JP2012162650A - Thermoconductive resin composition, and semiconductor package - Google Patents

Thermoconductive resin composition, and semiconductor package Download PDF

Info

Publication number
JP2012162650A
JP2012162650A JP2011024149A JP2011024149A JP2012162650A JP 2012162650 A JP2012162650 A JP 2012162650A JP 2011024149 A JP2011024149 A JP 2011024149A JP 2011024149 A JP2011024149 A JP 2011024149A JP 2012162650 A JP2012162650 A JP 2012162650A
Authority
JP
Japan
Prior art keywords
resin composition
powder
magnesium oxide
oxide powder
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011024149A
Other languages
Japanese (ja)
Other versions
JP5795168B2 (en
JP2012162650A5 (en
Inventor
Toshimitsu Kawame
敏充 河目
Seiji Yamaguchi
誠治 山口
Masaru Nakae
勝 中江
Hinako Hanafusa
日向子 花房
Hideo Shiraishi
秀男 白石
Kazuhiko Mukugi
和彦 椋木
Tatsuo Yoneda
龍央 米田
Naoto Nishida
直人 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiwa Plastic Industries Ltd
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Meiwa Kasei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd, Meiwa Kasei KK filed Critical Ube Material Industries Ltd
Priority to JP2011024149A priority Critical patent/JP5795168B2/en
Publication of JP2012162650A publication Critical patent/JP2012162650A/en
Publication of JP2012162650A5 publication Critical patent/JP2012162650A5/ja
Application granted granted Critical
Publication of JP5795168B2 publication Critical patent/JP5795168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor package equipped with an easily moldable sealing material superior in heat-radiating property.SOLUTION: This sealing material 4 of the semiconductor package is a thermoconductive resin composition obtained by dispersing an inorganic filler in a thermosetting resin in (70:30) to (5:95) range in volume ratio based on the amount of thermosetting resin, and the inorganic oxide filler is formed by the thermoconductive resin composition characterized by comprising (5:95) to (40:60) range magnesium oxide powder and silicon dioxide powder in volume ratio.

Description

本発明は、熱伝導性樹脂組成物に関し、さらに詳しくは半導体パッケージの封止用として有用な熱伝導性樹脂組成物に関する。本発明はまた半導体パッケージにも関する。   The present invention relates to a heat conductive resin composition, and more particularly to a heat conductive resin composition useful for sealing a semiconductor package. The invention also relates to a semiconductor package.

半導体パッケージは、半導体素子(例:IC、LSI)と周辺部材、そして該半導体素子の周囲を封止する封止材からなる。半導体パッケージでは、半導体素子の小型化、高集積化、動作の高速化、高消費電力化に伴い、発熱量が増加する傾向にある。このため、半導体パッケージでは、半導体素子にて発生した熱を外部に素早く拡散させるために、封止材の熱伝導率を高めることが必要となっている。   The semiconductor package includes a semiconductor element (eg, IC, LSI), a peripheral member, and a sealing material that seals the periphery of the semiconductor element. In semiconductor packages, the amount of heat generation tends to increase as semiconductor elements become smaller, more integrated, operate faster, and consume more power. For this reason, in the semiconductor package, it is necessary to increase the thermal conductivity of the sealing material in order to quickly diffuse the heat generated in the semiconductor element to the outside.

封止材の原料には、エポキシ樹脂やフェノール樹脂を含む熱硬化性樹脂組成物に、熱伝導性が高い無機酸化物フィラーを分散した熱伝導性樹脂組成物が広く利用されている。無機酸化物フィラーとしては、酸化ケイ素粉末、酸化アルミニウム粉末、酸化マグネシウム粉末などが知られている。   As a sealing material, a heat conductive resin composition in which an inorganic oxide filler having high heat conductivity is dispersed in a thermosetting resin composition containing an epoxy resin or a phenol resin is widely used. Known inorganic oxide fillers include silicon oxide powder, aluminum oxide powder, and magnesium oxide powder.

特許文献1には、酸化マグネシウム粉末を含有する熱伝導性樹脂組成物において、酸化マグネシウム粉末として、表面にケイ素とマグネシウムの複酸化物又はアルミニウムとマグネシウムの複酸化物を含む被覆層を有する被覆酸化マグネシウム粉末を用いることが記載されている。この特許文献1によれば、被覆酸化マグネシウム粉末を含有する熱伝導性樹脂組成物を用いて製造された成形体は、優れた耐湿性(耐候性)と熱伝導性とを有する。なお、この特許文献1の実施例では、成形体はプレス成形により製造されている。   In Patent Document 1, in a thermally conductive resin composition containing magnesium oxide powder, as a magnesium oxide powder, a coating oxide having a coating layer containing a double oxide of silicon and magnesium or a double oxide of aluminum and magnesium on the surface The use of magnesium powder is described. According to this patent document 1, the molded object manufactured using the heat conductive resin composition containing a covering magnesium oxide powder has the outstanding moisture resistance (weather resistance) and heat conductivity. In addition, in the Example of this patent document 1, the molded object is manufactured by press molding.

一方、半導体パッケージの封止材は、一般にトランスファー成形により製造されている。特許文献2には、トランスファー成形時の成形性を良好にするために、熱伝導性フィラー全体の5〜40質量%を、平均粒径が2μm未満の熱伝導性フィラーにすることが開示されている。   On the other hand, a sealing material for a semiconductor package is generally manufactured by transfer molding. Patent Document 2 discloses that 5-40% by mass of the entire thermally conductive filler is made into a thermally conductive filler having an average particle size of less than 2 μm in order to improve the moldability during transfer molding. Yes.

特開2004−27177号公報JP 2004-27177 A 特開2008−184544号公報JP 2008-184544 A

前記特許文献1に記載されているように、酸化マグネシウム粉末は熱伝導性に優れた材料であるが、本発明者の検討によると、熱硬化性樹脂組成物に酸化マグネシウム粉末を加えた樹脂組成物は、トランスファー成形時の成形性が低下する傾向にあることが判明した。従って、本発明の目的は、酸化マグネシウム粉末を含有しながらも、トランスファー成形時の成形性に優れる熱伝導性樹脂組成物を提供することにある。本発明の目的はまた、放熱性に優れ、かつ成形が容易な封止材を備えた半導体パッケージを提供することにもある。   As described in Patent Document 1, magnesium oxide powder is a material having excellent thermal conductivity, but according to the study of the present inventors, a resin composition in which magnesium oxide powder is added to a thermosetting resin composition. The product was found to have a tendency to deteriorate the formability during transfer molding. Accordingly, an object of the present invention is to provide a thermally conductive resin composition that is excellent in moldability during transfer molding while containing magnesium oxide powder. Another object of the present invention is to provide a semiconductor package having a sealing material that is excellent in heat dissipation and can be easily molded.

本発明者は、熱硬化性樹脂組成物に無機酸化物フィラーとして、酸化マグネシウム粉末と共に二酸化ケイ素粉末を所定の割合で加えることによって、トランスファー成形時の成形性が向上することを見出し、さらにその組成物を用いてトランスファー成形により製造した成形体は高い熱伝導性を示すことを確認して、本発明を完成した。   The present inventor has found that the formability during transfer molding is improved by adding silicon dioxide powder together with magnesium oxide powder at a predetermined ratio as an inorganic oxide filler to the thermosetting resin composition. The present invention was completed by confirming that a molded product produced by transfer molding using a product showed high thermal conductivity.

従って、本発明は、熱硬化性樹脂組成物に、該熱硬化性樹脂組成物に対して容量比で70:30〜5:95の範囲にある無機酸化物フィラーが分散されてなる熱伝導性樹脂組成物であって、該無機酸化物フィラーが、容量比で5:95〜40:60の範囲にある酸化マグネシウム粉末と二酸化ケイ素粉末とを含むことを特徴とする熱伝導性樹脂組成物にある。   Accordingly, the present invention provides a thermal conductivity in which an inorganic oxide filler having a volume ratio of 70:30 to 5:95 is dispersed in a thermosetting resin composition with respect to the thermosetting resin composition. A thermally conductive resin composition, wherein the inorganic oxide filler comprises a magnesium oxide powder and a silicon dioxide powder in a volume ratio of 5:95 to 40:60. is there.

本発明の熱伝導性樹脂組成物の好ましい態様は次の通りである。
(1)酸化マグネシウム粉末が、硬焼酸化マグネシウム粉末もしくは電融酸化マグネシウム粉末である。
(2)酸化マグネシウム粉末が、1〜100μmの範囲に平均粒子径を有する。
(3)二酸化ケイ素粉末が、球状粒子の粉末である。
(4)二酸化ケイ素粉末が、1〜100μmの範囲に平均粒子径を有する。
(5)熱硬化性樹脂組成物がエポキシ樹脂とフェノール樹脂とを含む。
(6)半導体パッケージの封止用である。
The preferable aspect of the heat conductive resin composition of this invention is as follows.
(1) The magnesium oxide powder is a hard-burned magnesium oxide powder or an electrofused magnesium oxide powder.
(2) The magnesium oxide powder has an average particle diameter in the range of 1 to 100 μm.
(3) The silicon dioxide powder is a powder of spherical particles.
(4) The silicon dioxide powder has an average particle diameter in the range of 1 to 100 μm.
(5) The thermosetting resin composition contains an epoxy resin and a phenol resin.
(6) For sealing a semiconductor package.

本発明はまた、半導体素子と周辺部材、そして該半導体素子の周囲を封止する封止材からなる半導体パッケージであって、上記封止材が、熱硬化性樹脂組成物に、該熱硬化性樹脂組成物に対して容量比で70:30〜5:95の範囲にある無機酸化物フィラーが分散されてなる熱伝導性樹脂組成物であって、該無機酸化物フィラーが、容量比で5:95〜40:60の範囲にある酸化マグネシウム粉末と二酸化ケイ素粉末とを含むことを特徴とする熱伝導性樹脂組成物の硬化物である半導体パッケージにもある。   The present invention also provides a semiconductor package comprising a semiconductor element, a peripheral member, and a sealing material for sealing the periphery of the semiconductor element, wherein the sealing material is added to the thermosetting resin composition. A thermally conductive resin composition in which an inorganic oxide filler in a volume ratio of 70:30 to 5:95 is dispersed with respect to the resin composition, wherein the inorganic oxide filler has a volume ratio of 5 There is also a semiconductor package which is a cured product of a heat conductive resin composition characterized by containing magnesium oxide powder and silicon dioxide powder in the range of 95:40:60.

本発明の熱伝導性樹脂組成物は、後述の実施例のデータから明らかなように、トランスファー成形時の成形性に優れ、また本発明の熱伝導性樹脂組成物を用いてトランスファー成形により製造した成形体は高い熱伝導性を示す。従って、本発明の熱伝導性樹脂組成物の硬化物を封止材に用いた半導体パッケージは放熱性が高い。   The heat conductive resin composition of the present invention is excellent in moldability at the time of transfer molding, as is clear from the data of Examples described later, and was produced by transfer molding using the heat conductive resin composition of the present invention. The molded body exhibits high thermal conductivity. Therefore, the semiconductor package using the cured product of the heat conductive resin composition of the present invention as a sealing material has high heat dissipation.

本発明に従う、半導体パッケージの一例の断面図である。1 is a cross-sectional view of an example of a semiconductor package according to the present invention.

本発明の熱伝導性樹脂組成物は、熱硬化性樹脂組成物中に、無機酸化物フィラーとして、酸化マグネシウム粉末と二酸化ケイ素粉末とが分散されてなる。酸化マグネシウム粉末の容量と二酸化ケイ素粉末の容量の比は、5:95〜40:60の範囲、好ましくは10:90〜40:60の範囲、特に好ましくは20:80〜40:60の範囲である。熱硬化性樹脂組成物の容量と、酸化マグネシウム粉末と二酸化ケイ素粉末の合計容量との比は、70:30〜5:95の範囲、好ましくは40:60〜10:90の範囲、特に好ましくは40:60〜25:75の範囲にある。   The thermally conductive resin composition of the present invention is obtained by dispersing magnesium oxide powder and silicon dioxide powder as inorganic oxide fillers in a thermosetting resin composition. The ratio of the volume of the magnesium oxide powder to the volume of the silicon dioxide powder is in the range of 5:95 to 40:60, preferably in the range of 10:90 to 40:60, particularly preferably in the range of 20:80 to 40:60. is there. The ratio of the capacity of the thermosetting resin composition to the total capacity of the magnesium oxide powder and the silicon dioxide powder is in the range of 70:30 to 5:95, preferably in the range of 40:60 to 10:90, particularly preferably. It exists in the range of 40: 60-25: 75.

熱硬化性樹脂組成物は、エポキシ樹脂を含む組成物であることが好ましい。エポキシ樹脂を含む熱硬化性樹脂組成物は、硬化剤を含むことが好ましく、さらに硬化促進剤を含むことが好ましい。   The thermosetting resin composition is preferably a composition containing an epoxy resin. The thermosetting resin composition containing an epoxy resin preferably contains a curing agent, and preferably further contains a curing accelerator.

エポキシ樹脂の例としては、ビスフェノール型、フェノールノボラック型、クレゾールノボラック型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型などの各種のエポキシ樹脂を挙げることができる。これらは一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。   Examples of the epoxy resin include various epoxy resins such as bisphenol type, phenol novolak type, cresol novolak type, biphenyl type, triphenylmethane type, and dicyclopentadiene type. These may be used individually by 1 type, and may be used in combination of 2 or more types.

硬化剤は、エポキシ樹脂と反応する化合物であれば特に制限はないが、フェノール樹脂であることが好ましい。フェノール樹脂の例としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビフェニルノボラック樹脂、ナフトールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエンフェノール樹脂を挙げることができる。これらは一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。   The curing agent is not particularly limited as long as it is a compound that reacts with an epoxy resin, but is preferably a phenol resin. Examples of the phenol resin include a phenol novolak resin, a cresol novolak resin, a biphenyl novolak resin, a naphthol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, and a dicyclopentadiene phenol resin. These may be used individually by 1 type, and may be used in combination of 2 or more types.

硬化促進剤は、フェノール樹脂の水酸基を活性化する化合物であることが好ましい。硬化促進剤の例としては、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどのアミン化合物、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機リン化合物を挙げることができる。これらは一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。   It is preferable that a hardening accelerator is a compound which activates the hydroxyl group of a phenol resin. Examples of curing accelerators include amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, and tris (4-methylphenyl). Examples include organic phosphorus compounds such as phosphine, diphenylphosphine, and phenylphosphine. These may be used individually by 1 type, and may be used in combination of 2 or more types.

エポキシ樹脂と硬化剤と硬化促進剤の配合割合は、エポキシ樹脂の配合量を100質量部としたときに、硬化剤の配合量が10〜80質量部の範囲、硬化促進剤の配合量が0.5〜10質量部の範囲となる割合であることが好ましい。   The blending ratio of the epoxy resin, the curing agent, and the curing accelerator is such that when the blending amount of the epoxy resin is 100 parts by mass, the blending amount of the curing agent is 10 to 80 parts by mass, and the blending amount of the curing accelerator is 0. It is preferable that it is the ratio used as the range of 5-10 mass parts.

本発明で使用する酸化マグネシウム粉末は、硬焼酸化マグネシウム粉末もしくは電融酸化マグネシウム粉末であることが好ましい。硬焼酸化マグネシウム粉末は、水酸化マグネシウム粉末や炭酸マグネシウム粉末などの酸化マグネシウム原料粉末を1500℃以上の温度で焼成して得た酸化マグネシウム粉末である。酸化マグネシウム原料粉末の焼成装置には、ロータリーキルンや電気炉を用いることができる。酸化マグネシウム粉末は、ロータリーキルンで酸化マグネシウム原料粉末を1600〜2000℃の温度で焼成して得た硬焼酸化マグネシウム粉末であることが特に好ましい。酸化マグネシウム粉末は、平均粒子径が1〜100μmの範囲にあることが好ましい。   The magnesium oxide powder used in the present invention is preferably a hard-burned magnesium oxide powder or an electrofused magnesium oxide powder. The hard-burned magnesium oxide powder is a magnesium oxide powder obtained by firing a magnesium oxide raw material powder such as magnesium hydroxide powder or magnesium carbonate powder at a temperature of 1500 ° C. or higher. A rotary kiln or an electric furnace can be used for the baking apparatus of the magnesium oxide raw material powder. The magnesium oxide powder is particularly preferably a hard-burned magnesium oxide powder obtained by firing a magnesium oxide raw material powder at a temperature of 1600 to 2000 ° C. with a rotary kiln. The magnesium oxide powder preferably has an average particle size in the range of 1 to 100 μm.

酸化マグネシウム粉末は、表面が、シランカップリング剤で処理されていることが好ましい。シランカップリング剤の例としては、反応性基を有するアルコキシシラン(モノマー)、及びオリゴマー状反応性シロキサンを挙げることができる。反応性基の例としては、ビニル基、アミノ基、エポキシ基、メタクリロキシ基、アクリロキシ基及びメルカプト基を挙げることができる。これらの反応性基のなかでは、ビニル基、アミノ基及びエポキシ基が好ましく、ビニル基及びアミノ基がより好ましい。オリゴマー状反応性シロキサンは、反応性基を有するアルコキシシランの単独重合体、及び反応性基を有するアルコキシシランと反応性基を有しないアルコキシシランとの共重合体を意味する。   The surface of the magnesium oxide powder is preferably treated with a silane coupling agent. Examples of silane coupling agents include alkoxysilanes (monomers) having reactive groups and oligomeric reactive siloxanes. Examples of reactive groups include vinyl groups, amino groups, epoxy groups, methacryloxy groups, acryloxy groups, and mercapto groups. Among these reactive groups, a vinyl group, an amino group, and an epoxy group are preferable, and a vinyl group and an amino group are more preferable. The oligomeric reactive siloxane means a homopolymer of an alkoxysilane having a reactive group, and a copolymer of an alkoxysilane having a reactive group and an alkoxysilane having no reactive group.

ビニル基を有するアルコキシシランの例としては、ビニルトリメトキシシラン及びビニルトリエトキシシランを挙げることができる。アミノ基を有するアルコキシシランの例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン及びN−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩を挙げることができる。エポキシ基を有するアルコキシシランの例としては、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン及び3−グリシドキシプロピルメチルジエトキシシランを挙げることができる。メタクリロキシ基を有するアルコキシシランの例としては、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン及び3−メタクリロキシプロピルメチルジエトキシシランを挙げることができる。アクリロキシ基を有するアルコキシシランの例としては、3−アクリロキシプロピルトリメトキシシランを挙げることができる。メルカプト基を有するアルコキシシランの例としては、3−メルカプトプロピルメチルジメトキシシラン及び3−メルカプトプロピルトリメトキシシランを挙げることができる。この他のアルコキシシランの例としては、p−スチリルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド及び3−イソシアネートプロピルトリエトキシシランを挙げることができる。   Examples of the alkoxysilane having a vinyl group include vinyltrimethoxysilane and vinyltriethoxysilane. Examples of the alkoxysilane having an amino group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- ( Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N- Mention may be made of the hydrochlorides of phenyl-3-aminopropyltrimethoxysilane and N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane. Examples of alkoxysilanes having an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycid Mention may be made of xylpropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane. Examples of alkoxysilanes having a methacryloxy group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane and 3-methacryloxypropylmethyldiethoxysilane. Can do. An example of an alkoxysilane having an acryloxy group is 3-acryloxypropyltrimethoxysilane. Examples of the alkoxysilane having a mercapto group include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane. Examples of other alkoxysilanes include p-styryltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide and 3-isocyanatopropyltriethoxysilane. Can be mentioned.

オリゴマー状反応性シロキサンとしては、エボニックデグサ ジャパン株式会社から販売されている、Dynasylan6490やDynasylan1146を使用することができる。   As the oligomeric reactive siloxane, Dynasylan 6490 and Dynasylan 1146 sold by Evonik Degussa Japan Co., Ltd. can be used.

二酸化ケイ素粉末は、熱伝導性樹脂組成物用の充填材として公知であり、本発明においても、それらの二酸化ケイ素粉末から任意に選択して使用することができる。本発明で使用する二酸化ケイ素粉末は、球状粒子の粉末であることが好ましく、球状粒子からなる溶融シリカ粉末であることが特に好ましい。二酸化ケイ素粉末は、非晶質性であってもよいし、結晶性であってもよい。   Silicon dioxide powder is known as a filler for a thermally conductive resin composition, and can be arbitrarily selected from these silicon dioxide powders in the present invention. The silicon dioxide powder used in the present invention is preferably a spherical particle powder, and particularly preferably a fused silica powder comprising spherical particles. The silicon dioxide powder may be amorphous or crystalline.

本発明の熱伝導性樹脂組成物は、例えば、熱硬化性樹脂組成物に酸化マグネシウム粉末と二酸化ケイ素粉末とを容量比で上記の範囲となる割合にて加えて混合し、混練することによって製造することができる。トランスファー成形では、熱伝導性樹脂組成物をタブレット状に成形して使用する。タブレット状の熱伝導性樹脂組成物は、例えば、熱伝導性樹脂組成物を、粉砕して一旦粉末状として、金型に入れて加圧成形することによって製造することができる。   The heat conductive resin composition of the present invention is produced, for example, by adding a magnesium oxide powder and a silicon dioxide powder to a thermosetting resin composition in a ratio in the above range by volume ratio, and mixing and kneading. can do. In transfer molding, a thermally conductive resin composition is used in the form of a tablet. The tablet-like thermally conductive resin composition can be produced, for example, by pulverizing the thermally conductive resin composition, once in powder form, and placing in a mold for pressure molding.

図1に、本発明の熱伝導性樹脂組成物で封止した半導体パッケージの一例の断面図を示す。図1において、半導体パッケージは、リードフレーム1、該リードフレーム1の中央部(アイランド)の上に搭載された半導体素子2、該半導体素子2とリードフレーム1の端部(アウターリード)とを電気的に接続するボンディングワイヤー3、そして半導体素子2の周囲を封止する封止材4とからなる。封止材4は、上記本発明の熱伝導性樹脂組成物から成形された硬化物である。封止材4は、硬化樹脂組成物と、硬化樹脂組成物中に分散された酸化マグネシウム粉末と二酸化ケイ素粉末とを含む。なお、本発明において、半導体パッケージの実装形式に特には制限はない。図1に示した半導体パッケージの実装形式以外に、代表的な実装形式としては、PBGA(Plastic Ball Grid Array)やFBGA(Fine Pitch Ball Grid Array)などがある。   FIG. 1 shows a cross-sectional view of an example of a semiconductor package sealed with the thermally conductive resin composition of the present invention. In FIG. 1, a semiconductor package electrically connects a lead frame 1, a semiconductor element 2 mounted on a central portion (island) of the lead frame 1, and the semiconductor element 2 and an end portion (outer lead) of the lead frame 1. A bonding wire 3 to be connected, and a sealing material 4 for sealing the periphery of the semiconductor element 2. The sealing material 4 is a cured product formed from the heat conductive resin composition of the present invention. The sealing material 4 includes a cured resin composition, and magnesium oxide powder and silicon dioxide powder dispersed in the cured resin composition. In the present invention, there is no particular limitation on the mounting form of the semiconductor package. In addition to the semiconductor package mounting format shown in FIG. 1, typical mounting formats include PBGA (Plastic Ball Grid Array) and FBGA (Fine Pitch Ball Grid Array).

下記の材料を用意した。
(A)熱硬化性樹脂組成物:ビフェニル型エポキシ樹脂100質量部に対して、フェノールノボラック樹脂を57.22質量部、そしてトリフェニルホスフィンを2.50質量部の割合となるように混合して調製したもの。
(B)酸化マグネシウム粉末:表面がオリゴマー状反応性シロキサン(Dynasylan1146、エボニックデグサ ジャパン(株)製)で処理された硬焼酸化マグネシウム粉末(平均粒子径:10μm)。硬焼酸化マグネシウム粉末は、ロータリーキルンで水酸化マグネシウム粉末を1800℃の温度で焼成して製造した。オリゴマー状反応性シロキサンによる表面処理は、硬焼酸化マグネシウム粉末6kgを、ヘンシェルミキサー(FM10B、三井三池化工機(株)製)に投入し、ヘンシェルミキサーの回転速度を1000rpmとして、硬焼酸化マグネシウム粉末を撹拌しながら、硬焼酸化マグネシウム粉末にオリゴマー状反応性シロキサン30gを添加して5分間撹拌を続けた後、ヘンシェルミキサーの回転速度を2000rpmに上げ、さらに40分間撹拌することにより行なった。
(C)二酸化ケイ素粉末:平均粒子径が25.1μmの球状粒子からなる溶融シリカ粉末。
The following materials were prepared.
(A) Thermosetting resin composition: To 100 parts by mass of biphenyl type epoxy resin, 57.22 parts by mass of phenol novolac resin and 2.50 parts by mass of triphenylphosphine were mixed. Prepared.
(B) Magnesium oxide powder: Hard-burned magnesium oxide powder (average particle size: 10 μm) whose surface was treated with oligomeric reactive siloxane (Dynasylan 1146, manufactured by Evonik Degussa Japan Co., Ltd.). The hard-fired magnesium oxide powder was produced by firing magnesium hydroxide powder at a temperature of 1800 ° C. in a rotary kiln. Surface treatment with oligomeric reactive siloxane is carried out by adding 6 kg of hard-burned magnesium oxide powder to a Henschel mixer (FM10B, manufactured by Mitsui Miike Chemical Co., Ltd.) and setting the rotation speed of the Henschel mixer to 1000 rpm. While stirring, 30 g of oligomeric reactive siloxane was added to the hard-burned magnesium oxide powder and stirring was continued for 5 minutes. Then, the rotation speed of the Henschel mixer was increased to 2000 rpm and stirring was continued for 40 minutes.
(C) Silicon dioxide powder: fused silica powder comprising spherical particles having an average particle diameter of 25.1 μm.

[実施例1〜2、比較例1〜2]
下記表1に示す配合量にて採取した、(A)熱硬化性樹脂組成物と(B)酸化マグネシウム粉末と(C)二酸化ケイ素粉末とを混合した。表1に、酸化マグネシウム粉末の容量と二酸化ケイ素粉末の容量との比(B:C)と、熱硬化性樹脂組成物の容量と、酸化マグネシウム粉末と二酸化ケイ素粉末の合計容量との比(A:B+C)を示す。
得られた混合物を、二軸ニーダーを用いて100℃の温度に加熱しながら混練した。得られた混練物を室温まで放冷した後、ミルを用いて粉砕して粉末にした。得られた粉末を加圧し、タブレットを得た。得られたタブレットを用いて、成形性、流動性(スパイラルフロー値)とを下記の方法により評価し、さらに該タブレットを用いてトランスファー成形により製造した成形体を試験片として、単位体積当たりの吸水量、熱伝導率、弾性率及び最大点応力を下記の方法により測定した。表2に、その結果を示す。
[Examples 1-2, Comparative Examples 1-2]
The (A) thermosetting resin composition, (B) magnesium oxide powder, and (C) silicon dioxide powder sampled in the blending amounts shown in Table 1 below were mixed. Table 1 shows the ratio (B: C) of the volume of the magnesium oxide powder to the volume of the silicon dioxide powder, the volume of the thermosetting resin composition, and the ratio of the total volume of the magnesium oxide powder and the silicon dioxide powder (A : B + C).
The obtained mixture was kneaded while heating to a temperature of 100 ° C. using a biaxial kneader. The obtained kneaded product was allowed to cool to room temperature and then pulverized using a mill to form a powder. The obtained powder was pressurized to obtain a tablet. Using the obtained tablet, moldability and fluidity (spiral flow value) were evaluated by the following methods, and further, water absorption per unit volume was obtained using a molded product produced by transfer molding using the tablet as a test piece. The quantity, thermal conductivity, elastic modulus and maximum point stress were measured by the following methods. Table 2 shows the results.

(1)成形性
試料のタブレットを、マイクロ波加熱機を用いて予備加熱した後、トランスファー成形機の金型の上にセットする。トランスファー成形機にて、175℃の温度に加熱した金型を用いて、タブレットを6.9MPaの圧力で30秒間加圧した後、3MPaの圧力で120秒間加圧する条件にて、成形体を作成する。成形体が作成できたものを合格、成形体が作成できなかったものを不合格とする。
(1) Formability After the sample tablet is preheated using a microwave heater, it is set on a mold of a transfer molding machine. Using a mold heated to a temperature of 175 ° C. with a transfer molding machine, press the tablet at a pressure of 6.9 MPa for 30 seconds, and then press the tablet at a pressure of 3 MPa for 120 seconds. To do. Those in which the molded body could be created are accepted, and those in which the molded body could not be created are rejected.

(2)流動性(スパイラルフロー値)
試料のタブレットを、電子機能材料工業規格(EIMS)のT901:2006で規定するスパイラルフロー測定用金型にセットする。トランスファー成形機にて、175℃の温度に加熱した金型を用いて、タブレットを6.9MPaの圧力で60秒間加圧した後、40秒間保持する条件にて、成形体を作成し、その長さを測定する。試験は4回行ない、その平均値を求める。長さが長い方が流動性が良好である。
(2) Fluidity (spiral flow value)
The tablet of the sample is set in a mold for spiral flow measurement specified in T901: 2006 of the Electronic Functional Materials Industry Standard (EIMS). Using a mold heated to a temperature of 175 ° C. with a transfer molding machine, the tablet was pressed at a pressure of 6.9 MPa for 60 seconds and then held for 40 seconds. Measure the thickness. The test is performed 4 times, and the average value is obtained. The longer the length, the better the fluidity.

(3)単位体積当たりの吸水量
前記(1)の成形性の評価と同様にして作成した成形体を試験片とする。試験片の質量(W1)を測定した後、試験片を95℃の温度に加熱した純水に投入して、該温度で24時間保持する。次いで、試験片を純水から取り出し、水分を拭き取った後、その質量(W2)を測定する。吸水量は下記の式より算出する。
吸水量(g/cm3)={W2(g)−W1(g)}/試験片の体積(cm3
(3) Amount of water absorption per unit volume A molded article prepared in the same manner as the evaluation of moldability in (1) above is used as a test piece. After measuring the mass (W 1 ) of the test piece, the test piece is put into pure water heated to a temperature of 95 ° C. and held at that temperature for 24 hours. Subsequently, after removing a test piece from pure water and wiping off moisture, the mass (W 2 ) is measured. The amount of water absorption is calculated from the following formula.
Water absorption (g / cm 3 ) = {W 2 (g) −W 1 (g)} / volume of test piece (cm 3 )

(4)熱伝導率
縦50mm×横100mm×高さ4mmの金型を用いること以外は、前記(1)の成形性の評価と同様にして作成した成形体を試験片とする。この試験片の熱伝導率を京都電子工業(株)製QTM−500を用いて測定する。
(4) Thermal conductivity A molded body prepared in the same manner as the evaluation of moldability in (1) above is used as a test piece, except that a mold having a length of 50 mm, a width of 100 mm, and a height of 4 mm is used. The thermal conductivity of this test piece is measured using QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.

(5)弾性率と最大点応力
縦10mm×横80mm×高さ4mmの金型を用いること以外は、前記(1)の成形性の評価と同様にして作成した成形体を試験片とする。この試験片の弾性率と最大点応力を、3点曲げ法にて、室温で2.0mm/分の条件にて測定する。
(5) Elastic modulus and maximum point stress A molded body prepared in the same manner as the evaluation of moldability in (1) above is used as a test piece, except that a mold having a length of 10 mm, a width of 80 mm, and a height of 4 mm is used. The elastic modulus and the maximum point stress of this test piece are measured under the condition of 2.0 mm / min at room temperature by the three-point bending method.

表1
────────────────────────────────────────
配合量(g) 容量比
───────────────────── ─────────────
A B C B:C A:B+C
────────────────────────── ─────────────
実施例1 143.93 289.47 534.13 25:75 27:73
実施例2 143.93 381.06 477.59 33:67 27:73
────────────────────────── ─────────────
比較例1 159.92 0 792.03 0:100 27:73
比較例2 127.94 513.21 316.81 50:50 27:73
────────────────────────────────────────
A:熱硬化性樹脂組成物
B:酸化マグネシウム粉末
C:二酸化ケイ素粉末
Table 1
────────────────────────────────────────
Compounding amount (g) Volume ratio
───────────────────── ─────────────
A B C B: C A: B + C
─────────────────────────── ─────────────
Example 1 143.93 289.47 534.13 25:75 27:73
Example 2 143.93 381.06 477.59 33:67 27:73
─────────────────────────── ─────────────
Comparative Example 1 159.92 0 792.03 0: 100 27:73
Comparative Example 2 127.94 513.21 316.81 50:50 27:73
────────────────────────────────────────
A: Thermosetting resin composition B: Magnesium oxide powder C: Silicon dioxide powder

表2
────────────────────────────────────────
成形性 流動性 吸水量 熱伝導率 弾性率 最大点応力
(cm) (g/cm3) (W/m・K)(GPa) (MPa)
────────────────────────────────────────
実施例1 合格 106.5 0.0032 1.20 21.8 117
実施例2 合格 81.5 0.0032 1.33 22.7 108
────────────────────────────────────────
比較例1 合格 180.5 0.0032 0.91 19.5 155
比較例2 不合格 − − − − −
────────────────────────────────────────
Table 2
────────────────────────────────────────
Formability Fluidity Water absorption Thermal conductivity Elastic modulus Maximum point stress
(Cm) (g / cm 3 ) (W / m · K) (GPa) (MPa)
────────────────────────────────────────
Example 1 Pass 106.5 0.0032 1.20 21.8 117
Example 2 Pass 81.5 0.0032 1.33 22.7 108
────────────────────────────────────────
Comparative Example 1 Pass 180.5 0.0032 0.91 19.5 155
Comparative Example 2 Fail-----
────────────────────────────────────────

表2の結果から明らかなように、熱硬化性樹脂組成物に酸化マグネシウム粉末と二酸化ケイ素粉末とを本発明の範囲で加えて得た樹脂組成物(実施例1、2)は、熱硬化性樹脂組成物に二酸化ケイ素粉末のみを加えた樹脂組成物(比較例1)と比較して、吸水量は変化せずに、熱伝導率が向上している。本発明の範囲を超えて酸化マグネシウム粉末を加えた樹脂組成物(比較例2)は、流動性が悪くトランスファー成形により成形体を製造するのが困難になる。   As is apparent from the results in Table 2, the resin compositions (Examples 1 and 2) obtained by adding magnesium oxide powder and silicon dioxide powder to the thermosetting resin composition within the scope of the present invention are thermosetting. Compared with a resin composition in which only silicon dioxide powder is added to the resin composition (Comparative Example 1), the water absorption is not changed and the thermal conductivity is improved. The resin composition (Comparative Example 2) to which magnesium oxide powder is added exceeding the scope of the present invention has poor fluidity and makes it difficult to produce a molded article by transfer molding.

1 リードフレーム
2 半導体素子
3 ボンディングワイヤー
4 封止材
DESCRIPTION OF SYMBOLS 1 Lead frame 2 Semiconductor element 3 Bonding wire 4 Sealing material

Claims (8)

熱硬化性樹脂組成物に、該熱硬化性樹脂組成物に対して容量比で70:30〜5:95の範囲にある無機酸化物フィラーが分散されてなる熱伝導性樹脂組成物であって、該無機酸化物フィラーが、容量比で5:95〜40:60の範囲にある酸化マグネシウム粉末と二酸化ケイ素粉末とを含むことを特徴とする熱伝導性樹脂組成物。   A thermally conductive resin composition comprising an inorganic oxide filler dispersed in a thermosetting resin composition in a volume ratio of 70:30 to 5:95 with respect to the thermosetting resin composition. The thermally conductive resin composition, wherein the inorganic oxide filler contains magnesium oxide powder and silicon dioxide powder in a volume ratio of 5:95 to 40:60. 酸化マグネシウム粉末が、硬焼酸化マグネシウム粉末もしくは電融酸化マグネシウム粉末である請求項1に記載の熱伝導性樹脂組成物。   The heat conductive resin composition according to claim 1, wherein the magnesium oxide powder is a hard-burned magnesium oxide powder or an electrofused magnesium oxide powder. 酸化マグネシウム粉末が、1〜100μmの範囲に平均粒子径を有する請求項1もしくは2に記載の熱伝導性樹脂組成物。   The heat conductive resin composition of Claim 1 or 2 in which a magnesium oxide powder has an average particle diameter in the range of 1-100 micrometers. 二酸化ケイ素粉末が、球状粒子の粉末である請求項1乃至3のうちのいずれかの項に記載の熱伝導性樹脂組成物。   The thermally conductive resin composition according to any one of claims 1 to 3, wherein the silicon dioxide powder is a powder of spherical particles. 二酸化ケイ素粉末が、1〜100μmの範囲に平均粒子径を有する請求項1乃至4のうちのいずれかの項に記載の熱伝導性樹脂組成物。   The thermally conductive resin composition according to any one of claims 1 to 4, wherein the silicon dioxide powder has an average particle diameter in the range of 1 to 100 µm. 熱硬化性樹脂組成物がエポキシ樹脂とフェノール樹脂とを含む請求項1乃至5のうちのいずれかの項に記載の熱伝導性樹脂組成物。   The heat conductive resin composition according to any one of claims 1 to 5, wherein the thermosetting resin composition contains an epoxy resin and a phenol resin. 半導体パッケージの封止用である請求項1乃至6のうちのいずれかの項に記載の熱伝導性樹脂組成物。   The thermally conductive resin composition according to any one of claims 1 to 6, which is used for sealing a semiconductor package. 半導体素子の周囲が封止材で封止された半導体パッケージであって、上記封止材が、熱硬化性樹脂組成物に、該熱硬化性樹脂組成物に対して容量比で70:30〜5:95の範囲にある無機酸化物フィラーが分散されてなる熱伝導性樹脂組成物であって、該無機酸化物フィラーが、容量比で5:95〜40:60の範囲にある酸化マグネシウム粉末と二酸化ケイ素粉末とを含むことを特徴とする熱伝導性樹脂組成物の硬化物である半導体パッケージ。   A semiconductor package in which a periphery of a semiconductor element is sealed with a sealing material, wherein the sealing material is added to the thermosetting resin composition in a volume ratio of 70:30 to the thermosetting resin composition. Magnesium oxide powder in which an inorganic oxide filler in a range of 5:95 is dispersed, the inorganic oxide filler being in a volume ratio of 5:95 to 40:60 And a silicon dioxide powder, a semiconductor package which is a cured product of a thermally conductive resin composition.
JP2011024149A 2011-02-07 2011-02-07 Thermally conductive resin composition and semiconductor package Active JP5795168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024149A JP5795168B2 (en) 2011-02-07 2011-02-07 Thermally conductive resin composition and semiconductor package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024149A JP5795168B2 (en) 2011-02-07 2011-02-07 Thermally conductive resin composition and semiconductor package

Publications (3)

Publication Number Publication Date
JP2012162650A true JP2012162650A (en) 2012-08-30
JP2012162650A5 JP2012162650A5 (en) 2013-11-07
JP5795168B2 JP5795168B2 (en) 2015-10-14

Family

ID=46842362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024149A Active JP5795168B2 (en) 2011-02-07 2011-02-07 Thermally conductive resin composition and semiconductor package

Country Status (1)

Country Link
JP (1) JP5795168B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032179A (en) 2013-09-17 2015-03-25 메이와가세이가부시키가이샤 Epoxy resin composition, use thereof, and filler for epoxy resin composition
CN105579713A (en) * 2013-10-29 2016-05-11 株式会社电装 Air-blowing device
JP2017186578A (en) * 2017-07-25 2017-10-12 明和化成株式会社 Epoxy resin composition and application thereof
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
WO2022181429A1 (en) * 2021-02-25 2022-09-01 三菱瓦斯化学株式会社 Oxygen scavenger powder

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185474A (en) * 1984-10-03 1986-05-01 Daicel Chem Ind Ltd Heat-conductive resin composition
JPS6218441A (en) * 1985-07-17 1987-01-27 Ube Ind Ltd Resin composition for sealing electronic component
JPS62135516A (en) * 1985-12-09 1987-06-18 Polyplastics Co Sealant for electrical component
JPH01236270A (en) * 1988-03-17 1989-09-21 Showa Denko Kk Resin composition
JPH08143781A (en) * 1994-11-22 1996-06-04 Sumitomo Bakelite Co Ltd Thermosetting resin composition
JPH08157693A (en) * 1994-12-06 1996-06-18 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH11260839A (en) * 1998-03-16 1999-09-24 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the adhesive composition
JP2002038010A (en) * 2000-07-26 2002-02-06 Idemitsu Petrochem Co Ltd Molding material for electric insulation and radiator parts and parts for image-forming apparatus using the same
JP2002212264A (en) * 2001-01-19 2002-07-31 Hitachi Ltd Epoxy resin composition for sealing of semiconductor and semiconductor device using the same
JP2012149194A (en) * 2011-01-20 2012-08-09 Panasonic Corp Epoxy resin composition for sealing semiconductor, and semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185474A (en) * 1984-10-03 1986-05-01 Daicel Chem Ind Ltd Heat-conductive resin composition
JPS6218441A (en) * 1985-07-17 1987-01-27 Ube Ind Ltd Resin composition for sealing electronic component
JPS62135516A (en) * 1985-12-09 1987-06-18 Polyplastics Co Sealant for electrical component
JPH01236270A (en) * 1988-03-17 1989-09-21 Showa Denko Kk Resin composition
JPH08143781A (en) * 1994-11-22 1996-06-04 Sumitomo Bakelite Co Ltd Thermosetting resin composition
JPH08157693A (en) * 1994-12-06 1996-06-18 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH11260839A (en) * 1998-03-16 1999-09-24 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the adhesive composition
JP2002038010A (en) * 2000-07-26 2002-02-06 Idemitsu Petrochem Co Ltd Molding material for electric insulation and radiator parts and parts for image-forming apparatus using the same
JP2002212264A (en) * 2001-01-19 2002-07-31 Hitachi Ltd Epoxy resin composition for sealing of semiconductor and semiconductor device using the same
JP2012149194A (en) * 2011-01-20 2012-08-09 Panasonic Corp Epoxy resin composition for sealing semiconductor, and semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150032179A (en) 2013-09-17 2015-03-25 메이와가세이가부시키가이샤 Epoxy resin composition, use thereof, and filler for epoxy resin composition
CN104448701A (en) * 2013-09-17 2015-03-25 明和化成株式会社 Epoxy resin composition, purpose of same, and fillings for epoxy resin composition
JP2015059130A (en) * 2013-09-17 2015-03-30 明和化成株式会社 Epoxy resin composition, use thereof and filler for epoxy resin composition
TWI655238B (en) * 2013-09-17 2019-04-01 日商明和化成股份有限公司 Epoxy resin composition, use thereof and filler for epoxy resin composition
KR102216969B1 (en) * 2013-09-17 2021-02-18 메이와가세이가부시키가이샤 Epoxy resin composition, use thereof, and filler for epoxy resin composition
CN104448701B (en) * 2013-09-17 2021-06-01 明和化成株式会社 Epoxy resin composition, use thereof, and filler for epoxy resin composition
CN105579713A (en) * 2013-10-29 2016-05-11 株式会社电装 Air-blowing device
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
JP2017186578A (en) * 2017-07-25 2017-10-12 明和化成株式会社 Epoxy resin composition and application thereof
WO2022181429A1 (en) * 2021-02-25 2022-09-01 三菱瓦斯化学株式会社 Oxygen scavenger powder

Also Published As

Publication number Publication date
JP5795168B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JPH0697325A (en) Resin-sealed semicondutor device
JP5795168B2 (en) Thermally conductive resin composition and semiconductor package
JP4279521B2 (en) Metal oxide powder for epoxy resin composition for semiconductor encapsulation, its production method, and epoxy resin composition for semiconductor encapsulation
JP7155929B2 (en) Mold underfill materials and electronic devices
JP3468996B2 (en) Epoxy resin composition and resin-encapsulated semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP2015059130A (en) Epoxy resin composition, use thereof and filler for epoxy resin composition
JPH0418445A (en) Epoxy resin composition and cured product thereof
JP7343096B2 (en) Encapsulating resin composition, semiconductor device, and method for manufacturing semiconductor device
JP3603483B2 (en) Semiconductor element sealing material and semiconductor device using the same
JP6036054B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5029063B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2023067951A (en) Sealing composition and semiconductor device
JP2018044079A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device
JP7355241B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
KR20130064000A (en) Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
JP2021138864A (en) Sealing resin composition and electronic device
JP7263765B2 (en) Encapsulating composition and semiconductor device
JP5547680B2 (en) Epoxy resin composition for sealing and semiconductor device
JP5347979B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2004115747A (en) Resin composition for forming heat sink and device for encapsulating electronic part
JP6249332B2 (en) Semiconductor sealing resin composition and semiconductor device
CN111492009A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP2002194064A (en) Resin composition for encapsulating semiconductor and semiconductor device using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150812

R150 Certificate of patent or registration of utility model

Ref document number: 5795168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250