JP2017186578A - Epoxy resin composition and application thereof - Google Patents

Epoxy resin composition and application thereof Download PDF

Info

Publication number
JP2017186578A
JP2017186578A JP2017143866A JP2017143866A JP2017186578A JP 2017186578 A JP2017186578 A JP 2017186578A JP 2017143866 A JP2017143866 A JP 2017143866A JP 2017143866 A JP2017143866 A JP 2017143866A JP 2017186578 A JP2017186578 A JP 2017186578A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
magnesium oxide
oxide powder
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017143866A
Other languages
Japanese (ja)
Other versions
JP6335374B2 (en
Inventor
匡敏 藤永
Tadatoshi Fujinaga
匡敏 藤永
教一 篠田
Kyoichi Shinoda
教一 篠田
勝 中江
Masaru Nakae
勝 中江
直人 西田
Naoto Nishida
直人 西田
誠治 山口
Seiji Yamaguchi
誠治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiwa Plastic Industries Ltd
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Meiwa Kasei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd, Meiwa Kasei KK filed Critical Ube Material Industries Ltd
Priority to JP2017143866A priority Critical patent/JP6335374B2/en
Publication of JP2017186578A publication Critical patent/JP2017186578A/en
Application granted granted Critical
Publication of JP6335374B2 publication Critical patent/JP6335374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermally conductive epoxy resin composition containing a magnesium oxide powder, which can be easily prepared by kneading, is improved in fluidity and excellent in moldability and has good water absorbing property (low water absorption property), and preferably to provide a thermally conductive epoxy resin composition further containing a magnesium oxide powder excellent in flame retardancy, the epoxy resin composition being capable of being suitably used as a thermally conductive sealing material, a thermally conductive sheet, a thermally conductive adhesive and a cured product.SOLUTION: There is provided an epoxy resin composition which contains an epoxy resin, a curing agent and magnesium oxide powder surface-treated with alkoxysilane having at least one of a phenyl group and an amino group.SELECTED DRAWING: None

Description

本発明は、酸化マグネシウム粉末を含有する熱伝導性のエポキシ樹脂組成物、及びそれからなる熱伝導性封止材、熱伝導性シート、熱伝導性接着剤、硬化物、並びに酸化マグネシウム粉末を含有するエポキシ樹脂組成物用充填材に関する。特に、混練によって容易に調製することが可能であり、流動性が改良されて成形性に優れ、吸水性が良好(低吸水性)であって、好ましくは更に耐燃焼性に優れる熱伝導性のエポキシ樹脂組成物に関する。   The present invention contains a thermally conductive epoxy resin composition containing magnesium oxide powder, and a thermally conductive sealing material, a thermally conductive sheet, a thermally conductive adhesive, a cured product, and magnesium oxide powder comprising the same. The present invention relates to a filler for an epoxy resin composition. In particular, it can be easily prepared by kneading, has improved flowability, excellent moldability, good water absorption (low water absorption), and preferably has excellent heat resistance and excellent combustion resistance. The present invention relates to an epoxy resin composition.

エポキシ樹脂組成物は、多くの分野で種々の用途に用いられている。
特に電子部品では、基板材料、封止材料、熱伝導性シート材料、接着剤などとして好適に使用されている。この用途では、小型化、高集積化、高容量化、高速化などの進展と共に、電子部品からの発熱量が増加する傾向にある。発熱量が増加すると温度や湿度の影響によって電子部品の信頼性が低下する。この為、エポキシ樹脂組成物に対して、耐熱性や低吸水性(耐湿性)に加えて、放熱性を向上するために熱伝導性を付与することが求められている。
また、接着剤やコーティング材の場合は必ずしも難燃性が要求されないが、半導体封止材料のような発熱源を直接封止するような場合には、安全性を考慮して電子部品用としての高度の耐燃焼性が求められている。
Epoxy resin compositions are used for various applications in many fields.
Particularly in electronic components, it is suitably used as a substrate material, a sealing material, a heat conductive sheet material, an adhesive, and the like. In this application, the amount of heat generated from electronic components tends to increase with progress in miniaturization, high integration, high capacity, high speed, and the like. As the amount of heat generation increases, the reliability of electronic components decreases due to the influence of temperature and humidity. For this reason, in addition to heat resistance and low water absorption (humidity resistance), it is required to impart thermal conductivity to the epoxy resin composition in order to improve heat dissipation.
In addition, in the case of adhesives and coating materials, flame retardancy is not necessarily required, but in the case of directly sealing a heat source such as a semiconductor encapsulating material, it is used for electronic components in consideration of safety. A high degree of combustion resistance is required.

エポキシ樹脂組成物に熱伝導性を付与するために、酸化マグネシウムを配合することが既に提案されている。酸化マグネシウムによって熱伝導性は向上する。しかし、配合量が増大すると流動性が低下して成形性が十分ではなくなるので、特に小型化(薄膜化、微細化、複雑化)した電子部品では成形性に問題が生じる。   In order to impart thermal conductivity to the epoxy resin composition, it has already been proposed to add magnesium oxide. Magnesium oxide improves thermal conductivity. However, if the blending amount is increased, the fluidity is lowered and the moldability is not sufficient, so that there is a problem in the moldability especially in an electronic component that is downsized (thinned, miniaturized, complicated).

特許文献1には、耐湿性及び熱伝導性に優れた酸化マグネシウム粉末を含む樹脂組成物が提案されている。ここには、酸化マグネシウムをシラン等の無機系カップリング剤により表面処理すると、樹脂との混練作業工程で表面処理した処理剤が酸化マグネシウムの表面から剥離しやすく、機械的強度に欠け、表面が水和反応して水酸化マグネシウムに変化して白化現象が生じるので実用化に至らない旨の記載がある。ここでは、表面にケイ素とマグネシウムの複酸化物及び/又はアルミニウムとマグネシウムとの複酸化物を含む被覆層を有する被覆酸化マグネシウムが用いられている。
特許文献2には、酸化マグネシウム粉末と二酸化ケイ素粉末とを特定の容積比で配合した熱伝導性(放熱性)を改良したエポキシ樹脂組成物が提案されている。ここには、酸化マグネシウムの表面をシランカップリング剤で処理することが記載され、実施例では、オリゴマー状の反応性シロキサンによって処理された酸化マグネシウムが用いられている。しかしながら、通常の(化合物タイプの)シランカップリング剤については必ずしも詳細な検討がなされていなかった。
Patent Document 1 proposes a resin composition containing magnesium oxide powder excellent in moisture resistance and thermal conductivity. Here, when magnesium oxide is surface-treated with an inorganic coupling agent such as silane, the treatment agent surface-treated in the kneading operation step with the resin is easy to peel off from the surface of the magnesium oxide, lacks mechanical strength, and the surface is There is a description that it will not be put to practical use because a whitening phenomenon occurs due to a hydration reaction to change to magnesium hydroxide. Here, coated magnesium oxide having a coating layer containing a double oxide of silicon and magnesium and / or a double oxide of aluminum and magnesium on the surface is used.
Patent Document 2 proposes an epoxy resin composition with improved thermal conductivity (heat dissipation) in which magnesium oxide powder and silicon dioxide powder are blended at a specific volume ratio. Here, it is described that the surface of magnesium oxide is treated with a silane coupling agent, and in the examples, magnesium oxide treated with oligomeric reactive siloxane is used. However, detailed investigations have not been made on ordinary (compound type) silane coupling agents.

特開2004−27177号公報JP 2004-27177 A 特開2012−162650号公報JP 2012-162650 A

本発明の目的は、混練によって容易に調製することが可能であり、流動性が改良されて成形性に優れ、吸水性が良好(低吸水性)である、酸化マグネシウム粉末を含有した熱伝
導性のエポキシ樹脂組成物を提供することである。また、本発明の目的は、好ましくは更に耐燃焼性に優れる酸化マグネシウム粉末を含有した熱伝導性のエポキシ樹脂組成物を提供することである。本発明のエポキシ樹脂組成物は、熱伝導性封止材、熱伝導性シート、熱伝導性接着剤及び硬化物として好適に使用することができる。
The object of the present invention is that it can be easily prepared by kneading, has improved flowability, excellent moldability, good water absorption (low water absorption), and heat conductivity containing magnesium oxide powder An epoxy resin composition is provided. Moreover, the objective of this invention is providing the heat conductive epoxy resin composition containing the magnesium oxide powder which is preferably excellent in combustion resistance further. The epoxy resin composition of this invention can be used conveniently as a heat conductive sealing material, a heat conductive sheet, a heat conductive adhesive, and hardened | cured material.

本発明は、以下の事項に関する。
1. エポキシ樹脂、硬化剤、並びにフェニル基及びアミノ基のうちの少なくとも一方を有するアルコキシシランで表面処理された酸化マグネシウム粉末を含有することを特徴とするエポキシ樹脂組成物。
2. 前記アルコキシシランが下記化学式(1)で表わされる化合物であることを特徴とする前記項1に記載のエポキシ樹脂組成物。
The present invention relates to the following matters.
1. An epoxy resin composition comprising magnesium oxide powder surface-treated with an epoxy resin, a curing agent, and an alkoxysilane having at least one of a phenyl group and an amino group.
2. Item 2. The epoxy resin composition according to Item 1, wherein the alkoxysilane is a compound represented by the following chemical formula (1).

Figure 2017186578
化学式(1)において、lは1〜3の整数、Rはそれぞれ同一又は異なっていてもよいアルキル基、R’はそれぞれ同一又は異なっていてもよいフェニル基及びアミノ基のうちの少なくとも一方を含む一価の基である。
Figure 2017186578
In the chemical formula (1), l is an integer of 1 to 3, R is an alkyl group that may be the same or different, and R ′ includes at least one of a phenyl group and an amino group that may be the same or different. It is a monovalent group.

3. 前記硬化剤がフェノール樹脂であることを特徴とする前記項1又は2に記載のエポキシ樹脂組成物。
4. 前記フェノール樹脂がフェニルアラルキル型フェノール樹脂及びビフェニルアラルキル型フェノール樹脂からなる群から選択される一以上のフェノール樹脂であることを特徴とする前記項3に記載のエポキシ樹脂組成物。
5. 前記項1〜4のいずれかに記載のエポキシ樹脂組成物からなる熱伝導性封止材。
6. 前記項1〜4のいずれかに記載のエポキシ樹脂組成物からなる熱伝導性シート。
7. 前記項1〜4のいずれかに記載のエポキシ樹脂組成物からなる熱伝導性接着剤。
8. 前記項1〜4のいずれかに記載のエポキシ樹脂組成物を硬化させた硬化物。
9. エポキシ樹脂、フェニルアラルキル型フェノール樹脂及びビフェニルアラルキル型フェノール樹脂からなる群から選択される一以上のフェノール樹脂からなる硬化剤、並びに酸化マグネシウム粉末を含有することを特徴とするエポキシ樹脂組成物。
10.フェニル基及びアミノ基のうちの少なくとも一方を有するアルコキシシランで表面処理された酸化マグネシウム粉末からなることを特徴とするエポキシ樹脂組成物用充填材。
3. Item 3. The epoxy resin composition according to Item 1 or 2, wherein the curing agent is a phenol resin.
4). Item 4. The epoxy resin composition according to Item 3, wherein the phenol resin is one or more phenol resins selected from the group consisting of phenyl aralkyl type phenol resins and biphenyl aralkyl type phenol resins.
5. The heat conductive sealing material which consists of an epoxy resin composition in any one of said items 1-4.
6). The heat conductive sheet which consists of an epoxy resin composition in any one of said items 1-4.
7). The heat conductive adhesive which consists of an epoxy resin composition in any one of said items 1-4.
8). Hardened | cured material which hardened the epoxy resin composition in any one of said claim | item 1-4.
9. An epoxy resin composition comprising: a curing agent composed of one or more phenolic resins selected from the group consisting of an epoxy resin, a phenylaralkyl-type phenolic resin, and a biphenylaralkyl-type phenolic resin; and magnesium oxide powder.
10. An epoxy resin composition filler comprising a magnesium oxide powder surface-treated with an alkoxysilane having at least one of a phenyl group and an amino group.

本発明によれば、混練によって容易に調製することが可能であり、流動性が改良されて成形性に優れ、吸水性が良好(低吸水性)である、酸化マグネシウム粉末を含有した熱伝導性のエポキシ樹脂組成物を提供することができる。また、本発明によって、好ましくは更に耐燃焼性に優れる酸化マグネシウム粉末を含有した熱伝導性のエポキシ樹脂組成物を提供することができる。本発明のエポキシ樹脂組成物は、熱伝導性封止材、熱伝導性シート、熱伝導性接着剤及び硬化物として好適に使用することができる。   According to the present invention, heat conductivity containing magnesium oxide powder, which can be easily prepared by kneading, has improved flowability, excellent moldability, and good water absorption (low water absorption). The epoxy resin composition can be provided. In addition, according to the present invention, it is possible to provide a heat conductive epoxy resin composition containing a magnesium oxide powder that is preferably excellent in combustion resistance. The epoxy resin composition of this invention can be used conveniently as a heat conductive sealing material, a heat conductive sheet, a heat conductive adhesive, and hardened | cured material.

本発明は、エポキシ樹脂、硬化剤、並びにフェニル基及びアミノ基のうちの少なくとも一方を有するアルコキシシランで表面処理された酸化マグネシウム粉末を含有することを特徴とするエポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition comprising a magnesium oxide powder surface-treated with an epoxy resin, a curing agent, and an alkoxysilane having at least one of a phenyl group and an amino group.

本発明のエポキシ樹脂組成物のエポキシ樹脂は、分子内に2個以上のエポキシ基を含有するものであればよく、特に限定はないが、例えばビスフェノール型、フェノールノボラック型、クレゾールノボラック型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型、ナフトール型などのエポキシ樹脂を好適に挙げることができる。これのエポキシ樹脂は単独で用いても、複数種を混合して用いても構わない。これらのエポキシ樹脂の中では、特にクレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂が好適である。   The epoxy resin of the epoxy resin composition of the present invention is not particularly limited as long as it contains two or more epoxy groups in the molecule. For example, bisphenol type, phenol novolak type, cresol novolak type, biphenyl type Suitable examples include epoxy resins such as triphenylmethane type, dicyclopentadiene type, and naphthol type. These epoxy resins may be used alone or in combination. Among these epoxy resins, cresol novolac type epoxy resins and biphenyl type epoxy resins are particularly suitable.

本発明のエポキシ樹脂組成物の硬化剤は、エポキシ樹脂と反応して硬化物を得ることができるものであれば特に限定はなく、エポキシ樹脂の硬化剤として通常用いられるアミン化合物、酸無水物、フェノール樹脂などを好適に使用することができる。
本発明のエポキシ樹脂組成物の硬化剤は、好ましくはフェノール樹脂である。フェノール樹脂としては、特に限定されるものではなく、例えば、フェノールノボラック型、クレゾールノボラック型、フェニルアラルキル型、ビフェニルアラルキル型、トリフェニルメタン型、ジシクロペンタジエン型、ナフトール型などのノボラック型フェノール樹脂を好適に挙げることができるが、それらの中では、特にフェニルアラルキル型フェノール樹脂及びビフェニルアラルキル型フェノール樹脂が、吸水性が低く、更に耐燃焼性(難燃性)を向上できることから特に好適に使用することができる。
The curing agent of the epoxy resin composition of the present invention is not particularly limited as long as it can react with the epoxy resin to obtain a cured product, and is typically an amine compound, acid anhydride, or the like used as a curing agent for the epoxy resin. A phenol resin or the like can be preferably used.
The curing agent of the epoxy resin composition of the present invention is preferably a phenol resin. The phenol resin is not particularly limited, and examples thereof include novolac type phenol resins such as phenol novolak type, cresol novolak type, phenyl aralkyl type, biphenyl aralkyl type, triphenylmethane type, dicyclopentadiene type, and naphthol type. Among them, phenyl aralkyl type phenol resins and biphenyl aralkyl type phenol resins are particularly preferably used because they have low water absorption and can further improve the flame resistance (flame resistance). be able to.

フェニルアラルキル型フェノール樹脂及びビフェニルアラルキル型フェノール樹脂は、フェノール類を、代表的には−CH−Bz−CH−或いは−CH−Bz−Bz−CH−(Bz:ベンゼン環)のようなフェニレン骨格或いはビフェニリレン骨格を基中に含む2価の架橋基(フェニルアラルキル基或いはビフェニルアラルキル基)で結合した化学構造を有するノボラック型フェノール樹脂であり、好ましくは下記化学式(2)〜(5)、より好ましくは下記化学式(4)〜(5)の化学構造を有する。 The phenylaralkyl type phenol resin and the biphenyl aralkyl type phenol resin are phenols such as —CH 2 —Bz—CH 2 — or —CH 2 —Bz—Bz—CH 2 — (Bz: benzene ring). A novolak type phenol resin having a chemical structure bonded with a divalent bridging group (phenyl aralkyl group or biphenyl aralkyl group) containing a phenylene skeleton or a biphenylylene skeleton in the group, preferably the following chemical formulas (2) to (5) More preferably, it has a chemical structure represented by the following chemical formulas (4) to (5).

Figure 2017186578
化学式(2)において、nは1以上の整数(好ましくは1〜20の整数)、Rは炭素数が1〜6のアルキル基又は水酸基のいずれか、pは0〜2の整数である。
Figure 2017186578
In the chemical formula (2), n is an integer of 1 or more (preferably an integer of 1 to 20), R 1 is either an alkyl group having 1 to 6 carbon atoms or a hydroxyl group, and p is an integer of 0 to 2.

Figure 2017186578
化学式(3)において、mは1以上の整数(好ましくは1〜20の整数)、nは1以上の整数(好ましくは1〜20の整数)、Rは炭素数が1〜6のアルキル基又は水酸基の
いずれか、pは0〜2の整数である。
Figure 2017186578
In the chemical formula (3), m is an integer of 1 or more (preferably an integer of 1 to 20), n is an integer of 1 or more (preferably an integer of 1 to 20), and R 1 is an alkyl group having 1 to 6 carbon atoms. Or either of a hydroxyl group, p is an integer of 0-2.

Figure 2017186578
化学式(4)において、nは1以上の整数(好ましくは1〜20の整数)、Rは炭素数が1〜6のアルキル基又は水酸基のいずれか、pは0〜2の整数である。
Figure 2017186578
In the chemical formula (4), n is an integer of 1 or more (preferably an integer of 1 to 20), R 1 is either an alkyl group having 1 to 6 carbon atoms or a hydroxyl group, and p is an integer of 0 to 2.

Figure 2017186578
化学式(5)において、mは1以上の整数(好ましくは1〜20の整数)、nは1以上の整数(好ましくは1〜20の整数)、Rは炭素数が1〜6のアルキル基又は水酸基のいずれか、pは0〜2の整数である。
Figure 2017186578
In chemical formula (5), m is an integer of 1 or more (preferably an integer of 1 to 20), n is an integer of 1 or more (preferably an integer of 1 to 20), and R 1 is an alkyl group having 1 to 6 carbon atoms. Or either of a hydroxyl group, p is an integer of 0-2.

本発明のエポキシ樹脂組成物において、エポキシ樹脂と硬化剤との配合割合は、特に限定するものではないが、エポキシ樹脂の配合量を100質量部としたとき、硬化剤は50〜120質量部の範囲であることが好ましい。   In the epoxy resin composition of the present invention, the blending ratio of the epoxy resin and the curing agent is not particularly limited, but when the blending amount of the epoxy resin is 100 parts by mass, the curing agent is 50 to 120 parts by mass. A range is preferable.

本発明のエポキシ樹脂組成物で用いる酸化マグネシウム粉末は、フェニル基及びアミノ基のうちの少なくとも一方を有するアルコキシシランで表面処理されたものである。
酸化マグネシウム粉末は、特に限定するものではないが、例えば水酸化マグネシウムを約1400℃以上〜約2800℃(溶融温度)未満に加熱処理することによって好適に得ることができる。本発明においては、好ましくは1600℃以上〜2600℃未満、より好ましくは2000〜2400℃の温度で焼成して得られた酸化マグネシウム粉末を好適に使用することができる。また、本発明の酸化マグネシウム粉末は、特に限定するものではないが、平均粒子径が、好ましくは0.5〜100μm、より好ましくは1〜80μmの範囲にあり、純度が、好ましくは94.0質量%以上、より好ましくは96.0〜99.7質量%の範囲のものである。
The magnesium oxide powder used in the epoxy resin composition of the present invention is surface-treated with an alkoxysilane having at least one of a phenyl group and an amino group.
The magnesium oxide powder is not particularly limited, but can be suitably obtained, for example, by heat-treating magnesium hydroxide to about 1400 ° C. or more and less than about 2800 ° C. (melting temperature). In the present invention, a magnesium oxide powder obtained by firing at a temperature of preferably 1600 ° C. or higher and lower than 2600 ° C., more preferably 2000 to 2400 ° C., can be suitably used. The magnesium oxide powder of the present invention is not particularly limited, but the average particle diameter is preferably in the range of 0.5 to 100 μm, more preferably 1 to 80 μm, and the purity is preferably 94.0. It is in the range of 96.0 to 99.7% by mass or more, more preferably 9% by mass or more.

本発明で使用する酸化マグネシウムの表面処理に使用するアルコキシシランは、分子内に少なくともフェニル基及びアミノ基のいずれかを含む化学構造を有するアルコキシシラン(化合物であって、オリゴマーではない)であり、好ましくは下記化学式(1)で表わされるアルコキシシランである。特に、アルコキシシランは、流動性の観点からはフェニル基を含むことが好ましい。   The alkoxysilane used for the surface treatment of magnesium oxide used in the present invention is an alkoxysilane (compound, not an oligomer) having a chemical structure containing at least one of a phenyl group and an amino group in the molecule, Preferably, it is an alkoxysilane represented by the following chemical formula (1). In particular, the alkoxysilane preferably contains a phenyl group from the viewpoint of fluidity.

Figure 2017186578
化学式(1)において、lは1〜3の整数、Rはそれぞれ同一又は異なっていてもよいアルキル基(好ましくは炭素数が1〜6のアルキル基、より好ましくはメチル基又はエチル基)、R’はそれぞれ同一又は異なっていてもよいフェニル基及びアミノ基のうちの少なくとも一方を含む一価の基である。
Figure 2017186578
In chemical formula (1), l is an integer of 1 to 3, R is the same or different alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group or an ethyl group), R 'Is a monovalent group containing at least one of a phenyl group and an amino group, which may be the same or different.

このようなアルコキシシランの具体例としては、下記化学式(6)で表わされる各化合物を好適に挙げることができる。   As specific examples of such alkoxysilanes, preferred are the compounds represented by the following chemical formula (6).

Figure 2017186578
Figure 2017186578

なお、アルコキシシランの処理量は、特に限定するものではないが、酸化マグネシウム粉末に対して、好ましくは0.01〜10質量%、より好ましくは0.05〜5質量%の割合である。   In addition, although the processing amount of alkoxysilane is not specifically limited, Preferably it is 0.01-10 mass% with respect to magnesium oxide powder, More preferably, it is a ratio of 0.05-5 mass%.

本発明においては、表面をフェニル基及びアミノ基のうちの少なくとも一方を有するアルコキシシランで処理した酸化マグネシウムを用いることによって、混練によって容易に調製することが可能であり、成形時の流動性(スパイラルフロー)が改良されて成形性に優れ、更に低吸水性の、熱伝導性エポキシ樹脂組成物を得ることができる。   In the present invention, by using magnesium oxide whose surface is treated with an alkoxysilane having at least one of a phenyl group and an amino group, it can be easily prepared by kneading, and the fluidity at the time of molding (spiral) Flow) is improved, and a heat conductive epoxy resin composition having excellent moldability and low water absorption can be obtained.

酸化マグネシウム粉末の表面処理方法は、特に限定するものではないが、例えば乾式反応法や湿式反応法などを用いて表面処理することができる。乾式反応法は、ヘンシェルミキサーなどの高速撹拌可能な装置に酸化マグネシウム粉末を仕込み、撹拌しながらアルコキシシラン又はアルコキシシランの加水分解液を添加する方法である。その添加方法としては、均一にアルコキシシランを反応させることのできる方法が望ましく、公知の方法、例えば徐々に滴下する方法、霧状に噴霧する方法及び気体状のシランを導入する方法などを用いることができる。湿式反応法は、酸化マグネシウム粉末をアルコキシシランの溶液に分散させた状態で反応させ、必要に応じてその後乾燥させる方法である。使用する溶剤
としては、水、アルコール又はそれらの混合物が好ましい。
The surface treatment method of the magnesium oxide powder is not particularly limited, but the surface treatment can be performed using, for example, a dry reaction method or a wet reaction method. The dry reaction method is a method in which magnesium oxide powder is charged into a device capable of high-speed stirring such as a Henschel mixer, and alkoxysilane or an alkoxysilane hydrolyzate is added while stirring. As the addition method, a method capable of uniformly reacting alkoxysilane is desirable, and a known method, for example, a method of gradually dropping, a method of spraying in a mist, a method of introducing gaseous silane, or the like is used. Can do. The wet reaction method is a method in which magnesium oxide powder is reacted in a state dispersed in an alkoxysilane solution, and then dried if necessary. As the solvent to be used, water, alcohol or a mixture thereof is preferable.

酸化マグネシウム粉末は単独で用いても、他の無機充填材と併用しても構わない。
酸化マグネシウム粉末を含む無機充填材の配合割合は、全エポキシ樹脂組成物に対し、容量%で、10〜95%、好ましくは30〜90%、より好ましくは60〜75%の範囲である。併用する酸化マグネシウム粉末以外の他の無機充填材としては、二酸化ケイ素、アルミナ、窒化アルミニウム、窒化ケイ素、炭酸カルシウム、タルク、マイカ、硫酸バリウムなどが挙げられ、その中でも二酸化ケイ素粉末を用いることが好ましい。酸化マグネシウム粉末と併用する他の無機充填材との配合割合は、容量比[酸化マグネシウム粉末:併用する他の無機充填材]で、好ましくは100:0〜5:95、より好ましくは60:40〜5:95、更に好ましくは40:60〜25:75の範囲である。
Magnesium oxide powder may be used alone or in combination with other inorganic fillers.
The blending ratio of the inorganic filler containing the magnesium oxide powder is 10% to 95%, preferably 30% to 90%, more preferably 60% to 75% in volume% with respect to the total epoxy resin composition. Examples of the inorganic filler other than the magnesium oxide powder used in combination include silicon dioxide, alumina, aluminum nitride, silicon nitride, calcium carbonate, talc, mica, barium sulfate, etc. Among them, it is preferable to use silicon dioxide powder. . The blending ratio with the other inorganic filler used together with the magnesium oxide powder is a volume ratio [magnesium oxide powder: other inorganic filler used together], preferably 100: 0 to 5:95, more preferably 60:40. -5: 95, more preferably 40: 60-25: 75.

本発明のエポキシ樹脂組成物においては、エポキシ樹脂、硬化剤、酸化マグネシウム粉末を含む無機充填材以外に、用途に応じて通常のエポキシ樹脂組成物で用いられる種々の成分を配合することができる。
例えば硬化促進剤も好適に用いることができる。硬化促進剤としては、通常のエポキシ樹脂組成物で用いられる硬化促進剤を用いることができるが、硬化剤にフェノール樹脂を用いた場合には、フェノール樹脂の水酸基を活性化する化合物であることが望ましい。硬化促進剤の例としては、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノールなどのアミン化合物、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィンなどの有機リン化合物を好適に挙げることができる。硬化促進剤の配合量は、エポキシ樹脂の配合量を100質量部に対して、好ましくは0.1〜10質量部、より好ましくは1〜7質量部の範囲である。
In the epoxy resin composition of the present invention, in addition to the inorganic filler containing an epoxy resin, a curing agent, and magnesium oxide powder, various components used in a normal epoxy resin composition can be blended depending on the application.
For example, a curing accelerator can also be suitably used. As the curing accelerator, a curing accelerator used in a normal epoxy resin composition can be used, but when a phenol resin is used as the curing agent, it may be a compound that activates the hydroxyl group of the phenol resin. desirable. Preferable examples of the curing accelerator include amine compounds such as benzyldimethylamine, triethanolamine, and dimethylaminoethanol, and organic phosphorus compounds such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, and diphenylphosphine. The compounding amount of the curing accelerator is preferably 0.1 to 10 parts by mass, more preferably 1 to 7 parts by mass with respect to 100 parts by mass of the epoxy resin.

さらに、本発明のエポキシ樹脂組成物においては、用途に応じて、その他の種々の添加剤を用いることができる。例えば、熱伝導性封止材用途では、離型剤、着色剤、難燃剤、低応力剤等を用いることができ、熱伝導性シート用途では、粘着付与剤、老化防止剤、軟化剤(例えばナフテン系オイル、パラフィン系オイル等)、揺変剤(例えばモンモリロナイトなど)、滑剤(例えばステアリン酸等)、顔料、スコーチ防止剤、安定剤、酸化防止剤、紫外線吸収剤、着色剤、防カビ剤、発泡剤等を用いることができ、熱伝導性接着剤用途では、顔料、紫外線吸収剤等を用いることができる。
すなわち、本発明のエポキシ樹脂組成物は、熱伝導性封止材、熱伝導性シート、熱伝導性接着剤として好適に利用することができる。
Furthermore, in the epoxy resin composition of the present invention, other various additives can be used depending on the application. For example, a release agent, a colorant, a flame retardant, a low stress agent, and the like can be used for a heat conductive sealing material. In a heat conductive sheet, a tackifier, an antiaging agent, a softening agent (for example, Naphthenic oils, paraffinic oils, etc.), thixotropic agents (such as montmorillonite), lubricants (such as stearic acid), pigments, scorch inhibitors, stabilizers, antioxidants, UV absorbers, colorants, antifungal agents A foaming agent or the like can be used, and a pigment, an ultraviolet absorber, or the like can be used for a heat conductive adhesive.
That is, the epoxy resin composition of the present invention can be suitably used as a heat conductive sealing material, a heat conductive sheet, and a heat conductive adhesive.

また、本発明のエポキシ樹脂組成物は、加熱処理することによって硬化反応を起こし、硬化物を形成することができる。本発明のエポキシ樹脂組成物を硬化させる条件は、適宜、選択することができる。例えば50〜300℃、好ましくは130〜250℃で、0.01〜20時間、好ましくは0.1〜10時間、加熱処理することによって硬化物を得ることができる。   Moreover, the epoxy resin composition of this invention can raise | generate a hardening reaction by heat-processing, and can form hardened | cured material. Conditions for curing the epoxy resin composition of the present invention can be appropriately selected. For example, a cured product can be obtained by heat treatment at 50 to 300 ° C., preferably 130 to 250 ° C., for 0.01 to 20 hours, preferably 0.1 to 10 hours.

以下、本発明を実施例及び比較例により更に具体的に説明するが、本発明は、これら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these Examples.

エポキシ樹脂組成物を調製する際の混練工程について次の方法で評価した。
(1)混練性
所定量のエポキシ樹脂と硬化剤のフェノール樹脂と充填材の酸化マグネシウム粉末及び二酸化ケイ素粉末とを二軸ニーダを用いて所定の温度で混練を行い、二軸ニーダの吐出口から吐出された混練物を目視によって評価した。評価の基準として、○:問題なく混練可能 △:混練できるが混練物が不均一 ×:混練できない とした。
The kneading step for preparing the epoxy resin composition was evaluated by the following method.
(1) Kneadability A predetermined amount of epoxy resin, a phenolic resin as a curing agent, and magnesium oxide powder and silicon dioxide powder as fillers are kneaded at a predetermined temperature using a biaxial kneader. The discharged kneaded material was visually evaluated. As a criterion for evaluation, ○: kneading was possible without any problem Δ: kneading was possible, but kneaded material was not uniform x: kneading was not possible

また、エポキシ樹脂組成物について次の方法で評価した。なお、評価は、エポキシ樹脂組成物粉末をタブレットに成形し、そのタブレットを試料として行った。タブレットは、ハンドプレスを用いて圧力450MPaで1分間加圧して成形した。
(2)成形性
試料を、トランスファー成形機にて、金型温度は175℃、注入圧力は6.9MPaとし、30秒間加圧した後、3.0MPaで70秒間加圧する条件にて成形体を成形した。成形性の評価の基準として、○:問題なく成形可能 ×:成形できない とした。
(3)流動性(スパイラルフロー)
試料のスパイラルフロー値を、トランスファー成形機、スパイラルフロー測定用金型(EMMI−1−66に準拠)を用いて測定した。なお、金型温度は175℃、注入圧力は6.9MPaとし、60秒間加圧した後、40秒間保持する条件にて流動性を評価した。
Moreover, the following method evaluated the epoxy resin composition. The evaluation was performed by molding the epoxy resin composition powder into a tablet and using the tablet as a sample. The tablet was molded by pressing with a hand press at a pressure of 450 MPa for 1 minute.
(2) Formability The molded body was molded using a transfer molding machine at a mold temperature of 175 ° C. and an injection pressure of 6.9 MPa for 30 seconds and then pressurized at 3.0 MPa for 70 seconds. Molded. As a standard for evaluation of moldability, ○: Moldable without problems ×: Cannot be molded.
(3) Fluidity (spiral flow)
The spiral flow value of the sample was measured using a transfer molding machine and a spiral flow measurement mold (based on EMMI-1-66). The mold temperature was 175 ° C., the injection pressure was 6.9 MPa, and after pressurizing for 60 seconds, the fluidity was evaluated under the condition of holding for 40 seconds.

また、エポキシ樹脂組成物の硬化物について、次の方法で評価した。
(4)吸水性(吸水量)
試料をトランスファー成形機で厚さ3mm×直径50mmの円盤状に成形し、次いで180℃で8時間硬化させて試験片(硬化物)を得た。得られた試験片について、質量(W)を測定し、95℃の温度に加熱した純水中で24時間保持し、次いで純水中から取り出して水分を拭き取った後、その質量(W)を測定した。吸水量は下記の式より算出した。
吸水量(g/cm)={W(g)−W(g)}/試験片の体積(cm
(5)難燃性(耐燃焼性)
試料をトランスファー成形機で厚さ1mm×幅13mm×長さ127mmの形状に成形し、次いで180℃で8時間硬化させて試験片(硬化物)を得た。得られた試験片について、UL−94試験法に従って難燃性を評価した。
(6)熱伝導率
試料をトランスファー成形機で厚さ4mm×幅50mm×長さ100mmの形状に成形し、次いで180℃で8時間硬化させて硬化物を得た。得られた硬化物を厚さ4mm×幅25mm×長さ25mmの形状に切削加工して試験片とした。試験片の熱伝導率を、アルバック(株)製 熱伝導率測定装置GH−1を用いて測定した。
Moreover, about the hardened | cured material of the epoxy resin composition, it evaluated by the following method.
(4) Water absorption (water absorption)
The sample was molded into a disk shape having a thickness of 3 mm and a diameter of 50 mm with a transfer molding machine, and then cured at 180 ° C. for 8 hours to obtain a test piece (cured product). The obtained test piece, weight (W 1) was measured, and held for 24 hours in pure water heated to a temperature of 95 ° C., then after wiping off water removed from the pure water, its mass (W 2 ) Was measured. The amount of water absorption was calculated from the following formula.
Water absorption (g / cm 3 ) = {W 2 (g) −W 1 (g)} / volume of test piece (cm 3 )
(5) Flame resistance (combustion resistance)
The sample was molded into a shape of 1 mm thickness × 13 mm width × 127 mm length by a transfer molding machine, and then cured at 180 ° C. for 8 hours to obtain a test piece (cured product). About the obtained test piece, the flame retardance was evaluated according to UL-94 test method.
(6) Thermal conductivity The sample was molded into a shape of 4 mm thick × 50 mm wide × 100 mm long by a transfer molding machine, and then cured at 180 ° C. for 8 hours to obtain a cured product. The obtained cured product was cut into a shape of 4 mm thickness × 25 mm width × 25 mm length to obtain a test piece. The thermal conductivity of the test piece was measured using a thermal conductivity measuring device GH-1 manufactured by ULVAC.

以下の例で用いた材料は次のとおりである。
(a)エポキシ樹脂
ビフェニル型エポキシ樹脂 YX−4000 三菱化学(株)製、エポキシ当量:186g/eq、粘度:0.2P/150℃、融点:105℃(DSC法)
The materials used in the following examples are as follows.
(A) Epoxy resin Biphenyl type epoxy resin YX-4000, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 186 g / eq, viscosity: 0.2 P / 150 ° C., melting point: 105 ° C. (DSC method)

(b)硬化剤
(b1)硬化剤1
下記化学式(7)で表わされるフェノールホルムアルデヒド型フェノール樹脂、水酸基当量:107g/eq、粘度:2.0P/150℃、軟化点:84℃
(B) Curing agent (b1) Curing agent 1
Phenol formaldehyde type phenol resin represented by the following chemical formula (7), hydroxyl equivalent: 107 g / eq, viscosity: 2.0 P / 150 ° C., softening point: 84 ° C.

Figure 2017186578
化学式(7)において、nは1以上の整数である。
Figure 2017186578
In the chemical formula (7), n is an integer of 1 or more.

(b2)硬化剤2
下記化学式(8)で表わされるビフェニルアラルキル型フェノール樹脂、水酸基当量:201g/eq、粘度:0.8P/150℃、軟化点:67℃
(B2) Curing agent 2
Biphenyl aralkyl type phenol resin represented by the following chemical formula (8), hydroxyl group equivalent: 201 g / eq, viscosity: 0.8 P / 150 ° C., softening point: 67 ° C.

Figure 2017186578
化学式(8)において、nは1以上の整数である。
Figure 2017186578
In the chemical formula (8), n is an integer of 1 or more.

(b3)硬化剤3
下記化学式(9)で表わされるビフェニルアラルキル型フェノール樹脂、水酸基当量:166g/eq、粘度:0.5P/150℃、軟化点:62℃
(B3) Curing agent 3
Biphenyl aralkyl type phenol resin represented by the following chemical formula (9), hydroxyl group equivalent: 166 g / eq, viscosity: 0.5 P / 150 ° C., softening point: 62 ° C.

Figure 2017186578
化学式(9)において、mは1以上の整数、nは1以上の整数である。
Figure 2017186578
In chemical formula (9), m is an integer of 1 or more, and n is an integer of 1 or more.

(c)硬化促進剤
トリフェニルホスフィン 北興化学(株)製
(C) Curing accelerator Triphenylphosphine manufactured by Hokuko Chemical Co., Ltd.

(d)酸化マグネシウム粉末
酸化マグネシウム粉末は、水酸化マグネシウムをロータリーキルンによって2000℃で焼成したのち、粉砕、分級することで製造した。アルコキシシランによる表面処理は、高速流動攪拌機を用いて酸化マグネシウムに対して0.5質量%添加し、120℃で10
分間加熱撹拌することにより行った。
(d1)酸化マグネシウム粉末1
表面がフェニルトリメトキシシランで処理された酸化マグネシウム粉末、平均粒子径:5.5μm
(d2)酸化マグネシウム粉末2
表面がN−2−アミノエチル−3−アミノプロピルトリメトキシシランで処理された酸化マグネシウム粉末、平均粒子径:6.1μm
(d3)酸化マグネシウム粉末3
表面が3−グリシドキシプロピルトリメトキシシランで処理された酸化マグネシウム粉末、平均粒子径:6.8μm
(d4)酸化マグネシウム粉末4
表面がビニルトリメトキシシランで処理された酸化マグネシウム、平均粒子径:6.2μm
(d5)酸化マグネシウム粉末5
表面が処理されていない酸化マグネシウム粉末、平均粒子径:6.5μm
(D) Magnesium oxide powder Magnesium oxide powder was manufactured by baking and classifying magnesium hydroxide at 2000 ° C with a rotary kiln. In the surface treatment with alkoxysilane, 0.5% by mass with respect to magnesium oxide is added using a high-speed flow stirrer, and 10% at 120 ° C.
This was performed by heating and stirring for a minute.
(D1) Magnesium oxide powder 1
Magnesium oxide powder whose surface is treated with phenyltrimethoxysilane, average particle size: 5.5 μm
(D2) Magnesium oxide powder 2
Magnesium oxide powder whose surface is treated with N-2-aminoethyl-3-aminopropyltrimethoxysilane, average particle size: 6.1 μm
(D3) Magnesium oxide powder 3
Magnesium oxide powder whose surface is treated with 3-glycidoxypropyltrimethoxysilane, average particle size: 6.8 μm
(D4) Magnesium oxide powder 4
Magnesium oxide whose surface is treated with vinyltrimethoxysilane, average particle size: 6.2 μm
(D5) Magnesium oxide powder 5
Magnesium oxide powder whose surface is not treated, average particle size: 6.5 μm

(e)二酸化ケイ素粉末
MSR−2212 (株)龍森製、平均粒子径:25μm
(E) Silicon dioxide powder MSR-2212 manufactured by Tatsumori Co., Ltd., average particle size: 25 μm

〔実施例1〕
表1に示すとおり、エポキシ樹脂のYX−4000 100g(100質量部)、硬化剤の硬化剤1(フェノールホルムアルデヒド型フェノール樹脂) 57g(57質量部)、硬化促進剤のトリフェニルホスフィン 2.7g(2.7質量部)、充填材の二酸化ケイ素粉末(MSR−2212) 532g(532質量部)と、表面がフェニルトリメトキシシランで処理された酸化マグネシウム粉末1 424g(424質量部)とを、二軸ニーダを用い表1に示す温度条件で混練して、エポキシ樹脂組成物の混練物を得た。その際の混練工程を観察した。
得られた混練物を室温まで冷やした後、粉砕機を用いて粉砕し、粉末化した。この粉末を所定の金型で加圧成形してエポキシ樹脂組成物からなるタブレットを成形した。このタブレットを試料として、流動性(スパイラルフロー)を評価した。さらに試料をトランスファー成形機により所定の寸法に成形し、180℃で8時間硬化させて所定寸法の試験片(硬化物)を作製した。
[Example 1]
As shown in Table 1, epoxy resin YX-4000 100 g (100 parts by mass), curing agent curing agent 1 (phenol formaldehyde type phenol resin) 57 g (57 parts by mass), curing accelerator triphenylphosphine 2.7 g ( 2.7 parts by mass), 532 g (532 parts by mass) of silicon dioxide powder (MSR-2212) as a filler, and 424 g (424 parts by mass) of magnesium oxide powder 1 whose surface was treated with phenyltrimethoxysilane. A kneaded product of the epoxy resin composition was obtained by kneading under the temperature conditions shown in Table 1 using a shaft kneader. The kneading process at that time was observed.
The obtained kneaded product was cooled to room temperature and then pulverized using a pulverizer to form a powder. This powder was pressure-molded with a predetermined mold to mold a tablet made of an epoxy resin composition. Using this tablet as a sample, fluidity (spiral flow) was evaluated. Further, the sample was formed into a predetermined size by a transfer molding machine and cured at 180 ° C. for 8 hours to prepare a test piece (cured product) having a predetermined size.

〔実施例2〕
表1に示すとおり、硬化剤の硬化剤1(フェノールホルムアルデヒド型フェノール樹脂)の代わりに、硬化剤2(ビフェニルアラルキル型フェノール樹脂)を使用して、実施例1と同様にしてエポキシ樹脂組成物の混練物を得た。また、その評価を行った。
[Example 2]
As shown in Table 1, instead of the curing agent 1 (phenol formaldehyde type phenol resin) of the curing agent, the curing agent 2 (biphenyl aralkyl type phenol resin) was used in the same manner as in Example 1 to determine the epoxy resin composition. A kneaded product was obtained. Moreover, the evaluation was performed.

〔実施例3〕
表1に示すとおり、酸化マグネシウム粉末1の代わりに、表面がN−2−アミノエチル−3−アミノプロピルトリメトキシシランで処理された酸化マグネシウム粉末2を使用して、実施例2と同様にしてエポキシ樹脂組成物の混練物を得た。また、その評価を行った。
Example 3
As shown in Table 1, in place of magnesium oxide powder 1, magnesium oxide powder 2 whose surface was treated with N-2-aminoethyl-3-aminopropyltrimethoxysilane was used in the same manner as in Example 2. A kneaded product of the epoxy resin composition was obtained. Moreover, the evaluation was performed.

〔実施例4〕
表1に示すとおり、硬化剤の硬化剤1(フェノールホルムアルデヒド型フェノール樹脂)の代わりに、硬化剤3(ビフェニルアラルキル型フェノール樹脂)を使用して、実施例1と同様にしてエポキシ樹脂組成物の混練物を得た。また、その評価を行った。
Example 4
As shown in Table 1, in place of the curing agent 1 (phenol formaldehyde type phenol resin) of the curing agent, the curing agent 3 (biphenyl aralkyl type phenol resin) was used and the epoxy resin composition was treated in the same manner as in Example 1. A kneaded product was obtained. Moreover, the evaluation was performed.

〔比較例1〕
表1に示すとおり、二酸化ケイ素粉末のみを使用して、実施例1と同様にしてエポキシ樹脂組成物の混練物を得た。また、その評価を行った。
[Comparative Example 1]
As shown in Table 1, an epoxy resin composition kneaded product was obtained in the same manner as in Example 1 using only silicon dioxide powder. Moreover, the evaluation was performed.

〔比較例2〕
表1に示すとおり、酸化マグネシウム粉末1の代わりに、表面が3−グリシドキシプロピルトリメトキシシランで処理された酸化マグネシウム粉末3を使用して、実施例1と同様にしてエポキシ樹脂組成物の混練物を得た。また、その評価を行った。
[Comparative Example 2]
As shown in Table 1, in place of the magnesium oxide powder 1, using the magnesium oxide powder 3 whose surface was treated with 3-glycidoxypropyltrimethoxysilane, the epoxy resin composition was treated in the same manner as in Example 1. A kneaded product was obtained. Moreover, the evaluation was performed.

〔比較例3〕
表1に示すとおり、酸化マグネシウム粉末1の代わりに、表面がビニルトリメトキシシランで処理された酸化マグネシウム粉末4を使用して、実施例1と同様にしてエポキシ樹脂組成物の混練物を得た。また、その評価を行った。
[Comparative Example 3]
As shown in Table 1, an epoxy resin composition kneaded material was obtained in the same manner as in Example 1 except that the magnesium oxide powder 4 whose surface was treated with vinyltrimethoxysilane was used instead of the magnesium oxide powder 1. . Moreover, the evaluation was performed.

〔比較例4〕
表1に示すとおり、酸化マグネシウム粉末1の代わりに、表面が処理されていない酸化マグネシウム粉末5を使用して、実施例1と同様にしてエポキシ樹脂組成物の混練物を得ようと試みたが、得ることができなかった。
[Comparative Example 4]
As shown in Table 1, instead of magnesium oxide powder 1, an attempt was made to obtain a kneaded product of an epoxy resin composition in the same manner as in Example 1 by using magnesium oxide powder 5 whose surface was not treated. Could not get.

〔参考例1〕
表1に示すとおり、酸化マグネシウム粉末1の代わりに、表面がビニルトリメトキシシランで処理された酸化マグネシウム粉末4を使用して、実施例2と同様にしてエポキシ樹脂組成物の混練物を得た。また、その評価を行った。
[Reference Example 1]
As shown in Table 1, a kneaded product of an epoxy resin composition was obtained in the same manner as in Example 2 using magnesium oxide powder 4 whose surface was treated with vinyltrimethoxysilane instead of magnesium oxide powder 1. . Moreover, the evaluation was performed.

〔参考例2〕
表1に示すとおり、酸化マグネシウム粉末1の代わりに、表面が処理されていない酸化マグネシウム粉末5を使用して、実施例2と同様にしてエポキシ樹脂組成物の混練物を得た。また、その評価を行った。
[Reference Example 2]
As shown in Table 1, an epoxy resin composition kneaded product was obtained in the same manner as in Example 2 using magnesium oxide powder 5 whose surface was not treated instead of magnesium oxide powder 1. Moreover, the evaluation was performed.

表1に、実施例及び比較例の組成や評価結果などを示した。   Table 1 shows the compositions and evaluation results of Examples and Comparative Examples.

Figure 2017186578
Figure 2017186578

表2に示すように、酸化マグネシウム粉末1を用いた実施例1は、酸化マグネシウム粉
末3〜5を用いた比較例2〜4と比較して混練性が改善され、特に流動性が改善され成形性に優れるエポキシ樹脂組成物が得られることが分る。
As shown in Table 2, Example 1 using magnesium oxide powder 1 has improved kneadability as compared with Comparative Examples 2 to 4 using magnesium oxide powders 3 to 5, and particularly improved flowability and molding. It can be seen that an epoxy resin composition having excellent properties can be obtained.

Figure 2017186578
Figure 2017186578

表3に示すように、酸化マグネシウム粉末1、2を用いた実施例2、3は、酸化マグネシウム粉末4、5を用いた参考例1、2と比較して混練性が改善され、更に流動性が改善され成形性に優れるエポキシ樹脂組成物が得られることが分る。この効果は、硬化剤3においても有効であることが実施例4から分る。   As shown in Table 3, in Examples 2 and 3 using magnesium oxide powders 1 and 2, kneadability was improved as compared to Reference Examples 1 and 2 using magnesium oxide powders 4 and 5, and fluidity was further improved. It can be seen that an epoxy resin composition having improved moldability and excellent moldability can be obtained. It can be seen from Example 4 that this effect is also effective in the curing agent 3.

Figure 2017186578
Figure 2017186578

表4に示すように、実施例1〜4において、酸化マグネシウムを用いない比較例1より熱伝導率が改善していることが分る。難燃性については、硬化剤1を用いた実施例1と比較例1から分かるとおり、酸化マグネシウム粉末を用いることで難燃性が低下する。しかしながら、硬化剤2、3を用いることで難燃性が改良されてV−0を達成できることが分る。   As shown in Table 4, in Examples 1-4, it turns out that the thermal conductivity is improving rather than the comparative example 1 which does not use magnesium oxide. About a flame retardance, a flame retardance falls by using a magnesium oxide powder so that Example 1 and the comparative example 1 using the hardening | curing agent 1 may show. However, it can be seen that by using the curing agents 2 and 3, flame retardancy is improved and V-0 can be achieved.

Figure 2017186578
Figure 2017186578

本発明によって、混練によって容易に調製することが可能であり、特に流動性が改良されて成形性に優れ、吸水性が良好(低吸水性)である、酸化マグネシウム粉末を含有した
熱伝導性のエポキシ樹脂組成物を提供することができる。また、本発明によって、好ましくは更に耐燃焼性に優れる酸化マグネシウム粉末を含有した熱伝導性のエポキシ樹脂組成物を提供することができる。本発明のエポキシ樹脂組成物は、熱伝導性封止材、熱伝導性シート、熱伝導性接着剤及び硬化物として好適に使用することができる。
According to the present invention, it is possible to easily prepare by kneading, in particular, the fluidity is improved, the moldability is excellent, the water absorption is good (low water absorption), and the heat conductivity containing the magnesium oxide powder. An epoxy resin composition can be provided. In addition, according to the present invention, it is possible to provide a heat conductive epoxy resin composition containing a magnesium oxide powder that is preferably excellent in combustion resistance. The epoxy resin composition of this invention can be used conveniently as a heat conductive sealing material, a heat conductive sheet, a heat conductive adhesive, and hardened | cured material.

Claims (10)

エポキシ樹脂、硬化剤、並びにフェニル基及びアミノ基のうちの少なくとも一方を有するアルコキシシランで表面処理された酸化マグネシウム粉末を含有することを特徴とするエポキシ樹脂組成物。   An epoxy resin composition comprising magnesium oxide powder surface-treated with an epoxy resin, a curing agent, and an alkoxysilane having at least one of a phenyl group and an amino group. 前記アルコキシシランが下記化学式(1)で表わされる化合物であることを特徴とする請求項1に記載のエポキシ樹脂組成物。
Figure 2017186578
(化学式(1)において、lは1〜3の整数、Rはそれぞれ同一又は異なっていてもよいアルキル基、R’はそれぞれ同一又は異なっていてもよいフェニル基及びアミノ基のうちの少なくとも一方を含む一価の基である。)
The epoxy resin composition according to claim 1, wherein the alkoxysilane is a compound represented by the following chemical formula (1).
Figure 2017186578
(In the chemical formula (1), l is an integer of 1 to 3, R is an alkyl group which may be the same or different, and R ′ is at least one of a phenyl group and an amino group which may be the same or different. Including monovalent groups.)
前記硬化剤がフェノール樹脂であることを特徴とする請求項1又は2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the curing agent is a phenol resin. 前記フェノール樹脂がフェニルアラルキル型フェノール樹脂及びビフェニルアラルキル型フェノール樹脂からなる群から選択される一以上のフェノール樹脂であることを特徴とする請求項3に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 3, wherein the phenol resin is one or more phenol resins selected from the group consisting of phenyl aralkyl type phenol resins and biphenyl aralkyl type phenol resins. 請求項1〜4のいずれかに記載のエポキシ樹脂組成物からなる熱伝導性封止材。   The heat conductive sealing material which consists of an epoxy resin composition in any one of Claims 1-4. 請求項1〜4のいずれかに記載のエポキシ樹脂組成物からなる熱伝導性シート。   The heat conductive sheet which consists of an epoxy resin composition in any one of Claims 1-4. 請求項1〜4のいずれかに記載のエポキシ樹脂組成物からなる熱伝導性接着剤。   The heat conductive adhesive which consists of an epoxy resin composition in any one of Claims 1-4. 請求項1〜4のいずれかに記載のエポキシ樹脂組成物を硬化させた硬化物。   Hardened | cured material which hardened the epoxy resin composition in any one of Claims 1-4. エポキシ樹脂、フェニルアラルキル型フェノール樹脂及びビフェニルアラルキル型フェノール樹脂からなる群から選択される一以上のフェノール樹脂からなる硬化剤、並びに酸化マグネシウム粉末を含有することを特徴とするエポキシ樹脂組成物。   An epoxy resin composition comprising: a curing agent composed of one or more phenolic resins selected from the group consisting of an epoxy resin, a phenylaralkyl-type phenolic resin, and a biphenylaralkyl-type phenolic resin; and magnesium oxide powder. フェニル基及びアミノ基のうちの少なくとも一方を有するアルコキシシランで表面処理された酸化マグネシウム粉末からなることを特徴とするエポキシ樹脂組成物用充填材。   An epoxy resin composition filler comprising a magnesium oxide powder surface-treated with an alkoxysilane having at least one of a phenyl group and an amino group.
JP2017143866A 2017-07-25 2017-07-25 Epoxy resin composition and use thereof Active JP6335374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017143866A JP6335374B2 (en) 2017-07-25 2017-07-25 Epoxy resin composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143866A JP6335374B2 (en) 2017-07-25 2017-07-25 Epoxy resin composition and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013191545A Division JP2015059130A (en) 2013-09-17 2013-09-17 Epoxy resin composition, use thereof and filler for epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2017186578A true JP2017186578A (en) 2017-10-12
JP6335374B2 JP6335374B2 (en) 2018-05-30

Family

ID=60046167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143866A Active JP6335374B2 (en) 2017-07-25 2017-07-25 Epoxy resin composition and use thereof

Country Status (1)

Country Link
JP (1) JP6335374B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191232A (en) * 1984-10-12 1986-05-09 Asahi Glass Co Ltd Production of magnesium oxide for resin filling
JP2001158853A (en) * 1999-12-02 2001-06-12 Shin Kobe Electric Mach Co Ltd Epoxy resin composition and prepreg and printed wiring board using the same
JP2002284964A (en) * 2001-03-26 2002-10-03 Toray Ind Inc Epoxy resin composition for semiconductor-sealing and semiconductor device
US20090152491A1 (en) * 2007-11-16 2009-06-18 E. I. Du Pont De Nemours And Company Thermally conductive resin compositions
JP2012153552A (en) * 2011-01-25 2012-08-16 Ube Material Industries Ltd Magnesium oxide powder
JP2012162650A (en) * 2011-02-07 2012-08-30 Meiwa Kasei Kk Thermoconductive resin composition, and semiconductor package
WO2014136773A1 (en) * 2013-03-06 2014-09-12 Dic株式会社 Epoxy resin composition, cured product, heat radiating material, and electronic member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191232A (en) * 1984-10-12 1986-05-09 Asahi Glass Co Ltd Production of magnesium oxide for resin filling
JP2001158853A (en) * 1999-12-02 2001-06-12 Shin Kobe Electric Mach Co Ltd Epoxy resin composition and prepreg and printed wiring board using the same
JP2002284964A (en) * 2001-03-26 2002-10-03 Toray Ind Inc Epoxy resin composition for semiconductor-sealing and semiconductor device
US20090152491A1 (en) * 2007-11-16 2009-06-18 E. I. Du Pont De Nemours And Company Thermally conductive resin compositions
JP2011503328A (en) * 2007-11-16 2011-01-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermally conductive resin composition
JP2012153552A (en) * 2011-01-25 2012-08-16 Ube Material Industries Ltd Magnesium oxide powder
JP2012162650A (en) * 2011-02-07 2012-08-30 Meiwa Kasei Kk Thermoconductive resin composition, and semiconductor package
WO2014136773A1 (en) * 2013-03-06 2014-09-12 Dic株式会社 Epoxy resin composition, cured product, heat radiating material, and electronic member

Also Published As

Publication number Publication date
JP6335374B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
CN107636071B (en) Epoxy molding compounds having high adhesion to nickel surfaces, method for the production thereof and use thereof
JP2019203122A (en) Thermosetting maleimide resin composition for sealing semiconductor, and semiconductor device
CN104448701B (en) Epoxy resin composition, use thereof, and filler for epoxy resin composition
TW201638175A (en) Composition, epoxy resin curing agent, epoxy resin composition, thermosetting composition, cured product, semiconductor device, and interlayer insulating material
TW202009272A (en) Heat-curable resin composition for semiconductor encapsulation and semiconductor device
JP2009001638A (en) Molding resin composition, molded article and semiconductor package
JP4850510B2 (en) Resin composition for sealing and semiconductor device
JP2018044079A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device
JP6335374B2 (en) Epoxy resin composition and use thereof
JP2004307545A (en) Epoxy resin composition and sealed semiconductor device
JPS6055025A (en) Epoxy resin composition
JPH09151301A (en) Epoxy resin composition
KR20010113532A (en) Semiconductor Encapsulating Epoxy Resin Composition and Semiconductor Device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
KR102228914B1 (en) Epoxy resin composition
JP2010018738A (en) Nonflammable molding resin composition and molded product
TWI707883B (en) Polyalkynes and its preparation method and use
JP2002241587A (en) Epoxy resin composition and semiconductor device
JP2002194064A (en) Resin composition for encapsulating semiconductor and semiconductor device using the same
KR20190050524A (en) Epoxy resin composition
JP2008056740A (en) Thermosetting compound, thermosetting resin composition and semiconductor device
KR102137553B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP2004256729A (en) Epoxy resin composition and sealed semiconductor device
JP2001210759A (en) Epoxy resin composition and electronic component sealed device
JP3506423B2 (en) Sealing resin composition and semiconductor sealing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180427

R150 Certificate of patent or registration of utility model

Ref document number: 6335374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250