WO2022102697A1 - Resin composition for semiconductor encapsulation, and semiconductor device - Google Patents

Resin composition for semiconductor encapsulation, and semiconductor device Download PDF

Info

Publication number
WO2022102697A1
WO2022102697A1 PCT/JP2021/041498 JP2021041498W WO2022102697A1 WO 2022102697 A1 WO2022102697 A1 WO 2022102697A1 JP 2021041498 W JP2021041498 W JP 2021041498W WO 2022102697 A1 WO2022102697 A1 WO 2022102697A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
semiconductor
alumina powder
less
mass
Prior art date
Application number
PCT/JP2021/041498
Other languages
French (fr)
Japanese (ja)
Inventor
遼介 杉野
君光 鵜木
一史 佐藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2022529571A priority Critical patent/JP7355241B2/en
Priority to KR1020237019844A priority patent/KR20230107646A/en
Priority to CN202180077136.0A priority patent/CN116457387A/en
Publication of WO2022102697A1 publication Critical patent/WO2022102697A1/en
Priority to JP2023087477A priority patent/JP2023109966A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Definitions

  • the present invention relates to a resin composition for encapsulating a semiconductor and a semiconductor device manufactured using the same.
  • Semiconductor devices are sealed for the purpose of protecting electronic components such as semiconductor elements, ensuring electrical insulation, and facilitating handling. Since the sealing of the semiconductor element is preferable in terms of productivity, cost, reliability, etc., the sealing by transfer molding of the epoxy resin composition is the mainstream. In addition, in order to meet the market demands for miniaturization, weight reduction, and high performance of semiconductor devices, not only high integration, miniaturization, and high density of semiconductor devices, but also new joining technologies such as surface mounting have been developed. , Has been put to practical use. These technological trends have spread to epoxy resin compositions, and the required performance is becoming more sophisticated and diversified year by year.
  • Patent Document 1 proposes a technique for reducing the ⁇ dose of a sealing material by setting the total amount of uranium and thorium contained in alumina particles used as an inorganic filler to less than 10 ppb.
  • the semiconductor element circuits are becoming higher-density wiring and multi-layer wiring, and the amount of heat generated by the semiconductor element itself tends to increase.
  • the demand for high heat conduction is increasing because the heat generation amount of the semiconductor element increases with the increase in wiring of the semiconductor element for memory, which has not been required for heat conduction until now.
  • a system-in-package is a combination of a plurality of semiconductor elements having different functions, and is different because it is an electronic component device that is assembled into one unit and has a plurality of functions related to a system or a subsystem.
  • the maximum guaranteed operating temperature is different.
  • the maximum guaranteed operating temperature of a microprocessor is generally 100 ° C.
  • the guaranteed maximum operating temperature of an electronic component device such as a semiconductor device for memory is generally 85 ° C.
  • the thermal of SiP the maximum guaranteed operating temperature of all chips must be taken into consideration.
  • the present invention can be applied to a one-chip device that generates a large amount of heat and is easily affected by ⁇ rays, and a system-in-package in which a logic element having a large amount of heat generation and a memory that is easily affected by ⁇ rays are mixed. It is intended to provide a resin composition for encapsulation having high thermal conductivity and a low ⁇ -dose capable, and to provide a semiconductor device using the same.
  • the ⁇ dose of the cured product of the semiconductor encapsulating resin composition is 0.002 count / cm 2 ⁇ h or less.
  • a semiconductor encapsulating resin composition having a thermal conductivity of 4.0 W / m ⁇ K or more as measured by a laser flash method of a cured product of the semiconductor encapsulating resin composition.
  • a semiconductor device including a sealing material for sealing the semiconductor element A semiconductor device is provided in which the encapsulant is a cured product of the resin composition for encapsulating a semiconductor.
  • a resin composition for encapsulating low ⁇ rays having high thermal conductivity and a semiconductor device having excellent reliability manufactured by using the resin composition is provided.
  • the sealing resin composition of the present embodiment (hereinafter, may be simply referred to as “resin composition”) is a resin material used as a sealing material for sealing a semiconductor element mounted on a substrate. Yes, it contains an epoxy resin, a phenol resin curing agent, a curing accelerator, and an alumina powder.
  • the ⁇ dose of the cured product of the resin composition of the present embodiment is 0.002 count / cm 2 ⁇ h or less.
  • the thermal conductivity when measured by the laser flash method of the cured product of the resin composition of the present embodiment is 4.0 W / m ⁇ K or more.
  • epoxy resin examples of the epoxy resin used in the semiconductor encapsulation resin composition of the present embodiment include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethyl bisphenol F type epoxy resin, and biphenyl type epoxy resin.
  • Crystalline epoxy resin such as stillben type epoxy resin and hydroquinone type epoxy resin; Novolak type epoxy resin such as cresol novolac type epoxy resin, phenol novolac type epoxy resin, naphthol novolac type epoxy resin; phenylene skeleton-containing phenol aralkyl type epoxy resin, biphenylene Phenolar aralkyl type epoxy resin such as skeleton-containing phenol aralkyl type epoxy resin, phenylene skeleton-containing naphthol aralkyl type epoxy resin, alkoxynaphthalene skeleton-containing phenol aralkyl type epoxy resin; triphenol methane type epoxy resin, alkyl-modified triphenol methane type epoxy resin, etc.
  • Novolak type epoxy resin such as cresol novolac type epoxy resin, phenol novolac type epoxy resin, naphthol novolac type epoxy resin
  • phenylene skeleton-containing phenol aralkyl type epoxy resin biphenylene Phenolar aralkyl
  • Trifunctional epoxy resin Trifunctional epoxy resin; modified phenol-type epoxy resin such as dicyclopentadiene-modified phenol-type epoxy resin and terpene-modified phenol-type epoxy resin; heterocyclic-containing epoxy resin such as triazine nucleus-containing epoxy resin, and the like, and these are one type. May be used alone or in combination of two or more. Among them, the biphenyl type epoxy resin is preferable because the melt viscosity can be maintained in the optimum range, the moldability is good, and the cost is low.
  • the epoxy equivalent of the epoxy resin is preferably 90 to 300. If the epoxy equivalent is too small, the reactivity with the curing agent tends to decrease. Further, if the epoxy equivalent is too large, the strength of the cured product of the resin composition tends to decrease.
  • the content of the epoxy resin is not particularly limited, but is preferably 2% by mass or more, and more preferably 4% by mass or more, based on the entire resin composition.
  • the upper limit of the blending ratio of the entire resin composition is not particularly limited, but is preferably 22% by mass or less, more preferably 20% by mass or less, based on the total amount of the resin composition.
  • the upper limit of the blending ratio is within the above range, the decrease in the glass transition temperature of the resin composition is small.
  • phenol resin curing agent examples include novolak-type phenol resins such as phenol novolac resin, cresol novolak resin, bisphenol novolak, and phenol-biphenyl novolak resin; polyvinylphenol; triphenolmethane-type phenol resin and the like.
  • Polyfunctional phenolic resin Modified phenolic resin such as terpene-modified phenolic resin, dicyclopentadiene-modified phenolic resin; Phenolic aralkyl resin such as phenylene skeleton and / or biphenylene skeleton-containing phenol aralkyl resin, phenylene and / or biphenylene skeleton-containing naphthol aralkyl resin.
  • Type phenol resin examples thereof include bisphenol compounds such as bisphenol A and bisphenol F.
  • the phenol resin-based curing agent one or a combination of two or more of the above specific examples can be used.
  • the phenol resin-based curing agent preferably contains a phenol aralkyl resin containing a phenylene skeleton and / or a biphenylene skeleton.
  • the epoxy resin can be satisfactorily cured in the resin composition.
  • the lower limit of the blending ratio of the phenol resin curing agent is not particularly limited, but is preferably 2% by mass or more, and more preferably 3% by mass or more with respect to the entire resin composition. When the lower limit of the blending ratio is within the above range, sufficient fluidity can be obtained.
  • the upper limit of the blending ratio of the curing agent is also not particularly limited, but is preferably 16% by mass or less, more preferably 15% by mass or less, based on the entire resin composition. When the upper limit of the blending ratio is within the above range, the fluidity and meltability of the resin composition can be set within the desired range.
  • the compounding ratio of the epoxy resin and the phenol resin-based curing agent is the equivalent ratio (EP) / (OH) of the number of epoxy groups (EP) of the epoxy resin and the number of phenolic hydroxyl groups (OH) of the phenol resin-based curing agent. Is preferably 0.8 or more and 1.3 or less. When the equivalent ratio is within this range, sufficient curability can be obtained at the time of molding the resin composition. Further, when the equivalent ratio is within this range, the fluidity and meltability of the resin composition can be set within a desired range.
  • the curing accelerator used in the resin composition of the present embodiment is not particularly limited as long as it can promote the curing reaction between the above-mentioned phenol resin and the above-mentioned phenol resin curing agent.
  • onium salt compounds organic phosphines such as triphenylphosphine, tributylphosphine, trimethylphosphine; tetra-substituted phosphonium compounds; phosphobetaine compounds; additions of phosphine compounds and quinone compounds; addition of suphonium compounds and silane compounds.
  • the content of the curing accelerator is preferably 0.1% by mass or more and 2% by mass or less with respect to the total amount of the epoxy resin and the phenol resin curing agent. If the content of the curing accelerator is less than the above lower limit, the curing promoting effect may not be enhanced. Further, if it is more than the above upper limit value, there is a tendency that problems occur in fluidity and moldability, and it may lead to an increase in manufacturing cost.
  • the alumina powder used in the resin composition of the present embodiment has an action of imparting thermal conductivity to the resin composition.
  • Alumina powder has higher thermal conductivity than other inorganic fillers such as silica powder, and is easy to thermally design when used as a sealing material.
  • alumina powder is lower in cost than other inorganic fillers (for example, magnesium oxide, boron nitride, aluminum nitride, diamond, etc.) having higher thermal conductivity than silica powder, and it is easy to increase the sphericity. , Excellent heat resistance.
  • the alumina powder emits ⁇ rays from uranium, thorium, and its decaying substances in the inorganic filler blended in the resin composition of the present embodiment. Need to be reduced.
  • the alumina powder used in this embodiment preferably has a uranium content of 0.1 to 9.0 ppb. In a preferred embodiment, the total content of uranium and thorium contained in the alumina powder is 10.0 ppb or less.
  • the alumina powder has an average particle size of, for example, 0.5 to 40.0 ⁇ m, preferably 1.0 to 30.0 ⁇ m.
  • the average particle size of the alumina powder is less than 0.5 ⁇ m, the viscosity of the resin composition becomes very high, so that the filling property and the workability in the sealing step are deteriorated.
  • the average particle size of the alumina powder is less than 0.5 ⁇ m, the elastic modulus of the cured product of the resin composition decreases, and the resulting package warps.
  • the average particle size of the alumina powder exceeds 40.0 ⁇ m, filling defects may occur. Even if it can be filled, it is inappropriate because it involves voids during filling.
  • the amount of alumina powder having a particle size of 106 ⁇ m or more and less than 250 ⁇ m is 5% by mass or more and 15% by mass or less with respect to the entire alumina powder.
  • the amount of alumina powder having a particle size of 250 ⁇ m or more and less than 500 ⁇ m is 25% by mass or more and 35% by mass or less with respect to the entire alumina powder.
  • the amount of alumina powder having a particle size of 500 ⁇ m or more and less than 710 ⁇ m is 20% by mass or more and 25% by mass or less with respect to the entire alumina powder.
  • the amount of alumina powder having a particle size of 710 ⁇ m or more and less than 1 mm is 20% by mass or more and 25% by mass or less with respect to the entire alumina powder.
  • the shape of the alumina powder is not particularly limited, and may be spherical, scaly, granular, or powdery.
  • the particle size of the alumina powder means the average maximum diameter of the alumina filler.
  • the alumina powder preferably contains a spherical alumina powder having a sphericity of 0.8 or more, preferably 0.9 or more.
  • a spherical alumina powder exists in a state close to the close-packed state in the encapsulant, and thus the thermal conductivity of the obtained encapsulant is improved.
  • the resin composition containing such spherical alumina has improved fluidity and is easy to handle in the sealing step.
  • centicity is defined as "the ratio of the minimum diameter to the maximum diameter of particles" in a two-dimensional image observed with a scanning electron microscope (SEM). That is, in the present embodiment, it means that the ratio of the minimum diameter to the maximum diameter in the two-dimensional image observed by the scanning electron microscope (SEM) of the alumina particles is 0.8 or more.
  • the alumina powder containing spherical alumina used in this embodiment is produced by using the Bayer process using aluminum hydroxide powder having a low uranium content as a raw material. More specifically, bauxite is washed with a hot solution of sodium hydroxide at 220 ° C. to 260 ° C., and the aluminum component contained in bauxite is dissolved by a base and converted into sodium aluminate. Next, components other than sodium aluminate are removed as solid impurities, and the solution is cooled to precipitate aluminum hydroxide. Then, the aluminum hydroxide powder is obtained by processing with a pulverizer using a ball mill.
  • the number of washings with sodium hydroxide is repeated 2 to 4 times, and impurities containing uranium and thorium are repeatedly removed to be contained in aluminum hydroxide.
  • the amount of uranium and thorium to be added can be reduced to a desired degree.
  • the sodium (Na) content of the obtained aluminum hydroxide can be reduced by precipitating at a cooling temperature of 60 to 80 ° C. over 5 to 10 hours.
  • the production of the alumina powder containing spherical alumina of the present invention is characterized by using the aluminum hydroxide powder obtained by the above method.
  • processing is performed using equipment including a powder supply device, a flame burner, a melt zone, a cooling zone, a powder recovery device, and a suction fan.
  • a raw material is supplied from a supply device and injected into a flame through a burner with a carrier gas.
  • the raw material melted in the flame passes through the melting zone and the cooling zone and spheroidizes.
  • the obtained spheroids are transported together with the exhaust gas to a powder recovery device and collected.
  • the flame is formed by injecting a flammable gas such as hydrogen, natural gas, acetylene gas, propane gas, butane, and a combustion assisting gas such as air and oxygen from a flame burner set in the furnace body.
  • a flammable gas such as hydrogen, natural gas, acetylene gas, propane gas, butane
  • a combustion assisting gas such as air and oxygen from a flame burner set in the furnace body.
  • the flame temperature is preferably maintained at 1800 ° C. or higher and 2300 ° C. or lower.
  • the sphericity of the produced spherical alumina particles deteriorates.
  • the flame temperature is higher than 2300 ° C., the generated spherical alumina particles are easily adsorbed to each other, and the fluidity is lowered when the resin composition is formed.
  • the carrier gas for supplying the raw material powder air, nitrogen, oxygen, carbon dioxide and the like can be used.
  • the content of the alumina powder in the resin composition of the present embodiment is 80% by mass or more and 97% by mass or less with respect to the total mass of the resin composition.
  • the lower limit of the content of the alumina powder is preferably 82% by mass or more, more preferably 85% by mass or more, and even more preferably 87% by mass or more.
  • the upper limit of the content of the alumina powder is preferably 95% by mass or less, and more preferably 92% by mass or less.
  • an inorganic filler other than alumina powder if necessary, an inorganic filler other than alumina powder, a coupling agent, a fluidity-imparting agent, a mold release agent, an ion scavenger, a low stress agent, a colorant, a flame retardant and the like are added. It may contain an agent.
  • an inorganic filler other than alumina powder if necessary, an inorganic filler other than alumina powder, a coupling agent, a fluidity-imparting agent, a mold release agent, an ion scavenger, a low stress agent, a colorant, a flame retardant and the like are added. It may contain an agent.
  • the resin composition of the present embodiment may contain other inorganic fillers in addition to the above-mentioned alumina powder.
  • the inorganic filler include fused crushed silica, fused spherical silica, crystalline silica, and silica such as secondary aggregated silica; silicon nitride, aluminum nitride, boron nitride, titanium oxide, silicon carbide, aluminum hydroxide, magnesium hydroxide, and titanium white. , Tarku, clay, mica, glass fiber and the like. It is preferable that the particle shape is infinitely spherical, and the filling amount can be increased by mixing particles having different sizes.
  • the coupling agent include vinyl silanes such as vinyl trimethoxysilane and vinyl triethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Epoxysilanes such as glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; styrylsilanes such as p-styryltrimethoxysilane; 3-methacryloxypropyl Methacrylic silanes such as methyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane; acrylic silanes such as 3-acryloxypropy
  • the fluidity-imparting agent acts to prevent a non-latent curing accelerator such as a phosphorus atom-containing curing accelerator from reacting during melt-kneading of the resin composition. Thereby, the productivity of the resin composition can be improved.
  • a non-latent curing accelerator such as a phosphorus atom-containing curing accelerator
  • two or more constituting an aromatic ring such as catechol, pyrogallol, gallic acid, gallic acid ester, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. Examples thereof include compounds in which hydroxyl groups are bonded to adjacent carbon atoms of.
  • release agent examples include natural waxes such as carnauba wax; synthetic waxes such as montanic acid ester wax and polyethylene oxide wax; higher fatty acids such as zinc stearate and their metal salts; paraffins; erucic acid amides and the like. Examples include carboxylic acid amides. As the release agent, one or more of the above specific examples can be blended.
  • ion scavenger examples include hydrotalcites, hydrotalcite-like substances and the like; hydrotalcites of elements selected from magnesium, aluminum, bismuth, titanium and zirconium.
  • hydrotalcites examples include hydrotalcites, hydrotalcite-like substances and the like; hydrotalcites of elements selected from magnesium, aluminum, bismuth, titanium and zirconium.
  • the ion scavenger one or more of the above specific examples can be blended.
  • Low stress agent Specific examples of the low stress agent include silicone compounds such as silicone oil and silicone rubber; polybutadiene compounds; acrylonitrile-butadiene copolymer compounds such as acrylonitrile-carboxyl group-terminated butadiene copolymer compounds. As the low stress agent, one or more of the above specific examples can be blended.
  • Colorant Specific examples of the colorant include carbon black, red iron oxide, and titanium oxide. As the colorant, one or more of the above specific examples can be blended.
  • flame retardant examples include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, and carbon black.
  • the flame retardant one or more of the above specific examples can be blended.
  • the above-mentioned components and additives used as necessary are uniformly mixed with a mixer such as a tumbler mixer or a henschel mixer or a blender so as to have a predetermined content, and then a kneader or the like. It can be produced by kneading while heating with a roll, a disper, an azihomo mixer, a planetary mixer or the like.
  • the temperature at the time of kneading needs to be in a temperature range in which a curing reaction does not occur, and although it depends on the composition of the epoxy resin and the phenol resin curing agent, it is preferable to perform melt kneading at about 70 to 150 ° C. After kneading, it may be cooled and solidified, and the kneaded product may be processed into powder granules, granules, tablets, or sheets.
  • Examples of the method for obtaining the powdery and granular resin composition include a method of pulverizing the kneaded product with a pulverizer.
  • the kneaded product formed into a sheet may be crushed.
  • the crushing device for example, a hammer mill, a millstone grinder, or a roll crusher can be used.
  • a die having a small diameter is installed at the outlet of the kneading device, and the melted kneaded material discharged from the die is cut into a predetermined length by a cutter or the like.
  • a granulation method typified by a hot-cut method of cutting into plastic.
  • the resin composition of the present embodiment produced by the above-mentioned method using the above-mentioned components in a predetermined blending amount has an ⁇ dose of 0.002 count / cm 2 ⁇ h or less of the cured product, and is preferably preferably. It is 0.001 count / cm 2 ⁇ h or less.
  • the ⁇ dose in the cured product is more preferably 0.0015 count / cm 2 ⁇ h or less, and further preferably 0.0010 count / cm 2 ⁇ h or less.
  • the resin composition of the present embodiment produced by the above-mentioned method using the above-mentioned components in a predetermined blending amount has a thermal conductivity of 4.0 W / m. It is K or more, preferably 4.2 W / m ⁇ K or more, more preferably 4.4 W / m ⁇ K or more, and even more preferably 4.6 W / m ⁇ K or more. This facilitates thermal design when the resin composition of the present embodiment is used as a sealing material, and improves the reliability of the semiconductor device obtained by sealing the semiconductor element in a high temperature environment. can.
  • the minimum melt viscosity of the resin composition of the present embodiment is, for example, 30 kPa ⁇ s or less, preferably 20 kPa ⁇ s or less, and more preferably 15 kPa ⁇ s or less. If it exceeds the above value, the filling property is lowered, and voids and unfilled portions may be generated.
  • the resin composition of the present embodiment having the minimum melt viscosity in the above range has good injectability by capillary flow in the sealing step and is excellent in handleability.
  • the resin composition of the present embodiment produced by the above-mentioned method using the above-mentioned components in a predetermined blending amount has an elastic modulus of the cured product at 25 ° C. within a range of 15,000 MPa or more and 40,000 MPa or less. be. As a result, the resulting package does not warp, and a highly reliable semiconductor device can be obtained.
  • the resin composition of the present embodiment produced by the above-mentioned method using the above-mentioned components in a predetermined blending amount has a curing torque of the semiconductor encapsulating resin composition at a measurement temperature of 175 ° C. using a curast meter. When the value is measured over time, the rise of the curing torque value is observed between 50 seconds and 100 seconds after the start of measurement.
  • the resin composition having such a torque change behavior can efficiently carry out the sealing step.
  • FIG. 1 is a cross-sectional view showing a double-sided sealed semiconductor device 100 according to the present embodiment.
  • the semiconductor device 100 of the present embodiment includes an electronic element 20, a bonding wire 40 connected to the electronic element 20, and a sealing material 50, and the sealing material 50 is the above-mentioned resin composition. It is composed of the cured product of.
  • the electronic element 20 is fixed on the base material 30 via the die attach material 10, and the semiconductor device 100 connects the bonding wire 40 from an electrode pad (not shown) provided on the electronic element 20. It has an outer lead 34 connected via.
  • the bonding wire 40 can be set in consideration of the electronic element 20 and the like used, and for example, a Cu wire can be used.
  • FIG. 2 is a diagram showing a cross-sectional structure of an example of a single-sided sealing type semiconductor device obtained by sealing an electronic element mounted on a circuit board using the resin composition of the present embodiment.
  • the electronic element 401 is fixed on the circuit board 408 via the die attach material 402.
  • the electrode pad 407 of the electronic element 401 and the electrode pad 407 on the circuit board 408 are connected by a bonding wire 404.
  • the surface of the circuit board 408 on which the electronic element 401 is mounted is sealed by the sealing material 406 composed of the cured body of the resin composition of the present embodiment.
  • the electrode pad 407 on the circuit board 408 is internally bonded to the solder ball 409 on the unsealed surface side of the circuit board 408.
  • the semiconductor device according to the present embodiment is, for example, a step of obtaining a sealing resin composition by the above-mentioned manufacturing method of a sealing resin composition, a step of mounting an electronic element on a substrate, and the above-mentioned sealing. It is manufactured by the step of sealing the electronic device using the resin composition.
  • a method used for forming the encapsulant for example, a transfer molding method, a compression molding method, an injection molding method, or the like can be used.
  • the sealing step is carried out by curing the resin composition at a temperature of about 80 ° C. to 200 ° C. over a period of about 10 minutes to 10 hours.
  • Examples of the type of electronic element to be sealed include, but are not limited to, semiconductor elements such as integrated circuits, large-scale integrated circuits, transistors, thyristors, diodes, and solid-state imaging devices.
  • the form of the obtained semiconductor device includes, for example, a dual in-line package (DIP), a chip carrier with a plastic lead (PLCC), a quad flat package (QFP), and a low profile quad flat package ( LQFP), Small Outline Package (SOP), Small Outline J-Lead Package (SOJ), Thin Small Outline Package (TOP), Thin Quad Flat Package (TQFP), Tape Carrier Package ( TCP), ball grid array (BGA), chip size package (CSP), and the like, but are not limited thereto.
  • DIP dual in-line package
  • PLCC chip carrier with a plastic lead
  • QFP quad flat package
  • LQFP low profile quad flat package
  • SOP Small Outline Package
  • SOJ Small Outline J-Lead Package
  • TOP Thin
  • Epoxy resin -Epoxy resin 1: Biphenyl type epoxy resin (3,3', 5,5'-tetramethylbiphenylglycidyl ether) (manufactured by Mitsubishi Chemical Corporation, YX4000HK)
  • Epoxy resin 2 Phenolic aralkyl type epoxy resin containing biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC3000)
  • -Curing agent 1 Phenolic hydroxybenzaldehyde resin (MEH-7500, manufactured by Meiwa Kasei Co., Ltd.)
  • -Curing agent 2 Copolymer type phenol resin of triphenol methane type resin and phenol novolac resin (manufactured by Air Water Co., Ltd., HE910-20)
  • -Curing agent 3 p-biphenylene-modified phenolic resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
  • (Curing accelerator) -Curing accelerator 1 Tetraphenylphosphonium represented by the following chemical formula-4,5'-Sulfonyl diphenolate
  • Curing accelerator 2 represented by the following formula (tetraphenylphosphonium bis (naphthalene-2,3-dioxy) phenyl silicate)
  • Alumina powder Alumina powder 1: Alumina filler (manufactured by Denka, DAB-30FC, uranium content: 7 ppb or more, thorium content: less than 1 ppb, average particle size (D50): 13 ⁇ m)
  • Inorganic filler Silica filler (manufactured by Admatex, SD5500-SQ)
  • Silica filler manufactured by Tokuyama Corporation, Leoloseal CP-102)
  • (Coupling agent) -Coupling agent 1 N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., CF-4083)
  • (Ion scavenger) -Ion scavenger 1 Magnesium, aluminum, hydroxide, carbonate, hydrate (manufactured by Kyowa Chemical Industry Co., Ltd., DHT-4H)
  • Low stress agent 1 Didimethylsiloxane-alkylcarboxylic acid-4,4'-(1-methylethylidene) bisphenol glycidyl ether copolymer (M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
  • Low stress agent 2 Silicone resin (manufactured by Shinetsu Chemical Co., Ltd., KR-480)
  • Examples 1 to 4 Comparative Examples 1 to 2
  • the raw materials of the formulations shown in Table 1 are pulverized and mixed by a super mixer for 5 minutes, and then the mixed raw materials are melted at a screw rotation speed of 200 rpm and a resin temperature of 100 ° C. using a co-rotating twin-screw extruder having a cylinder inner diameter of 65 mm in diameter. Kneaded.
  • a resin composition melt-kneaded from above a rotor having a diameter of 20 cm was supplied at a rate of 2 kg / hr, and the rotor was rotated at 3000 rpm to obtain a cylindrical shape heated to 115 ° C. by centrifugal force.
  • a plurality of small holes (hole diameter 1.2 mm) on the outer peripheral portion were passed through. Then, it cooled to obtain a granular resin composition for encapsulation.
  • the obtained granular resin composition for encapsulation was stirred at 15 ° C. for 3 hours under an air stream adjusted to a relative humidity of 55% RH.
  • the obtained sealing resin composition was evaluated for the following items by the methods shown below. The measurement results are shown in Table 1.
  • a mold for measuring spiral flow according to EMMI-1-66 has a mold temperature of 175 ° C, an injection pressure of 6.9 MPa, and a holding time.
  • the resin composition was injected under the condition of 120 seconds, and the flow length was measured.
  • Spiral flow is an index of liquidity, and the larger the value, the better the liquidity.
  • the unit is cm.
  • the gel time of the resin composition obtained in each example was measured.
  • the gel time was measured by measuring the time (gel time: seconds) from melting the resin composition on a hot plate heated to 120 ° C. to curing while kneading with a spatula.
  • thermo conductivity (thermal conductivity)
  • a test piece having a length of 1 cm, a width of 1 cm, and a thickness of 1 mm was prepared, and the thermal diffusivity was measured. Specific heat measurement was performed using powder. The thermal conductivity was obtained from the obtained thermal diffusivity, specific heat, and specific gravity.
  • the resin composition is molded by transfer molding into a mold having a cavity with a height of 5 ⁇ m, a width of 4 mm, and a length of 72 mm at an injection pressure of 10 MPa, a mold temperature of 175 ° C., and a curing time of 120 seconds, and the resin composition penetrates into the cavity.
  • the length was measured with a nogis and used as a value of 5 ⁇ m slit burr.
  • All of the resin compositions of the examples had a low ⁇ -dose, were excellent in thermal conductivity, and were suitable as a semiconductor encapsulant in terms of curing characteristics and mechanical characteristics.
  • Diaattach material 20 Electronic element 30 Base material 32 Die pad 34 Outer lead 40 Bonding wire 50 Encapsulant 100 Semiconductor device 401 Electronic element 402 Diaattach material 404 Bonding wire 406 Encapsulant 407 Electrode pad 408 Circuit board 409 Solder ball

Abstract

A resin composition for semiconductor encapsulation, according to the present invention, comprises: an epoxy resin; a phenol resin curing agent; a curing accelerator; and an alumina powder, wherein an α-dose of a cured product of the resin composition for semiconductor encapsulation is 0.002 count/cm2·h or less, and the thermal conductivity of the cured product of the resin composition for semiconductor encapsulation, when measured by a laser flash method, is 4.0 W/m·K or greater.

Description

半導体封止用樹脂組成物および半導体装置Resin compositions for semiconductor encapsulation and semiconductor devices
 本発明は、半導体封止用樹脂組成物、およびこれを用いて製造される半導体装置に関する。 The present invention relates to a resin composition for encapsulating a semiconductor and a semiconductor device manufactured using the same.
 半導体装置は、半導体素子等の電子部品の保護、電気絶縁性の確保、ハンドリングの容易化などの目的から、封止が行われる。半導体素子の封止は、生産性、コスト、信頼性等の点で好ましいことから、エポキシ樹脂組成物のトランスファー成形による封止が主流となっている。また、半導体装置の小型化、軽量化、高性能化という市場の要求に応えるべく、半導体素子の高集積化、小型化、高密度化のみならず、表面実装のような新たな接合技術が開発、実用化されてきた。こうした技術動向は、エポキシ樹脂組成物にも波及し、要求性能は年々高度化、多様化してきている。 Semiconductor devices are sealed for the purpose of protecting electronic components such as semiconductor elements, ensuring electrical insulation, and facilitating handling. Since the sealing of the semiconductor element is preferable in terms of productivity, cost, reliability, etc., the sealing by transfer molding of the epoxy resin composition is the mainstream. In addition, in order to meet the market demands for miniaturization, weight reduction, and high performance of semiconductor devices, not only high integration, miniaturization, and high density of semiconductor devices, but also new joining technologies such as surface mounting have been developed. , Has been put to practical use. These technological trends have spread to epoxy resin compositions, and the required performance is becoming more sophisticated and diversified year by year.
 α線の影響を受け易いメモリー用半導体装置等の電子部品装置のデバイスにおける誤動作を防止するためには、封止材の構成材料中のウラン(U)、トリウム(Th)、その壊変物質から放出されるα線を低減することが必要であり、これに対応した封止材の開発が行われてきた(例えば、特許文献1)。特許文献1では、無機充填剤として用いるアルミナ粒子中に含まれるウラン、トリウムの合計量を10ppb未満とすることにより、封止材のα線量を低減する技術が提案されている。 In order to prevent malfunctions in devices of electronic component devices such as semiconductor devices for memory that are easily affected by α rays, they are released from uranium (U), thorium (Th), and their decaying substances in the constituent materials of the encapsulant. It is necessary to reduce the amount of α rays emitted, and a sealing material corresponding to this has been developed (for example, Patent Document 1). Patent Document 1 proposes a technique for reducing the α dose of a sealing material by setting the total amount of uranium and thorium contained in alumina particles used as an inorganic filler to less than 10 ppb.
 また、近年の電子機器の高機能化、高速化に伴い、その半導体素子回路の高密度配線化、多層配線化が進んでおり、半導体素子自身の発熱量が増大する傾向にある。これまで熱伝導が要求されなかったメモリー用半導体素子も高配線化に伴い、半導体素子の発熱量が増大するため、高熱伝導の要求が高まっている。 In addition, with the recent increase in functionality and speed of electronic devices, the semiconductor element circuits are becoming higher-density wiring and multi-layer wiring, and the amount of heat generated by the semiconductor element itself tends to increase. The demand for high heat conduction is increasing because the heat generation amount of the semiconductor element increases with the increase in wiring of the semiconductor element for memory, which has not been required for heat conduction until now.
 さらに、システムインパッケージ(SiP)は、異なる機能を持つ複数の半導体素子の組み合わせであり、1つのユニットに組み立てられ、システムやサブシステムに関連する複数の機能を備える電子部品装置であるため、異なった動作保証温度をもつ半導体素子を積層した場合、最高動作保証温度が異なる。例えば、マイクロプロセッサの最高動作保証温度は一般に100℃であるが、メモリー用半導体装置等の電子部品装置の最高動作保証温度は一般に85℃である。SiPの熱設計を行う際には、すべてのチップの最高動作保証温度を考慮しなければならない。 Further, a system-in-package (SiP) is a combination of a plurality of semiconductor elements having different functions, and is different because it is an electronic component device that is assembled into one unit and has a plurality of functions related to a system or a subsystem. When semiconductor devices having a guaranteed operating temperature are laminated, the maximum guaranteed operating temperature is different. For example, the maximum guaranteed operating temperature of a microprocessor is generally 100 ° C., but the guaranteed maximum operating temperature of an electronic component device such as a semiconductor device for memory is generally 85 ° C. When designing the thermal of SiP, the maximum guaranteed operating temperature of all chips must be taken into consideration.
特開2005-248087号公報Japanese Unexamined Patent Publication No. 2005-24887
 本発明は発熱量が大きく、かつα線の影響を受け易い1チップデバイスや発熱量の大きいロジック系の素子とα線の影響を受け易いメモリーが混在するシステムインパッケージなどにも対応することができる、高熱伝導性を有し、かつ低α線量の封止用樹脂組成物を提供するものであり、またこれを用いた半導体装置を提供するものである。 The present invention can be applied to a one-chip device that generates a large amount of heat and is easily affected by α rays, and a system-in-package in which a logic element having a large amount of heat generation and a memory that is easily affected by α rays are mixed. It is intended to provide a resin composition for encapsulation having high thermal conductivity and a low α-dose capable, and to provide a semiconductor device using the same.
 本発明によれば、
 エポキシ樹脂と、
 フェノール樹脂硬化剤と、
 硬化促進剤と、
 アルミナ粉末と、を含む半導体封止用樹脂組成物であって、
 当該半導体封止用樹脂組成物の硬化物のα線量が、0.002count/cm・h以下であり、
 当該半導体封止用樹脂組成物の硬化物のレーザフラッシュ法により測定した場合の熱伝導率が、4.0W/m・K以上である、半導体封止用樹脂組成物が提供される。
According to the present invention
Epoxy resin and
Phenol resin hardener and
Curing accelerator and
A resin composition for encapsulating a semiconductor, which comprises alumina powder.
The α dose of the cured product of the semiconductor encapsulating resin composition is 0.002 count / cm 2 · h or less.
Provided is a semiconductor encapsulating resin composition having a thermal conductivity of 4.0 W / m · K or more as measured by a laser flash method of a cured product of the semiconductor encapsulating resin composition.
 また本発明によれば、
 半導体素子と、
 前記半導体素子を封止する封止材と、を備える半導体装置であって、
 前記封止材が、上記半導体封止用樹脂組成物の硬化物からなる、半導体装置が提供される。
Further, according to the present invention.
With semiconductor devices
A semiconductor device including a sealing material for sealing the semiconductor element.
A semiconductor device is provided in which the encapsulant is a cured product of the resin composition for encapsulating a semiconductor.
 本発明によれば、高熱伝導性を有し、かつ低α線の封止用樹脂組成物、およびこれを用いて製造される信頼性に優れる半導体装置が提供される。 According to the present invention, there is provided a resin composition for encapsulating low α rays having high thermal conductivity and a semiconductor device having excellent reliability manufactured by using the resin composition.
本実施形態の樹脂組成物を用いて製造される、両面封止型の半導体装置の一例について、断面構造を示した図である。It is a figure which showed the cross-sectional structure about the example of the double-sided sealing type semiconductor apparatus manufactured by using the resin composition of this embodiment. 本実施形態の樹脂組成物を用いて製造される、片面封止型の半導体装置の一例について、断面構造を示した図である。It is a figure which showed the cross-sectional structure about the example of the single-sided sealing type semiconductor apparatus manufactured by using the resin composition of this embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応するものではない。本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、「a以上b以下」のことを表す。例えば、「5~90質量%」とは「5質量%以上90質量%以下」を意味する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all drawings, similar components are designated by the same reference numerals, and description thereof will be omitted as appropriate. All drawings are for illustration purposes only. The shape and dimensional ratio of each member in the drawing do not necessarily correspond to the actual article. In the present specification, the notation "a to b" in the description of the numerical range means "a or more and b or less" unless otherwise specified. For example, "5 to 90% by mass" means "5% by mass or more and 90% by mass or less".
 以下、本発明の実施の形態について説明する。
 本実施形態の封止用樹脂組成物(以下、単に「樹脂組成物」と称する場合がある)は、基板上に搭載された半導体素子を封止するための封止材として用いられる樹脂材料であり、エポキシ樹脂と、フェノール樹脂硬化剤と、硬化促進剤と、アルミナ粉末とを含む。本実施形態の樹脂組成物の硬化物のα線量は、0.002count/cm・h以下である。また本実施形態の樹脂組成物の硬化物のレーザフラッシュ法により測定した場合の熱伝導率は、4.0W/m・K以上である。
Hereinafter, embodiments of the present invention will be described.
The sealing resin composition of the present embodiment (hereinafter, may be simply referred to as “resin composition”) is a resin material used as a sealing material for sealing a semiconductor element mounted on a substrate. Yes, it contains an epoxy resin, a phenol resin curing agent, a curing accelerator, and an alumina powder. The α dose of the cured product of the resin composition of the present embodiment is 0.002 count / cm 2 · h or less. Further, the thermal conductivity when measured by the laser flash method of the cured product of the resin composition of the present embodiment is 4.0 W / m · K or more.
 以下に、本実施形態の樹脂組成物に用いられる成分について説明する。 The components used in the resin composition of the present embodiment will be described below.
(エポキシ樹脂)
 本実施形態の半導体封止用樹脂組成物に用いられるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂、アルコキシナフタレン骨格含有フェノールアラルキルエポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。中でも、溶融粘度を最適範囲に維持することができ、成形性が良好であり、低コストであることから、ビフェニル型エポキシ樹脂が好ましい。前記エポキシ樹脂のエポキシ当量としては、90~300であることが好ましい。エポキシ当量が小さすぎると、硬化剤との反応性が低下する傾向がある。また、エポキシ当量が大きすぎると、樹脂組成物の硬化物の強度が低下する傾向がある。
(Epoxy resin)
Examples of the epoxy resin used in the semiconductor encapsulation resin composition of the present embodiment include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethyl bisphenol F type epoxy resin, and biphenyl type epoxy resin. Crystalline epoxy resin such as stillben type epoxy resin and hydroquinone type epoxy resin; Novolak type epoxy resin such as cresol novolac type epoxy resin, phenol novolac type epoxy resin, naphthol novolac type epoxy resin; phenylene skeleton-containing phenol aralkyl type epoxy resin, biphenylene Phenolar aralkyl type epoxy resin such as skeleton-containing phenol aralkyl type epoxy resin, phenylene skeleton-containing naphthol aralkyl type epoxy resin, alkoxynaphthalene skeleton-containing phenol aralkyl type epoxy resin; triphenol methane type epoxy resin, alkyl-modified triphenol methane type epoxy resin, etc. Trifunctional epoxy resin; modified phenol-type epoxy resin such as dicyclopentadiene-modified phenol-type epoxy resin and terpene-modified phenol-type epoxy resin; heterocyclic-containing epoxy resin such as triazine nucleus-containing epoxy resin, and the like, and these are one type. May be used alone or in combination of two or more. Among them, the biphenyl type epoxy resin is preferable because the melt viscosity can be maintained in the optimum range, the moldability is good, and the cost is low. The epoxy equivalent of the epoxy resin is preferably 90 to 300. If the epoxy equivalent is too small, the reactivity with the curing agent tends to decrease. Further, if the epoxy equivalent is too large, the strength of the cured product of the resin composition tends to decrease.
 エポキシ樹脂の含有量は、特に限定されないが、樹脂組成物全体に対して、2質量%以上であることが好ましく、4質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、封止工程において流動性の低下等を引き起こす恐れが少ない。また、樹脂組成物全体の配合割合の上限値についても、特に限定されないが、樹脂組成物全量に対して、22質量%以下であることが好ましく、20質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、樹脂組成物のガラス転移温度の低下が少ない。 The content of the epoxy resin is not particularly limited, but is preferably 2% by mass or more, and more preferably 4% by mass or more, based on the entire resin composition. When the lower limit of the blending ratio is within the above range, there is little possibility of causing a decrease in fluidity in the sealing step. Further, the upper limit of the blending ratio of the entire resin composition is not particularly limited, but is preferably 22% by mass or less, more preferably 20% by mass or less, based on the total amount of the resin composition. When the upper limit of the blending ratio is within the above range, the decrease in the glass transition temperature of the resin composition is small.
(フェノール樹脂硬化剤)
 本実施形態の樹脂組成物に用いられるフェノール樹脂硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック、フェノール‐ビフェニルノボラック樹脂等のノボラック型フェノール樹脂;ポリビニルフェノール;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格含有フェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格含有ナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂;ビスフェノールA、ビスフェノールFなどのビスフェノール化合物などが挙げられる。フェノール樹脂系硬化剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。フェノール樹脂系硬化剤としては、上記具体例のうち、フェニレン骨格及び/又はビフェニレン骨格含有フェノールアラルキル樹脂を含むことが好ましい。これにより樹脂組成物において、エポキシ樹脂を良好に硬化することができる。
(Phenol resin curing agent)
Examples of the phenolic resin curing agent used in the resin composition of the present embodiment include novolak-type phenol resins such as phenol novolac resin, cresol novolak resin, bisphenol novolak, and phenol-biphenyl novolak resin; polyvinylphenol; triphenolmethane-type phenol resin and the like. Polyfunctional phenolic resin; Modified phenolic resin such as terpene-modified phenolic resin, dicyclopentadiene-modified phenolic resin; Phenolic aralkyl resin such as phenylene skeleton and / or biphenylene skeleton-containing phenol aralkyl resin, phenylene and / or biphenylene skeleton-containing naphthol aralkyl resin. Type phenol resin; Examples thereof include bisphenol compounds such as bisphenol A and bisphenol F. As the phenol resin-based curing agent, one or a combination of two or more of the above specific examples can be used. Among the above specific examples, the phenol resin-based curing agent preferably contains a phenol aralkyl resin containing a phenylene skeleton and / or a biphenylene skeleton. As a result, the epoxy resin can be satisfactorily cured in the resin composition.
 フェノール樹脂硬化剤の配合割合の下限値については、特に限定されないが、樹脂組成物全体に対して、2質量%以上であることが好ましく、3質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、充分な流動性を得ることができる。また、硬化剤の配合割合の上限値についても、特に限定されないが、樹脂組成物全体に対して、16質量%以下であることが好ましく、15質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、樹脂組成物の流動性および融け性を所望の範囲とすることができる。 The lower limit of the blending ratio of the phenol resin curing agent is not particularly limited, but is preferably 2% by mass or more, and more preferably 3% by mass or more with respect to the entire resin composition. When the lower limit of the blending ratio is within the above range, sufficient fluidity can be obtained. The upper limit of the blending ratio of the curing agent is also not particularly limited, but is preferably 16% by mass or less, more preferably 15% by mass or less, based on the entire resin composition. When the upper limit of the blending ratio is within the above range, the fluidity and meltability of the resin composition can be set within the desired range.
 また、エポキシ樹脂とフェノール樹脂系硬化剤との配合比率としては、エポキシ樹脂のエポキシ基数(EP)とフェノール樹脂系硬化剤のフェノール性水酸基数(OH)との当量比(EP)/(OH)が0.8以上、1.3以下であることが好ましい。当量比がこの範囲内であると、樹脂組成物の成形時に充分な硬化性を得ることができる。また、当量比がこの範囲内であると、樹脂組成物の流動性および融け性を所望の範囲とすることができる。 The compounding ratio of the epoxy resin and the phenol resin-based curing agent is the equivalent ratio (EP) / (OH) of the number of epoxy groups (EP) of the epoxy resin and the number of phenolic hydroxyl groups (OH) of the phenol resin-based curing agent. Is preferably 0.8 or more and 1.3 or less. When the equivalent ratio is within this range, sufficient curability can be obtained at the time of molding the resin composition. Further, when the equivalent ratio is within this range, the fluidity and meltability of the resin composition can be set within a desired range.
(硬化促進剤)
 本実施形態の樹脂組成物に用いられる硬化促進剤としては、上述のフェノール樹脂と上述のフェノール樹脂硬化剤との硬化反応を促進することができるものであれば、特に制限することなく使用することができ、例えば、オニウム塩化合物;トリフェニルホスフィン、トリブチルホスフィン、トリメチルホスフィン等の有機ホスフィン;テトラ置換ホスホニウム化合物;ホスホベタイン化合物;ホスフィン化合物とキノン化合物との付加物;スホニウム化合物とシラン化合物との付加物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)、2-フェニル-4-メチルイミダゾール(2P4MZ)、2-フェニルイミダゾール(2PZ)、2-フェニル-4-メチル-5-ヒドロキシイミダゾール(2P4MHZ)、1-ベンジル-2-フェニルイミダゾール(1B2PZ)などのイミダゾール化合物;1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7(DBU)、トリエタノールアミン、ベンジルジメチルアミン等の三級アミン等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
(Curing accelerator)
The curing accelerator used in the resin composition of the present embodiment is not particularly limited as long as it can promote the curing reaction between the above-mentioned phenol resin and the above-mentioned phenol resin curing agent. For example, onium salt compounds; organic phosphines such as triphenylphosphine, tributylphosphine, trimethylphosphine; tetra-substituted phosphonium compounds; phosphobetaine compounds; additions of phosphine compounds and quinone compounds; addition of suphonium compounds and silane compounds. Compounds: 2-Methyl imidazole, 2-ethyl-4-methyl imidazole (EMI24), 2-phenyl-4-methyl imidazole (2P4MZ), 2-phenyl imidazole (2PZ), 2-phenyl-4-methyl-5-hydroxy Imidazole compounds such as imidazole (2P4MHZ), 1-benzyl-2-phenylimidazole (1B2PZ); 1,8-diaza-bicyclo (5,4,0) undecene-7 (DBU), triethanolamine, benzyldimethylamine and the like. Examples thereof include tertiary amines. These may be used alone or in combination of two or more.
 硬化促進剤の含有量は、エポキシ樹脂とフェノール樹脂硬化剤との合計量に対して、0.1質量%以上2質量%以下であることが好ましい。硬化促進剤の含有量が上記下限値より少ないと、硬化促進効果を高めることができない場合がある。また、上記上限値より多いと、流動性や成形性に不具合を生じる傾向があり、また、製造コストの増加につながる場合がある。 The content of the curing accelerator is preferably 0.1% by mass or more and 2% by mass or less with respect to the total amount of the epoxy resin and the phenol resin curing agent. If the content of the curing accelerator is less than the above lower limit, the curing promoting effect may not be enhanced. Further, if it is more than the above upper limit value, there is a tendency that problems occur in fluidity and moldability, and it may lead to an increase in manufacturing cost.
(アルミナ粉末)
 本実施形態の樹脂組成物に用いられるアルミナ粉末は、樹脂組成物に熱伝導性を付与する作用を有する。アルミナ粉末は、例えば、シリカ粉末のような他の無機フィラーに比べ、熱伝導性が高く、封止材として用いる際に熱設計が容易である。また、アルミナ粉末は、シリカ粉末よりも熱伝導率が高い他の無機フィラー(例えば、酸化マグネシウム、窒化ホウ素、窒化アルミ、ダイヤモンドなど)に比べて低コストであり、また真球度を高くしやすく、耐熱性に優れる。
(Alumina powder)
The alumina powder used in the resin composition of the present embodiment has an action of imparting thermal conductivity to the resin composition. Alumina powder has higher thermal conductivity than other inorganic fillers such as silica powder, and is easy to thermally design when used as a sealing material. In addition, alumina powder is lower in cost than other inorganic fillers (for example, magnesium oxide, boron nitride, aluminum nitride, diamond, etc.) having higher thermal conductivity than silica powder, and it is easy to increase the sphericity. , Excellent heat resistance.
 また、アルミナ粉末は、α線の影響を受け易いデバイスにおける誤動作を防止するため、本実施形態の樹脂組成物に配合される無機フィラー中のウラン、トリウム、その壊変物質から放出されるα線を低減する必要がある。本実施形態で用いられるアルミナ粉末は、好ましくは、ウラン含有量が0.1~9.0ppbである。好ましい実施形態において、アルミナ粉末に含まれるウランとトリウムの合計含有量は、10.0ppb以下である。このようなアルミナ粉末を用いることにより、得られる樹脂組成物の硬化物のα線量を、低減することができる。 In addition, in order to prevent malfunction in devices that are susceptible to α rays, the alumina powder emits α rays from uranium, thorium, and its decaying substances in the inorganic filler blended in the resin composition of the present embodiment. Need to be reduced. The alumina powder used in this embodiment preferably has a uranium content of 0.1 to 9.0 ppb. In a preferred embodiment, the total content of uranium and thorium contained in the alumina powder is 10.0 ppb or less. By using such an alumina powder, the α dose of the cured product of the obtained resin composition can be reduced.
 アルミナ粉末は、平均粒径が、例えば、0.5~40.0μmであり、好ましくは、1.0~30.0μmである。アルミナ粉末の平均粒径が0.5μm未満である場合、樹脂組成物の粘度が非常に高くなるため、充填性、封止工程における作業性が悪化する。また、アルミナ粉末の平均粒径が0.5μm未満である場合、樹脂組成物の硬化物の弾性率が下がり、結果として得られるパッケージの反りが生じる。一方、アルミナ粉末の平均粒径が40.0μmを超える場合、充填不良が発生するおそれがある。また充填できたとしても充填時にボイドを巻き込むため、不適切である。 The alumina powder has an average particle size of, for example, 0.5 to 40.0 μm, preferably 1.0 to 30.0 μm. When the average particle size of the alumina powder is less than 0.5 μm, the viscosity of the resin composition becomes very high, so that the filling property and the workability in the sealing step are deteriorated. Further, when the average particle size of the alumina powder is less than 0.5 μm, the elastic modulus of the cured product of the resin composition decreases, and the resulting package warps. On the other hand, if the average particle size of the alumina powder exceeds 40.0 μm, filling defects may occur. Even if it can be filled, it is inappropriate because it involves voids during filling.
 好ましくは、本実施形態で用いられるアルミナ粉末において、
 106μm以上250μm未満の粒径のアルミナ粉末が、前記アルミナ粉末全体に対して、5質量%以上15質量%以下の量であり、
 250μm以上500μm未満の粒径のアルミナ粉末が、前記アルミナ粉末全体に対して、25質量%以上35質量%以下の量であり、
 500μm以上710μm未満の粒径のアルミナ粉末が、前記アルミナ粉末全体に対して、20質量%以上25質量%以下の量であり、
 710μm以上1mm未満の粒径のアルミナ粉末が、前記アルミナ粉末全体に対して、20質量%以上25質量%以下の量である。
 上記の粒径分布を有するアルミナ粉末を用いることにより、流動性が改善され、よって封止工程における作業性が良好であるとともに、充填不良が低減された、封止材として好適な樹脂組成物を得ることができる。
Preferably, in the alumina powder used in this embodiment,
The amount of alumina powder having a particle size of 106 μm or more and less than 250 μm is 5% by mass or more and 15% by mass or less with respect to the entire alumina powder.
The amount of alumina powder having a particle size of 250 μm or more and less than 500 μm is 25% by mass or more and 35% by mass or less with respect to the entire alumina powder.
The amount of alumina powder having a particle size of 500 μm or more and less than 710 μm is 20% by mass or more and 25% by mass or less with respect to the entire alumina powder.
The amount of alumina powder having a particle size of 710 μm or more and less than 1 mm is 20% by mass or more and 25% by mass or less with respect to the entire alumina powder.
By using the alumina powder having the above particle size distribution, a resin composition suitable as a sealing material is obtained, in which the fluidity is improved, the workability in the sealing step is good, and the filling defects are reduced. Obtainable.
 アルミナ粉末の形状は特に限定されず、球状、鱗片状、粒状、粉末状、のいずれであってもよい。なお、アルミナ粉末の粒径は、アルミナフィラーの平均最大径を意味する。 The shape of the alumina powder is not particularly limited, and may be spherical, scaly, granular, or powdery. The particle size of the alumina powder means the average maximum diameter of the alumina filler.
 好ましい実施形態において、アルミナ粉末は、真球度が0.8以上、好ましくは0.9以上の球状アルミナ粉末を含むことが好ましい。このような球状アルミナ粉末は、封止材中で最密充填状態に近い状態で存在し、よって得られる封止材の熱伝導性が改善される。また、このような球状アルミナを含む樹脂組成物は、流動性が改善され、封止工程における取り扱い性が良好である。 In a preferred embodiment, the alumina powder preferably contains a spherical alumina powder having a sphericity of 0.8 or more, preferably 0.9 or more. Such spherical alumina powder exists in a state close to the close-packed state in the encapsulant, and thus the thermal conductivity of the obtained encapsulant is improved. Further, the resin composition containing such spherical alumina has improved fluidity and is easy to handle in the sealing step.
 ここで、本明細書中において、「真球度」は、走査型電子顕微鏡(SEM)で観察した二次元像における「粒子の最大径に対する最小径の比」と定義する。すなわち、本実施形態において、アルミナ粒子の走査型電子顕微鏡(SEM)で観察した二次元像における最大径に対する最小径の比が、0.8以上であることを指す。 Here, in the present specification, "sphericity" is defined as "the ratio of the minimum diameter to the maximum diameter of particles" in a two-dimensional image observed with a scanning electron microscope (SEM). That is, in the present embodiment, it means that the ratio of the minimum diameter to the maximum diameter in the two-dimensional image observed by the scanning electron microscope (SEM) of the alumina particles is 0.8 or more.
 本実施形態で用いられる球状アルミナを含むアルミナ粉末は、ウラン含有量が少ない水酸化アルミニウム粉末を原料として、バイヤー法を用いて製造される。より具体的には、ボーキサイトを水酸化ナトリウムの220℃~260℃の熱溶液で洗浄し、ボーキサイトの含まれるアルミニウム成分を、塩基により溶解し、アルミン酸ナトリウムに変換する。次に、アルミン酸ナトリウム以外の成分を固形の不純物として除去して、溶液を冷却することで水酸化アルミニウムとして析出させる。その後、ボールミルを使用した粉砕機で処理することで水酸化アルミニウム粉末を得る。このとき、ウランおよびトリウムが塩基に不溶である特徴を考慮して、水酸化ナトリウムでの洗浄回数を2~4回くり返し、ウラン及びトリウムを含む不純物を繰り返し除去することで、水酸化アルミニウムに含有するウラン量及びトリウム量を所望の程度まで低減することができる。また、冷却時の温度を60~80℃で5~10時間かけて析出することで、得られる水酸化アルミニウムのナトリウム(Na)含有量を低減できる。 The alumina powder containing spherical alumina used in this embodiment is produced by using the Bayer process using aluminum hydroxide powder having a low uranium content as a raw material. More specifically, bauxite is washed with a hot solution of sodium hydroxide at 220 ° C. to 260 ° C., and the aluminum component contained in bauxite is dissolved by a base and converted into sodium aluminate. Next, components other than sodium aluminate are removed as solid impurities, and the solution is cooled to precipitate aluminum hydroxide. Then, the aluminum hydroxide powder is obtained by processing with a pulverizer using a ball mill. At this time, considering the characteristic that uranium and thorium are insoluble in the base, the number of washings with sodium hydroxide is repeated 2 to 4 times, and impurities containing uranium and thorium are repeatedly removed to be contained in aluminum hydroxide. The amount of uranium and thorium to be added can be reduced to a desired degree. Further, the sodium (Na) content of the obtained aluminum hydroxide can be reduced by precipitating at a cooling temperature of 60 to 80 ° C. over 5 to 10 hours.
 本発明の球状アルミナを含むアルミナ粉末の製造は、上記の方法で得られる水酸化アルミニウム粉末を使用することが特徴である。溶融球状化の方法として、粉体供給装置、火炎バーナー、溶融帯、冷却帯、粉末回収装置及び吸引ファンから構成される設備を用いて処理する。球状化の概要として、供給装置から原料を供給して、キャリアガスにてバーナーを通して火炎中に噴射する。火炎中で溶融された原料は溶融帯と冷却帯を通過して、球状化する。得られた球状化物を排ガスと共に粉体回収装置に搬送して捕集する。火炎の形成は、水素、天然ガス、アセチレンガス、プロパンガス、ブタン等の可燃性ガスと、空気、酸素等の助燃ガスを、炉体に設定された火炎バーナーから噴射して行う。火炎温度は1800℃以上2300℃以下に保持することが好ましい。火炎温度が1800℃より低いと、生成する球状アルミナ粒子の球形度が悪くなる。火炎温度が2300℃よりも大きくなると、生成する球状アルミナ粒子同士が吸着しやすく、樹脂組成物した際に流動性が落ちる。原料粉末供給用のキャリアガスとしては、空気、窒素、酸素、二酸化炭素等を使用することができる。 The production of the alumina powder containing spherical alumina of the present invention is characterized by using the aluminum hydroxide powder obtained by the above method. As a method of melt spheroidization, processing is performed using equipment including a powder supply device, a flame burner, a melt zone, a cooling zone, a powder recovery device, and a suction fan. As an outline of spheroidization, a raw material is supplied from a supply device and injected into a flame through a burner with a carrier gas. The raw material melted in the flame passes through the melting zone and the cooling zone and spheroidizes. The obtained spheroids are transported together with the exhaust gas to a powder recovery device and collected. The flame is formed by injecting a flammable gas such as hydrogen, natural gas, acetylene gas, propane gas, butane, and a combustion assisting gas such as air and oxygen from a flame burner set in the furnace body. The flame temperature is preferably maintained at 1800 ° C. or higher and 2300 ° C. or lower. When the flame temperature is lower than 1800 ° C., the sphericity of the produced spherical alumina particles deteriorates. When the flame temperature is higher than 2300 ° C., the generated spherical alumina particles are easily adsorbed to each other, and the fluidity is lowered when the resin composition is formed. As the carrier gas for supplying the raw material powder, air, nitrogen, oxygen, carbon dioxide and the like can be used.
 本実施形態の樹脂組成物中におけるアルミナ粉末の含有量は、樹脂組成物全体の質量に対して、80質量%以上97質量%以下である。アルミナ粉末の含有量の下限値は、好ましくは、82質量%以上であり、より好ましくは、85質量%以上であり、さらにより好ましくは、87質量%以上である。アルミナ粉末の含有量の上限値は、好ましくは、95質量%以下であり、より好ましくは、92質量%以下である。上記範囲でアルミナ粉末を用いることにより、得られる樹脂組成物の流動性を良好にできるとともに、得られる樹脂組成物の硬化物の熱伝導性を向上することができる。 The content of the alumina powder in the resin composition of the present embodiment is 80% by mass or more and 97% by mass or less with respect to the total mass of the resin composition. The lower limit of the content of the alumina powder is preferably 82% by mass or more, more preferably 85% by mass or more, and even more preferably 87% by mass or more. The upper limit of the content of the alumina powder is preferably 95% by mass or less, and more preferably 92% by mass or less. By using the alumina powder in the above range, the fluidity of the obtained resin composition can be improved, and the thermal conductivity of the cured product of the obtained resin composition can be improved.
(その他の成分)
 本実施形態の樹脂組成物は、必要に応じて、アルミナ粉末以外の無機フィラー、カップリング剤、流動性付与剤、離型剤、イオン捕捉剤、低応力剤、着色剤、難燃剤等の添加剤を含んでもよい。以下、代表成分について説明する。
(Other ingredients)
In the resin composition of the present embodiment, if necessary, an inorganic filler other than alumina powder, a coupling agent, a fluidity-imparting agent, a mold release agent, an ion scavenger, a low stress agent, a colorant, a flame retardant and the like are added. It may contain an agent. Hereinafter, the representative components will be described.
 (無機フィラー)
 本実施形態の樹脂組成物は、上述のアルミナ粉末に加え、他の無機フィラーを含んでもよい。無機フィラーとしては、溶融破砕シリカ、溶融球状シリカ、結晶性シリカ、2次凝集シリカ等のシリカ;窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化チタン、炭化ケイ素、水酸化アルミニウム、水酸化マグネシウム、チタンホワイト、タルク、クレー、マイカ、ガラス繊維等が挙げられる。粒子形状は限りなく真球状であることが好ましく、また、粒子の大きさの異なるものを混合することにより充填量を多くすることができる。
(Inorganic filler)
The resin composition of the present embodiment may contain other inorganic fillers in addition to the above-mentioned alumina powder. Examples of the inorganic filler include fused crushed silica, fused spherical silica, crystalline silica, and silica such as secondary aggregated silica; silicon nitride, aluminum nitride, boron nitride, titanium oxide, silicon carbide, aluminum hydroxide, magnesium hydroxide, and titanium white. , Tarku, clay, mica, glass fiber and the like. It is preferable that the particle shape is infinitely spherical, and the filling amount can be increased by mixing particles having different sizes.
 (カップリング剤)
 カップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニルシラン;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシシラン;p-スチリルトリメトキシシランなどのスチリルシラン;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリルシラン;3-アクリロキシプロピルトリメトキシシランなどのアクリルシラン;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、フェニルアミノプロピルトリメトキシシランなどのアミノシラン;イソシアヌレートシラン;アルキルシラン;3-ウレイドプロピルトリアルコキシシランなどのウレイドシラン;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプトシラン;3-イソシアネートプロピルトリエトキシシランなどのイソシアネートシラン;チタン系化合物;アルミニウムキレート類;アルミニウム/ジルコニウム系化合物などが挙げられる。カップリング剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Coupling agent)
Specific examples of the coupling agent include vinyl silanes such as vinyl trimethoxysilane and vinyl triethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Epoxysilanes such as glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; styrylsilanes such as p-styryltrimethoxysilane; 3-methacryloxypropyl Methacrylic silanes such as methyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane; acrylic silanes such as 3-acryloxypropyltrimethoxysilane; N -2- (Aminoethyl) -3-Aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-Aminopropyltrimethoxysilane, 3-Aminopropyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 3 -Aminosilanes such as triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, phenylaminopropyltrimethoxysilane; isocyanurate silane; alkylsilane; 3- Ureidosilanes such as ureidopropyltrialkoxysilanes; mercaptosilanes such as 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane; isocyanatesilanes such as 3-isocyanuspropyltriethoxysilane; titanium compounds; aluminum chelate; Examples include aluminum / zirconium compounds. As the coupling agent, one or more of the above specific examples can be blended.
 (流動性付与剤)
 流動性付与剤は、リン原子含有硬化促進剤などの潜伏性を有さない硬化促進剤が樹脂組成物の溶融混練時に反応するのを抑制するように働く。これにより、樹脂組成物の生産性を向上できる。流動性付与剤としては、具体的には、カテコール、ピロガロール、没食子酸、没食子酸エステル、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン及びこれらの誘導体などの芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物などが挙げられる。
(Liquidity enhancer)
The fluidity-imparting agent acts to prevent a non-latent curing accelerator such as a phosphorus atom-containing curing accelerator from reacting during melt-kneading of the resin composition. Thereby, the productivity of the resin composition can be improved. Specifically, as the fluidity-imparting agent, two or more constituting an aromatic ring such as catechol, pyrogallol, gallic acid, gallic acid ester, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. Examples thereof include compounds in which hydroxyl groups are bonded to adjacent carbon atoms of.
 (離型剤)
 離型剤としては、具体的には、カルナバワックスなどの天然ワックス;モンタン酸エステルワックス、酸化ポリエチレンワックスなどの合成ワックス;ステアリン酸亜鉛等の高級脂肪酸及びその金属塩;パラフィン;エルカ酸アミドなどのカルボン酸アミドなどが挙げられる。離型剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Release agent)
Specific examples of the release agent include natural waxes such as carnauba wax; synthetic waxes such as montanic acid ester wax and polyethylene oxide wax; higher fatty acids such as zinc stearate and their metal salts; paraffins; erucic acid amides and the like. Examples include carboxylic acid amides. As the release agent, one or more of the above specific examples can be blended.
 (イオン捕捉剤)
 上記イオン捕捉剤は、具体的には、ハイドロタルサイト、ハイドロタルサイト状物質などのハイドロタルサイト類;マグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物などが挙げられる。イオン捕捉剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Ion scavenger)
Specific examples of the ion scavenger include hydrotalcites, hydrotalcite-like substances and the like; hydrotalcites of elements selected from magnesium, aluminum, bismuth, titanium and zirconium. As the ion scavenger, one or more of the above specific examples can be blended.
 (低応力剤)
 低応力剤としては、具体的には、シリコーンオイル、シリコーンゴムなどのシリコーン化合物;ポリブタジエン化合物;アクリロニトリル-カルボキシル基末端ブタジエン共重合化合物などのアクリロニトリル-ブタジエン共重合化合物などを挙げることができる。低応力剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Low stress agent)
Specific examples of the low stress agent include silicone compounds such as silicone oil and silicone rubber; polybutadiene compounds; acrylonitrile-butadiene copolymer compounds such as acrylonitrile-carboxyl group-terminated butadiene copolymer compounds. As the low stress agent, one or more of the above specific examples can be blended.
 (着色剤)
 着色剤としては、具体的には、カーボンブラック、ベンガラ、酸化チタンなどを挙げることができる。着色剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Colorant)
Specific examples of the colorant include carbon black, red iron oxide, and titanium oxide. As the colorant, one or more of the above specific examples can be blended.
 (難燃剤)
 難燃剤としては、具体的には、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼン、カーボンブラックなどを挙げることができる。難燃剤としては、上記具体例のうち1種または2種以上を配合することができる。
(Flame retardants)
Specific examples of the flame retardant include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, and carbon black. As the flame retardant, one or more of the above specific examples can be blended.
(封止用樹脂組成物の製造)
 本実施形態の樹脂組成物は、上記成分および必要に応じて用いられる添加剤を所定の含有量となるように、タンブラーミキサーやヘンシェルミキサー等のミキサーやブレンダー等で均一に混合した後、ニーダー、ロール、ディスパー、アジホモミキサー、及びプラネタリーミキサー等で加熱しながら混練することにより製造できる。なお、混練時の温度としては、硬化反応が生じない温度範囲である必要があり、エポキシ樹脂およびフェノール樹脂硬化剤の組成にもよるが、70~150℃程度で溶融混練することが好ましい。混練後に冷却固化し、混練物を、粉粒状、顆粒状、タブレット状、またはシート状に加工してもよい。
(Manufacturing of resin composition for encapsulation)
In the resin composition of the present embodiment, the above-mentioned components and additives used as necessary are uniformly mixed with a mixer such as a tumbler mixer or a henschel mixer or a blender so as to have a predetermined content, and then a kneader or the like. It can be produced by kneading while heating with a roll, a disper, an azihomo mixer, a planetary mixer or the like. The temperature at the time of kneading needs to be in a temperature range in which a curing reaction does not occur, and although it depends on the composition of the epoxy resin and the phenol resin curing agent, it is preferable to perform melt kneading at about 70 to 150 ° C. After kneading, it may be cooled and solidified, and the kneaded product may be processed into powder granules, granules, tablets, or sheets.
 粉粒状の樹脂組成物を得る方法としては、たとえば、粉砕装置により、混練物を粉砕する方法が挙げられる。混練物をシートに成形したものを粉砕してもよい。粉砕装置としては、たとえば、ハンマーミル、石臼式磨砕機、ロールクラッシャーを用いることができる。 Examples of the method for obtaining the powdery and granular resin composition include a method of pulverizing the kneaded product with a pulverizer. The kneaded product formed into a sheet may be crushed. As the crushing device, for example, a hammer mill, a millstone grinder, or a roll crusher can be used.
 顆粒状または粉末状の樹脂組成物を得る方法としては、たとえば、混練装置の出口に小径を有するダイスを設置して、ダイスから吐出される溶融状態の混練物を、カッター等で所定の長さに切断するというホットカット法に代表される造粒法を用いることもできる。この場合、ホットカット法等の造粒法により顆粒状または粉末状の樹脂組成物を得た後、樹脂組成物の温度があまり下がらないうちに脱気を行うことが好ましい。 As a method for obtaining a granular or powdery resin composition, for example, a die having a small diameter is installed at the outlet of the kneading device, and the melted kneaded material discharged from the die is cut into a predetermined length by a cutter or the like. It is also possible to use a granulation method typified by a hot-cut method of cutting into plastic. In this case, it is preferable to obtain a granular or powdery resin composition by a granulation method such as a hot-cut method, and then degas before the temperature of the resin composition drops so much.
 上述の成分を所定の配合量で用い、上述の方法で製造された本実施形態の樹脂組成物は、その硬化物のα線量が、0.002count/cm・h以下であり、好ましくは、0.001count/cm・h以下である。これにより、本実施形態の樹脂組成物を封止材として用いた場合、α線の影響を受け易いデバイスにおける誤動作を防止できる。また、本実施形態の樹脂組成物は、硬化物におけるα線量が、0.0015count/cm・h以下であることがより好ましく、0.0010count/cm・h以下であることがさらに好ましい。 The resin composition of the present embodiment produced by the above-mentioned method using the above-mentioned components in a predetermined blending amount has an α dose of 0.002 count / cm 2 · h or less of the cured product, and is preferably preferably. It is 0.001 count / cm 2 · h or less. As a result, when the resin composition of the present embodiment is used as a sealing material, it is possible to prevent a malfunction in a device that is easily affected by α rays. Further, in the resin composition of the present embodiment, the α dose in the cured product is more preferably 0.0015 count / cm 2 · h or less, and further preferably 0.0010 count / cm 2 · h or less.
 上述の成分を所定の配合量で用い、上述の方法で製造された本実施形態の樹脂組成物は、その硬化物のレーザフラッシュ法により測定した場合の熱伝導率が、4.0W/m・K以上であり、好ましくは、4.2W/m・K以上であり、より好ましくは、4.4W/m・K以上であり、さらにより好ましくは、4.6W/m・K以上である。これにより、本実施形態の樹脂組成物を封止材として用いた場合の熱設計が容易であるとともに、半導体素子を封止して得られる半導体装置の高温環境下における信頼性を改善することができる。 The resin composition of the present embodiment produced by the above-mentioned method using the above-mentioned components in a predetermined blending amount has a thermal conductivity of 4.0 W / m. It is K or more, preferably 4.2 W / m · K or more, more preferably 4.4 W / m · K or more, and even more preferably 4.6 W / m · K or more. This facilitates thermal design when the resin composition of the present embodiment is used as a sealing material, and improves the reliability of the semiconductor device obtained by sealing the semiconductor element in a high temperature environment. can.
 本実施形態の樹脂組成物の最低溶融粘度は、例えば、30kPa・s以下であり、好ましくは、20kPa・s以下であり、より好ましくは、15kPa・s以下である。上記値を超えると、充填性が低下し、ボイドや未充填部分が発生するおそれがある。上記範囲の最低溶融粘度を有する本実施形態の樹脂組成物は、封止工程においてキャピラリーフローによる注入性が良好であり、取扱い性に優れる。 The minimum melt viscosity of the resin composition of the present embodiment is, for example, 30 kPa · s or less, preferably 20 kPa · s or less, and more preferably 15 kPa · s or less. If it exceeds the above value, the filling property is lowered, and voids and unfilled portions may be generated. The resin composition of the present embodiment having the minimum melt viscosity in the above range has good injectability by capillary flow in the sealing step and is excellent in handleability.
 上述の成分を所定の配合量で用い、上述の方法で製造された本実施形態の樹脂組成物は、その硬化物の25℃における弾性率が、15,000MPa以上40,000MPa以下の範囲内である。これにより、得られるパッケージにおいて反りが生じず、信頼性に優れた半導体装置を得ることができる。 The resin composition of the present embodiment produced by the above-mentioned method using the above-mentioned components in a predetermined blending amount has an elastic modulus of the cured product at 25 ° C. within a range of 15,000 MPa or more and 40,000 MPa or less. be. As a result, the resulting package does not warp, and a highly reliable semiconductor device can be obtained.
 上述の成分を所定の配合量で用い、上述の方法で製造された本実施形態の樹脂組成物は、キュラストメーターを用いて、測定温度175℃で当該半導体封止用樹脂組成物の硬化トルク値を経時的に測定した際、硬化トルク値の立ち上がりが、測定開始後50秒~100秒の間に観察される。このようなトルク変化の挙動を有する樹脂組成物は、効率よく封止工程を実施することができる。 The resin composition of the present embodiment produced by the above-mentioned method using the above-mentioned components in a predetermined blending amount has a curing torque of the semiconductor encapsulating resin composition at a measurement temperature of 175 ° C. using a curast meter. When the value is measured over time, the rise of the curing torque value is observed between 50 seconds and 100 seconds after the start of measurement. The resin composition having such a torque change behavior can efficiently carry out the sealing step.
(半導体装置)
 本実施形態に係る封止用樹脂組成物を封止剤として用いて製造される半導体装置の一例について説明する。
 図1は本実施形態に係る両面封止型の半導体装置100を示す断面図である。
 本実施形態の半導体装置100は、電子素子20と、電子素子20に接続されるボンディングワイヤ40と、封止材50と、を備えるものであり、当該封止材50は、前述の樹脂組成物の硬化物により構成される。
(Semiconductor device)
An example of a semiconductor device manufactured by using the sealing resin composition according to the present embodiment as a sealing agent will be described.
FIG. 1 is a cross-sectional view showing a double-sided sealed semiconductor device 100 according to the present embodiment.
The semiconductor device 100 of the present embodiment includes an electronic element 20, a bonding wire 40 connected to the electronic element 20, and a sealing material 50, and the sealing material 50 is the above-mentioned resin composition. It is composed of the cured product of.
 より具体的には、電子素子20は、基材30上にダイアタッチ材10を介して固定されており、半導体装置100は、電子素子20上に設けられた図示しない電極パッドからボンディングワイヤ40を介して接続されるアウターリード34を有する。ボンディングワイヤ40は用いられる電子素子20等を勘案しながら設定することができるが、たとえばCuワイヤを用いることができる。 More specifically, the electronic element 20 is fixed on the base material 30 via the die attach material 10, and the semiconductor device 100 connects the bonding wire 40 from an electrode pad (not shown) provided on the electronic element 20. It has an outer lead 34 connected via. The bonding wire 40 can be set in consideration of the electronic element 20 and the like used, and for example, a Cu wire can be used.
 図2は、本実施形態の樹脂組成物を用いて、回路基板に搭載した電子素子を封止して得られる片面封止型の半導体装置の一例について、断面構造を示した図である。回路基板408上にダイアタッチ材402を介して電子素子401が固定されている。電子素子401の電極パッド407と回路基板408上の電極パッド407との間はボンディングワイヤ404によって接続されている。本実施形態の樹脂組成物の硬化体で構成される封止材406によって、回路基板408の電子素子401が搭載された面が封止されている。回路基板408上の電極パッド407は回路基板408上の非封止面側の半田ボール409と内部で接合されている。 FIG. 2 is a diagram showing a cross-sectional structure of an example of a single-sided sealing type semiconductor device obtained by sealing an electronic element mounted on a circuit board using the resin composition of the present embodiment. The electronic element 401 is fixed on the circuit board 408 via the die attach material 402. The electrode pad 407 of the electronic element 401 and the electrode pad 407 on the circuit board 408 are connected by a bonding wire 404. The surface of the circuit board 408 on which the electronic element 401 is mounted is sealed by the sealing material 406 composed of the cured body of the resin composition of the present embodiment. The electrode pad 407 on the circuit board 408 is internally bonded to the solder ball 409 on the unsealed surface side of the circuit board 408.
 以下に、本実施形態に係る封止用樹脂組成物を用いた半導体装置の製造方法について説明する。
 本実施形態に係る半導体装置は、例えば、上述した封止用樹脂組成物の製造方法により、封止用樹脂組成物を得る工程と、基板上に電子素子を搭載する工程と、前記封止用樹脂組成物を用いて、前記電子素子を封止する工程とにより製造される。封止剤を形成するために用いられる手法として、例えば、トランスファー成形法、圧縮成形法、インジェクション成形法等を用いることができる。封止する工程は、樹脂組成物を、80℃から200℃程度の温度で10分から10時間程度の時間をかけて硬化させることにより実施される。
Hereinafter, a method for manufacturing a semiconductor device using the sealing resin composition according to the present embodiment will be described.
The semiconductor device according to the present embodiment is, for example, a step of obtaining a sealing resin composition by the above-mentioned manufacturing method of a sealing resin composition, a step of mounting an electronic element on a substrate, and the above-mentioned sealing. It is manufactured by the step of sealing the electronic device using the resin composition. As a method used for forming the encapsulant, for example, a transfer molding method, a compression molding method, an injection molding method, or the like can be used. The sealing step is carried out by curing the resin composition at a temperature of about 80 ° C. to 200 ° C. over a period of about 10 minutes to 10 hours.
 封止される電子素子の種類としては、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子などの半導体素子が挙げられるが、これらに限定されない。得られる半導体装置の形態としては、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップサイズ・パッケージ(CSP)などが挙げられるが、これらに限定されない。 Examples of the type of electronic element to be sealed include, but are not limited to, semiconductor elements such as integrated circuits, large-scale integrated circuits, transistors, thyristors, diodes, and solid-state imaging devices. The form of the obtained semiconductor device includes, for example, a dual in-line package (DIP), a chip carrier with a plastic lead (PLCC), a quad flat package (QFP), and a low profile quad flat package ( LQFP), Small Outline Package (SOP), Small Outline J-Lead Package (SOJ), Thin Small Outline Package (TOP), Thin Quad Flat Package (TQFP), Tape Carrier Package ( TCP), ball grid array (BGA), chip size package (CSP), and the like, but are not limited thereto.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 実施例、比較例で用いた成分を以下に示す。
(エポキシ樹脂)
・エポキシ樹脂1:ビフェニル型エポキシ樹脂(3,3',5,5'-テトラメチルビフェニルグリシジルエーテル)(三菱ケミカル社製、YX4000HK)
・エポキシ樹脂2:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬社製、NC3000)
The components used in Examples and Comparative Examples are shown below.
(Epoxy resin)
-Epoxy resin 1: Biphenyl type epoxy resin (3,3', 5,5'-tetramethylbiphenylglycidyl ether) (manufactured by Mitsubishi Chemical Corporation, YX4000HK)
-Epoxy resin 2: Phenolic aralkyl type epoxy resin containing biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC3000)
(硬化剤)
・硬化剤1:フェノール・ヒドロキシベンズアルデヒド樹脂(明和化成株式会社製、MEH-7500)
・硬化剤2:トリフェノールメタン型樹脂とフェノールノボラック樹脂との共重合体型フェノール樹脂(エア・ウォーター株式会社製、HE910-20)
・硬化剤3:p-ビフェニレン変性フェノール樹脂(明和化成社製、MEH-7851SS)
(Hardener)
-Curing agent 1: Phenolic hydroxybenzaldehyde resin (MEH-7500, manufactured by Meiwa Kasei Co., Ltd.)
-Curing agent 2: Copolymer type phenol resin of triphenol methane type resin and phenol novolac resin (manufactured by Air Water Co., Ltd., HE910-20)
-Curing agent 3: p-biphenylene-modified phenolic resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
(硬化促進剤)
・硬化促進剤1:下記の化学式で表されるテトラフェニルホスホニウム・4,4'-スルフォニルジフェノラート
(Curing accelerator)
-Curing accelerator 1: Tetraphenylphosphonium represented by the following chemical formula-4,5'-Sulfonyl diphenolate
Figure JPOXMLDOC01-appb-C000001
・硬化促進剤2:下記式で表される硬化促進剤(テトラフェニルホスホニウムビス(ナフタレン-2,3-ジオキシ)フェニルシリケート)
Figure JPOXMLDOC01-appb-C000001
-Curing accelerator 2: Curing accelerator represented by the following formula (tetraphenylphosphonium bis (naphthalene-2,3-dioxy) phenyl silicate)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(アルミナ粉末)
・アルミナ粉末1:アルミナフィラー(デンカ社製、DAB-30FC、ウラン含有量:7ppb以上、トリウム含有量:1ppb未満、平均粒子径(D50):13μm)
・アルミナ粉末2:アルミナフィラー(日鉄ケミカル&マテリアル社製、低α線アルミナ、ウラン含有量:7ppb、トリウム含有量:1ppb未満、平均粒子径(D50):15μm)
・アルミナ粉末3:アルミナフィラー(アドマテックス社製、低α線アルミナ、ウラン含有量:1ppb未満、トリウム含有量:1ppb未満、平均粒子径(D50):0.2μm)
(Alumina powder)
Alumina powder 1: Alumina filler (manufactured by Denka, DAB-30FC, uranium content: 7 ppb or more, thorium content: less than 1 ppb, average particle size (D50): 13 μm)
Alumina powder 2: Alumina filler (manufactured by Nittetsu Chemical & Materials Co., Ltd., low α-ray alumina, uranium content: 7 ppb, thorium content: less than 1 ppb, average particle size (D50): 15 μm)
Alumina powder 3: Alumina filler (manufactured by Admatex, low α-ray alumina, uranium content: less than 1 ppb, thorium content: less than 1 ppb, average particle size (D50): 0.2 μm)
(無機充填材)
・無機充填材1:シリカフィラー(アドマテックス社製、SD5500-SQ)
・無機充填材2:シリカフィラー(トクヤマ社製、レオロシール CP-102)
(Inorganic filler)
-Inorganic filler 1: Silica filler (manufactured by Admatex, SD5500-SQ)
-Inorganic filler 2: Silica filler (manufactured by Tokuyama Corporation, Leoloseal CP-102)
(着色剤)
・着色剤1:カーボンブラック(三菱ケミカル社製、MA-600)
(Colorant)
-Colorant 1: Carbon black (manufactured by Mitsubishi Chemical Corporation, MA-600)
(カップリング剤)
・カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン(東レ・ダウコーニング株式会社製、CF-4083)
(Coupling agent)
-Coupling agent 1: N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., CF-4083)
(離型剤)
・離型剤1:カルナバワックス(東亜化成株式会社製、TOWAX-132)
(Release agent)
-Release agent 1: Carnauba wax (manufactured by Toa Kasei Co., Ltd., TOWAX-132)
(イオン捕捉剤)
・イオン捕捉剤1:マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート(協和化学工業社製、DHT-4H)
(Ion scavenger)
-Ion scavenger 1: Magnesium, aluminum, hydroxide, carbonate, hydrate (manufactured by Kyowa Chemical Industry Co., Ltd., DHT-4H)
(低応力剤)
・低応力剤1:ジメチルシロキサン-アルキルカルボン酸-4,4'-(1-メチルエチリデン)ビスフェノール グリシジルエーテル共重合体(住友ベークライト株式会社製、M69B)
・低応力剤2:シリコーンレジン(信越ケミカル社製、KR-480)
(Low stress agent)
Low stress agent 1: Didimethylsiloxane-alkylcarboxylic acid-4,4'-(1-methylethylidene) bisphenol glycidyl ether copolymer (M69B, manufactured by Sumitomo Bakelite Co., Ltd.)
-Low stress agent 2: Silicone resin (manufactured by Shinetsu Chemical Co., Ltd., KR-480)
(実施例1~4、比較例1~2)
 表1で示す配合の原料をスーパーミキサーにより5分間粉砕混合したのち、この混合原料を直径65mmのシリンダー内径を持つ同方向回転二軸押出機にてスクリュー回転数200rpm、100℃の樹脂温度で溶融混練した。次に、直径20cmの回転子の上方より溶融混練された樹脂組成物を2kg/hrの割合で供給し、回転子を3000rpmで回転させて得られる遠心力によって、115℃に加熱された円筒状外周部の複数の小孔(孔径1.2mm)を通過させた。その後、冷却することで顆粒状の封止用樹脂組成物を得た。得られた顆粒状の封止用樹脂組成物は、15℃で相対湿度を55%RHに調整した空気気流下3時間撹拌した。得られた封止用樹脂組成物を、以下の項目について、以下に示す方法により評価した。測定結果を表1に示す。
(Examples 1 to 4, Comparative Examples 1 to 2)
The raw materials of the formulations shown in Table 1 are pulverized and mixed by a super mixer for 5 minutes, and then the mixed raw materials are melted at a screw rotation speed of 200 rpm and a resin temperature of 100 ° C. using a co-rotating twin-screw extruder having a cylinder inner diameter of 65 mm in diameter. Kneaded. Next, a resin composition melt-kneaded from above a rotor having a diameter of 20 cm was supplied at a rate of 2 kg / hr, and the rotor was rotated at 3000 rpm to obtain a cylindrical shape heated to 115 ° C. by centrifugal force. A plurality of small holes (hole diameter 1.2 mm) on the outer peripheral portion were passed through. Then, it cooled to obtain a granular resin composition for encapsulation. The obtained granular resin composition for encapsulation was stirred at 15 ° C. for 3 hours under an air stream adjusted to a relative humidity of 55% RH. The obtained sealing resin composition was evaluated for the following items by the methods shown below. The measurement results are shown in Table 1.
(流動性(スパイラルフロー))
 低圧トランスファー成形機(コータキ精機株式会社製、KTS-15)を用いて、EMMI-1-66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件で、樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性の指標であり、数値が大きい方が、流動性が良好である。単位はcm。
(Liquidity (spiral flow))
Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for measuring spiral flow according to EMMI-1-66 has a mold temperature of 175 ° C, an injection pressure of 6.9 MPa, and a holding time. The resin composition was injected under the condition of 120 seconds, and the flow length was measured. Spiral flow is an index of liquidity, and the larger the value, the better the liquidity. The unit is cm.
(硬化特性(ゲルタイム))
 各例で得られた樹脂組成物のゲルタイムを測定した。ゲルタイムの測定は、120℃に加熱した熱板上で樹脂組成物を溶融した後、へらで練りながら硬化するまでの時間(ゲルタイム:秒)を測定することによりおこなった。
(Curing characteristics (gel time))
The gel time of the resin composition obtained in each example was measured. The gel time was measured by measuring the time (gel time: seconds) from melting the resin composition on a hot plate heated to 120 ° C. to curing while kneading with a spatula.
(曲げ強度)
 長さ80mm以上、高さ4mm、巾10mmの試験片を作製し、ポストキュア後にクロスヘッド速度2mm/min、支点間距離64mmの条件で曲げ応力を徐々に加えて、破断させて荷重―歪み曲線を求め、最大点応力から試験片の曲げ強度を計算した。N=2で測定を行い、その平均値を代表値とした。
(Bending strength)
Prepare a test piece with a length of 80 mm or more, a height of 4 mm, and a width of 10 mm. Was obtained, and the bending strength of the test piece was calculated from the maximum point stress. The measurement was performed at N = 2, and the average value was used as a representative value.
(室温(25℃)における弾性率)
 長さ80mm以上、高さ4mm、巾10mmの試験片を作製し、ポストキュア後にクロスヘッド速度2mm/min、支点間距離64mmの条件で曲げ応力を徐々に加えて、荷重―歪み曲線を求め、試験片の曲げ弾性率を計算した。N=2で測定を行い、その平均値を代表値とした。
(Elastic modulus at room temperature (25 ° C))
A test piece with a length of 80 mm or more, a height of 4 mm, and a width of 10 mm was prepared, and after post-curing, bending stress was gradually applied under the conditions of a crosshead speed of 2 mm / min and a distance between fulcrums of 64 mm to obtain a load-strain curve. The flexural modulus of the test piece was calculated. The measurement was performed at N = 2, and the average value was used as a representative value.
(熱伝導性(熱伝導率))
 長さ1cm、巾1cm、厚さ1mmの試験片を作成し、熱拡散率の測定を行った。パウダーを使って比熱測定を行った。得られた熱拡散率、比熱、比重から熱伝導率を求めた。
(Thermal conductivity (thermal conductivity))
A test piece having a length of 1 cm, a width of 1 cm, and a thickness of 1 mm was prepared, and the thermal diffusivity was measured. Specific heat measurement was performed using powder. The thermal conductivity was obtained from the obtained thermal diffusivity, specific heat, and specific gravity.
(5μmスリットバリ)
 トランスファ成形で高さ5μm、巾4mm、長さ72mmのキャビティを有する金型へ注入圧力10MPa、金型温度175℃、硬化時間120秒で樹脂組成物を成形して、樹脂組成物がキャビティに侵入した長さをノギスで測定して、5μmスリットバリの数値とした。
(5 μm slit burr)
The resin composition is molded by transfer molding into a mold having a cavity with a height of 5 μm, a width of 4 mm, and a length of 72 mm at an injection pressure of 10 MPa, a mold temperature of 175 ° C., and a curing time of 120 seconds, and the resin composition penetrates into the cavity. The length was measured with a nogis and used as a value of 5 μm slit burr.
(α線量)
 樹脂組成物より、コンプレッション成形で金型温度175℃、硬化時間2分で試験片(140mm×120mm、厚さ2mm)を成形した。得られた試験片6枚(計1008cm)を用いて低レベルα 線測定装置LACS-4000M(印加電圧1.9KV、PR-10ガス(アルゴン:メタン=9:1)100m/分、有効計数時間40h)でα線量を測定した。
(Α dose)
From the resin composition, a test piece (140 mm × 120 mm, thickness 2 mm) was molded by compression molding at a mold temperature of 175 ° C. and a curing time of 2 minutes. Using the obtained 6 test pieces (total 1008 cm 2 ), low-level α-ray measuring device LACS-4000M (applied voltage 1.9 KV, PR-10 gas (argon: methane = 9: 1) 100 m / min, effective count The α dose was measured at 40 hours).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例の樹脂組成物はいずれも、低α線量であるとともに、熱伝導性において優れ、あまた硬化特性および機械的特性においても半導体封止材として適切なものであった。 All of the resin compositions of the examples had a low α-dose, were excellent in thermal conductivity, and were suitable as a semiconductor encapsulant in terms of curing characteristics and mechanical characteristics.
 この出願は、2020年11月16日に出願された日本出願特願2020-190154号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2020-190154 filed on November 16, 2020, and incorporates all of its disclosures herein.
10 ダイアタッチ材
20 電子素子
30 基材
32 ダイパッド
34 アウターリード
40 ボンディングワイヤ
50 封止材
100 半導体装置
401 電子素子
402 ダイアタッチ材
404 ボンディングワイヤ
406 封止材
407 電極パッド
408 回路基板
409 半田ボール
10 Diaattach material 20 Electronic element 30 Base material 32 Die pad 34 Outer lead 40 Bonding wire 50 Encapsulant 100 Semiconductor device 401 Electronic element 402 Diaattach material 404 Bonding wire 406 Encapsulant 407 Electrode pad 408 Circuit board 409 Solder ball

Claims (7)

  1.  エポキシ樹脂と、
     フェノール樹脂硬化剤と、
     硬化促進剤と、
     アルミナ粉末と、を含む半導体封止用樹脂組成物であって、
     当該半導体封止用樹脂組成物の硬化物のα線量が、0.002count/cm・h以下であり、
     当該半導体封止用樹脂組成物の硬化物のレーザフラッシュ法により測定した場合の熱伝導率が、4.0W/m・K以上である、半導体封止用樹脂組成物。
    Epoxy resin and
    Phenol resin hardener and
    Curing accelerator and
    A resin composition for encapsulating a semiconductor, which comprises alumina powder.
    The α dose of the cured product of the semiconductor encapsulating resin composition is 0.002 count / cm 2 · h or less.
    A resin composition for semiconductor encapsulation having a thermal conductivity of 4.0 W / m · K or more as measured by a laser flash method of a cured product of the resin composition for semiconductor encapsulation.
  2.  前記アルミナ粉末が、当該半導体封止用樹脂組成物全体に対して、80質量%以上97質量%以下の量である、請求項1に記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin composition according to claim 1, wherein the alumina powder is in an amount of 80% by mass or more and 97% by mass or less with respect to the entire semiconductor encapsulating resin composition.
  3.  前記アルミナ粉末が、真球度が0.8以上である球状アルミナを含む、請求項1または2に記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the alumina powder contains spherical alumina having a sphericity of 0.8 or more.
  4.  当該半導体封止用樹脂組成物の硬化物の、25℃における弾性率が、15,000MPa以上40,000MPa以下である、請求項1~3のいずれかに記載の半導体封止用樹脂組成物。 The semiconductor encapsulating resin composition according to any one of claims 1 to 3, wherein the cured product of the semiconductor encapsulating resin composition has an elastic modulus of 15,000 MPa or more and 40,000 MPa or less at 25 ° C.
  5.  前記アルミナ粉末において、
     106μm以上250μm未満の粒径のアルミナ粉末が、前記アルミナ粉末全体に対して、5質量%以上15質量%以下の量であり、
     250μm以上500μm未満の粒径のアルミナ粉末が、前記アルミナ粉末全体に対して、25質量%以上35質量%以下の量であり、
     500μm以上710μm未満の粒径のアルミナ粉末が、前記アルミナ粉末全体に対して、20質量%以上25質量%以下の量であり、
     710μm以上1mm未満の粒径のアルミナ粉末が、前記アルミナ粉末全体に対して、20質量%以上25質量%以下の量である、請求項1~4のいずれかに記載の半導体封止用樹脂組成物。
    In the alumina powder,
    The amount of alumina powder having a particle size of 106 μm or more and less than 250 μm is 5% by mass or more and 15% by mass or less with respect to the entire alumina powder.
    The amount of alumina powder having a particle size of 250 μm or more and less than 500 μm is 25% by mass or more and 35% by mass or less with respect to the entire alumina powder.
    The amount of alumina powder having a particle size of 500 μm or more and less than 710 μm is 20% by mass or more and 25% by mass or less with respect to the entire alumina powder.
    The resin composition for semiconductor encapsulation according to any one of claims 1 to 4, wherein the amount of alumina powder having a particle size of 710 μm or more and less than 1 mm is 20% by mass or more and 25% by mass or less with respect to the entire alumina powder. thing.
  6.  離型剤をさらに含む、請求項1~5のいずれかに記載の半導体封止用樹脂組成物。 The resin composition for semiconductor encapsulation according to any one of claims 1 to 5, further comprising a mold release agent.
  7.  半導体素子と、
     前記半導体素子を封止する封止材と、を備える半導体装置であって、
     前記封止材が、請求項1~6のいずれかに記載の半導体封止用樹脂組成物の硬化物からなる、半導体装置。
    With semiconductor devices
    A semiconductor device including a sealing material for sealing the semiconductor element.
    A semiconductor device in which the encapsulant is a cured product of the resin composition for encapsulating a semiconductor according to any one of claims 1 to 6.
PCT/JP2021/041498 2020-11-16 2021-11-11 Resin composition for semiconductor encapsulation, and semiconductor device WO2022102697A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022529571A JP7355241B2 (en) 2020-11-16 2021-11-11 Resin composition for semiconductor encapsulation and semiconductor device
KR1020237019844A KR20230107646A (en) 2020-11-16 2021-11-11 Resin composition for semiconductor encapsulation and semiconductor device
CN202180077136.0A CN116457387A (en) 2020-11-16 2021-11-11 Resin composition for sealing semiconductor and semiconductor device
JP2023087477A JP2023109966A (en) 2020-11-16 2023-05-29 Resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-190154 2020-11-16
JP2020190154 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022102697A1 true WO2022102697A1 (en) 2022-05-19

Family

ID=81601229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041498 WO2022102697A1 (en) 2020-11-16 2021-11-11 Resin composition for semiconductor encapsulation, and semiconductor device

Country Status (5)

Country Link
JP (2) JP7355241B2 (en)
KR (1) KR20230107646A (en)
CN (1) CN116457387A (en)
TW (1) TW202225244A (en)
WO (1) WO2022102697A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117511426B (en) * 2024-01-05 2024-04-12 深圳市长松科技有限公司 Film for packaging and blocking water vapor, semiconductor film packaging method and structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286613A (en) * 1996-04-19 1997-11-04 Nippon Steel Chem Co Ltd Production of high purity alumina and mullite for electronic material
JPH1192136A (en) * 1997-09-18 1999-04-06 Adomatekkusu:Kk Production of low alpha-dose alumina powder and low alpha-dose alumina powder
JP2014005359A (en) * 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
JP2014197649A (en) * 2013-03-29 2014-10-16 株式会社アドマテックス Three-dimensional mount type semiconductor device, resin composition and method for manufacturing the same
JP2015093790A (en) * 2013-11-11 2015-05-18 住友ベークライト株式会社 Method for manufacturing organic compound modification inorganic filler and organic compound modification inorganic filler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004270B2 (en) * 2001-11-05 2007-11-07 電気化学工業株式会社 High thermal conductive inorganic powder and resin composition
JP4631296B2 (en) 2004-03-05 2011-02-16 住友ベークライト株式会社 Epoxy resin composition and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286613A (en) * 1996-04-19 1997-11-04 Nippon Steel Chem Co Ltd Production of high purity alumina and mullite for electronic material
JPH1192136A (en) * 1997-09-18 1999-04-06 Adomatekkusu:Kk Production of low alpha-dose alumina powder and low alpha-dose alumina powder
JP2014005359A (en) * 2012-06-25 2014-01-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and electronic component device
JP2014197649A (en) * 2013-03-29 2014-10-16 株式会社アドマテックス Three-dimensional mount type semiconductor device, resin composition and method for manufacturing the same
JP2015093790A (en) * 2013-11-11 2015-05-18 住友ベークライト株式会社 Method for manufacturing organic compound modification inorganic filler and organic compound modification inorganic filler

Also Published As

Publication number Publication date
KR20230107646A (en) 2023-07-17
JP7355241B2 (en) 2023-10-03
JP2023109966A (en) 2023-08-08
CN116457387A (en) 2023-07-18
JPWO2022102697A1 (en) 2022-05-19
TW202225244A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
JP5983085B2 (en) Epoxy resin composition and electronic component device
WO2022102697A1 (en) Resin composition for semiconductor encapsulation, and semiconductor device
JP4973322B2 (en) Epoxy resin composition and semiconductor device
JP2005206725A (en) Epoxy resin composition and semiconductor device
JPWO2019131097A1 (en) Epoxy resin composition for sealing ball grid array packages, cured epoxy resin, and electronic component equipment
JP2012162650A (en) Thermoconductive resin composition, and semiconductor package
JP2021113267A (en) Thermosetting resin composition, electronic apparatus, method for producing thermally conductive material, and method for producing thermosetting resin composition
JP5029063B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2013001861A (en) Resin composition for semiconductor sealing, production method thereof, and semiconductor apparatus
JP2013075939A (en) Method for production of resin composition, resin composition, and semiconductor apparatus
JP2013077784A (en) Method of preparing resin composition, resin composition, and semiconductor device
JP2005082668A (en) Flame retardant, method for producing the same, and resin composition
TWI793258B (en) Resin composition for encapsulating semiconductor, semiconductor device, and method for producing resin composition for encapsulating semiconductor
JP5407767B2 (en) Epoxy resin composition and semiconductor device
JP2023033936A (en) Sealing resin composition and electronic apparatus
JP2004099778A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using it
JP2021187868A (en) Thermosetting resin composition and electronic device
JP2021138864A (en) Sealing resin composition and electronic device
JP2008045075A (en) Epoxy resin composition for sealing and electronic component device
JP4984501B2 (en) Epoxy resin composition and semiconductor device
JP4779269B2 (en) Epoxy resin composition and semiconductor device
JP2004115747A (en) Resin composition for forming heat sink and device for encapsulating electronic part
JP2024049833A (en) Semiconductor encapsulation resin composition and semiconductor device
JP2002179763A (en) Epoxy resin composition
JP2021113269A (en) Thermosetting resin composition, electronic apparatus, and method for producing thermosetting resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022529571

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077136.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237019844

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891942

Country of ref document: EP

Kind code of ref document: A1