP4416936B2 (en) Method for producing fine silica powder
JP4567700B2 (en) Method for producing spherical inorganic ultrafine powder
WO2004103548A1 (en) Apparatus for producing spherical powder, burner for treating powder, method for producing spherical powder, spherical oxide powder and oxide powder
CN113528213B (en) Method for recycling gasification furnace slag and utilization process
JP2016028809A (en) Detoxifying method for gas containing acidic component
Pan et al. Design and Synthesis of Nanofluid Fuels
JP4599744B2 (en) Method for producing hot metal pretreatment agent using dust collection dust containing iron oxide
JP2001335313A (en) Method of producing fine spherical silica
JPH11514626A (en) At least partially melted particles and their preparation by flame melting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120131

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5036984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250