JP2006257309A - Epoxy resin composition for sealing semiconductor and semiconductor device - Google Patents

Epoxy resin composition for sealing semiconductor and semiconductor device Download PDF

Info

Publication number
JP2006257309A
JP2006257309A JP2005078185A JP2005078185A JP2006257309A JP 2006257309 A JP2006257309 A JP 2006257309A JP 2005078185 A JP2005078185 A JP 2005078185A JP 2005078185 A JP2005078185 A JP 2005078185A JP 2006257309 A JP2006257309 A JP 2006257309A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
magnesium oxide
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005078185A
Other languages
Japanese (ja)
Inventor
Keiichi Sakumichi
慶一 作道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005078185A priority Critical patent/JP2006257309A/en
Publication of JP2006257309A publication Critical patent/JP2006257309A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing semiconductor small in die wear in sealing and molding a semiconductor device, having a high heat conductivity and a high reliability to wet resistance. <P>SOLUTION: The invention relates to the epoxy resin composition comprising (A) the epoxy resin, (B) a phenol resin, (C) a hardening accelerator and (D) magnesium oxide surface treated by an inorganic compound, wherein the cured product of the resin composition preferably, has 0.1-1 wt%. of water absorption in soaking in boiling water for 24 hrs at 100°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.

IC、LSI、トランジスター等の半導体素子の封止には金属缶、セラミック、エポキシ樹脂組成物等が用いられている。中でもエポキシ樹脂組成物のトランスファー成形による封止方法は、低コスト且つ大量生産に適しており広く用いられている。また、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により、耐湿性の向上や、半田リフローへの対応などが図られてきた。
しかし、近年の電子機器の高機能化、高速化に伴い、半導体装置の発熱量が増大傾向にある。そのため、半導体封止用エポキシ樹脂組成物に対しても高熱放散性の要求が高まっており、樹脂組成物を構成する無機充填材についても様々な検討が進められている。これまで高熱放散性が要求される電子機器には、無機充填材として結晶シリカ、又はアルミナを含有する半導体封止用エポキシ樹脂組成物(以下、「封止材」ともいう。)が用いられてきた。しかし、結晶シリカ、アルミナの熱伝導率は封止材に広く用いられている溶融シリカに比べ高いものの充分ではなく、近年の高速化要求に応えることができていない。一方、窒化アルミニウム、窒化ケイ素は、それ自体が100W/m・K以上の高い熱伝導率を有するが、成形時の金型磨耗が著しい、耐湿信頼性の低下などの問題が懸念され、本格的に普及するまでには至っていない。熱伝導率と金型磨耗を両立させ得るフィラーとしては、酸化マグネシュウムが挙げられる。酸化マグネシュウムは熱伝導率が48W/m・Kとアルミナ(30W/m・K)より高く、尚且つモース硬度が6であり金型磨耗への影響も少なく、高熱放散性が要求される封止材用の充填材として望ましい特性を備えているが、封止材の耐湿信頼性を低下させるという欠点がある。この欠点を克服することを目的として、酸化マグネシュウム中の不純物を減らす技術が提案されている(例えば、特許文献1参照。)が、酸化マグネシュウム自体の吸湿性特性自体は改善されておらず、高温高湿下において酸化マグネシュウムの水酸化マグネシュウムへの変化に伴う体積膨張により、半導体装置にクラックが発生する現象が解決できていなかった。また、別の手段として、シランカップリング剤等の有機系表面処理剤により疎水化を図る技術が提案されている(例えば、特許文献2参照。)が、有機カップリング剤では表面処理膜の強度が充分ではなく、耐湿性は向上するが充分ではなかった。
Metal cans, ceramics, epoxy resin compositions, and the like are used for sealing semiconductor elements such as ICs, LSIs, and transistors. Among them, a sealing method by transfer molding of an epoxy resin composition is suitable for low cost and mass production and widely used. In terms of reliability, improvement of moisture resistance and solder reflow have been achieved by improving epoxy resins and phenolic resins as curing agents.
However, with the recent increase in functionality and speed of electronic devices, the amount of heat generated by semiconductor devices tends to increase. For this reason, there is an increasing demand for high heat dissipation properties for the epoxy resin composition for semiconductor encapsulation, and various studies are being made on the inorganic filler constituting the resin composition. To date, electronic devices that require high heat dissipation have used an epoxy resin composition for semiconductor encapsulation (hereinafter, also referred to as “encapsulant”) containing crystalline silica or alumina as an inorganic filler. It was. However, although the thermal conductivity of crystalline silica and alumina is higher than that of fused silica widely used for sealing materials, it is not sufficient, and it has not been able to meet the recent demand for higher speed. On the other hand, aluminum nitride and silicon nitride themselves have a high thermal conductivity of 100 W / m · K or more, but there are concerns about problems such as significant wear of the mold during molding and deterioration of moisture resistance reliability. It has not yet reached widespread use. Examples of the filler that can achieve both thermal conductivity and mold wear include magnesium oxide. Magnesium oxide has a thermal conductivity of 48 W / m · K, which is higher than that of alumina (30 W / m · K), has a Mohs hardness of 6, has little effect on mold wear, and requires high heat dissipation. Although it has desirable characteristics as a filler for materials, it has a drawback of reducing the moisture resistance reliability of the sealing material. In order to overcome this drawback, a technique for reducing impurities in magnesium oxide has been proposed (see, for example, Patent Document 1), but the hygroscopic property itself of magnesium oxide itself has not been improved, and the temperature is high. The phenomenon that cracks occur in a semiconductor device due to volume expansion accompanying the change of magnesium oxide to magnesium hydroxide under high humidity has not been solved. As another means, a technique for hydrophobizing with an organic surface treatment agent such as a silane coupling agent has been proposed (see, for example, Patent Document 2). However, the moisture resistance was improved but not sufficient.

特開2001−214065号公報(第2〜8頁)JP 2001-214065 A (pages 2 to 8) 特開平05−063116号公報(第2〜5頁)JP 05-063116 A (pages 2 to 5)

本発明は、従来の問題点を解決するためになされたもので、その目的とするところは、半導体素子の封止成形時における金型磨耗が少なく、高熱伝導性を有し、且つ耐湿信頼性の高い半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。   The present invention has been made in order to solve the conventional problems. The object of the present invention is to reduce the wear of the mold at the time of sealing molding of a semiconductor element, to have high thermal conductivity, and to be reliable against moisture. The present invention provides an epoxy resin composition for semiconductor encapsulation having a high level and a semiconductor device using the same.

本発明は、
[1] エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、及び(D)無機物による表面処理が施された酸化マグネシュウムを含有することを特徴とする半導体封止用エポキシ樹脂組成物、
[2] 第[1]項に記載のエポキシ樹脂組成物において、前記樹脂組成物の硬化物を100℃の煮沸水に24hr浸漬処理した時の吸湿率が0.1重量%以上、1重量%以下である半導体封止用エポキシ樹脂組成物、
[3] 第[1]又は[2]項に記載のエポキシ樹脂組成物において、前記(D)無機物による表面処理が施された酸化マグネシュウムの粒子形状が球状である半導体封止用エポキシ樹脂組成物、
[4] 第[1]ないし[3]項のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
The present invention
[1] An epoxy resin composition for semiconductor encapsulation, comprising: an epoxy resin, (B) a phenol resin, (C) a curing accelerator, and (D) magnesium oxide subjected to a surface treatment with an inorganic substance,
[2] In the epoxy resin composition according to item [1], the moisture absorption when the cured product of the resin composition is immersed in boiling water at 100 ° C. for 24 hours is 0.1 wt% or more and 1 wt% Epoxy resin composition for semiconductor encapsulation which is:
[3] The epoxy resin composition for semiconductor encapsulation according to the item [1] or [2], wherein the particle shape of the magnesium oxide surface-treated with the inorganic substance (D) is spherical. ,
[4] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to any one of [1] to [3],
It is.

本発明に従うと、半導体素子の封止成形時における金型磨耗が少なく、高熱伝導性を有し、且つ耐湿信頼性が高い半導体封止用エポキシ樹脂組成物を得ることができる。   According to the present invention, it is possible to obtain an epoxy resin composition for encapsulating a semiconductor that has little mold wear during encapsulating of a semiconductor element, has high thermal conductivity, and has high moisture resistance reliability.

本発明は、エポキシ樹脂、フェノール樹脂、硬化促進剤、無機物による表面処理が施された酸化マグネシュウムを含有することにより、半導体素子の封止成形時における金型磨耗が少なく、高熱伝導性を有し、且つ耐湿信頼性の高い半導体封止用エポキシ樹脂組成物が得られるものである。
以下、本発明について詳細に説明する。
The present invention contains epoxy resin, phenolic resin, curing accelerator, and magnesium oxide that has been surface-treated with an inorganic substance, so that there is less mold wear during sealing molding of semiconductor elements, and high thermal conductivity. Moreover, an epoxy resin composition for semiconductor encapsulation having high moisture resistance and reliability can be obtained.
Hereinafter, the present invention will be described in detail.

本発明に用いるエポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定するものではない。例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等を用いることができる。上記、エポキシではビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂が好適に用いられるが、これに限定するものではない。エポキシは2種類以上混合しても良い。   Epoxy resins used in the present invention are monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure are not particularly limited. For example, biphenyl type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin Dicyclopentadiene-modified phenol type epoxy resin, phenol aralkyl type epoxy resin (having a phenylene skeleton, a biphenylene skeleton, or the like) can be used. In the above-mentioned epoxy, biphenyl type epoxy resin and bisphenol type epoxy resin are preferably used, but not limited thereto. Two or more types of epoxy may be mixed.

本発明に用いるフェノール樹脂は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではない。例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは単独でも混合して用いても差し支えない。   The phenol resin used in the present invention is a monomer, oligomer or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol novolak resin, dicyclopentadiene modified phenol resin, terpene modified phenol resin, triphenolmethane type resin, phenol aralkyl resin (having phenylene skeleton, biphenylene skeleton, etc.) and the like can be mentioned. A mixture may be used.

エポキシ樹脂とフェノール樹脂の配合量は、特に限定するものではないが、全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数との比が0.8以上、1.3以下であることが好ましく、この範囲を外れると、エポキシ樹脂組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じる可能性がある。   The blending amount of the epoxy resin and the phenol resin is not particularly limited, but the ratio of the number of epoxy groups of all epoxy resins to the number of phenolic hydroxyl groups of all phenol resins is 0.8 or more and 1.3 or less. Preferably, outside this range, there is a possibility that the curability of the epoxy resin composition is lowered, the glass transition temperature of the cured product is lowered, the moisture resistance reliability is lowered, or the like.

本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用するものを使用することができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、2−メチルイミダゾール、テトラフェニルホスホニウム・テトラフェニルボレート、ベンゾキノンをアダクトしたトリフェニルホスフィン等が挙げられ、これらは単独でも混合して用いても差し支えない。   As a hardening accelerator used for this invention, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for a sealing material can be used. Examples thereof include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole, tetraphenylphosphonium / tetraphenylborate, triphenylphosphine adducted with benzoquinone, and the like. However, they can be mixed and used.

本発明では、無機充填材として無機物による表面処理が施された酸化マグネシュウムを用いる。無機物による表面処理が施されたとは、たとえば酸化マグネシュウムの表面が酸化マグネシュウムの粒径より充分小さいシリカ、アルミナ等の微細無機物粉末で被覆されたこと等をいう。具体的な表面処理方法としては、ヘンシェル、スーパーミキサー等を用いて高速攪拌により酸化マグネシュウムを核に該酸化マグネシュウムの表面に微細シリカ、微細アルミナ等を固着する方法、又は圧縮ロール等を用いてせん断加圧により機械的に微細シリカ、微細アルミナ等を酸化マグネシュウムの表面に圧し付ける方法等が挙げられるが、これらに限定されるものではない。酸化マグネシュウムは吸湿性が高く、酸化マグネシュウムを配合した封止材を用いて半導体素子等を封止した場合は高温高湿下では電子部品の信頼性を大きく損なうこととなる。しかし、上記ようにして施された無機物による表面処理により、酸化マグネシュウムの吸湿性を大幅に低減させることができ、これによって封止材の耐湿性を大幅に向上させることができる。耐湿性の向上効果については表面被覆層の強度によって異なってくるものであり、従来技術のカップリング剤等、有機物による表面処理では封止材製造工程でのせん断力等により容易に表面被覆層が破壊され充分な耐湿性向上効果を得ることができないが、本発明の無機物による表面処理では上記のような破壊が起こらず耐湿性向上効果を充分に発揮することができるものである。   In the present invention, magnesium oxide that has been surface-treated with an inorganic substance is used as the inorganic filler. The surface treatment with an inorganic substance means that the surface of magnesium oxide is coated with a fine inorganic substance powder such as silica or alumina that is sufficiently smaller than the particle diameter of magnesium oxide. Specific surface treatment methods include a method of fixing fine silica, fine alumina, etc. on the surface of magnesium oxide by high-speed stirring using Henschel, a super mixer, etc., or shearing using a compression roll, etc. Examples thereof include a method of mechanically pressing fine silica, fine alumina and the like against the surface of magnesium oxide by pressurization, but are not limited thereto. Magnesium oxide has high hygroscopicity, and when a semiconductor element or the like is sealed using a sealing material containing magnesium oxide, the reliability of electronic components is greatly impaired under high temperature and high humidity. However, the surface treatment with the inorganic material applied as described above can greatly reduce the hygroscopicity of magnesium oxide, thereby greatly improving the moisture resistance of the sealing material. The effect of improving the moisture resistance varies depending on the strength of the surface coating layer, and the surface coating layer can be easily formed by the shearing force in the sealing material manufacturing process in the surface treatment with an organic substance such as a coupling agent of the prior art. Although it is destroyed and a sufficient effect of improving the moisture resistance cannot be obtained, the surface treatment with the inorganic substance of the present invention does not cause the above-described destruction and can sufficiently exhibit the effect of improving the moisture resistance.

本発明に用いる無機物による表面処理が施された酸化マグネシュウムにおいて、酸化マグネシウムに対する無機物の配合比率は、酸化マグネシュウム及び無機物の粒子形状、粒度分布等によって異なってくるものであり、特に限定するものではないが、少なくとも酸化マグネシュウムの表面を被覆するに足る無機物の配合比率であることが望ましい。また、封止材とした際の特性評価において充分な耐湿性向上効果が得られる程度に、上記配合比率を決定することもできる。   In the magnesium oxide surface-treated with the inorganic substance used in the present invention, the compounding ratio of the inorganic substance to the magnesium oxide varies depending on the particle shape, particle size distribution, etc. of the magnesium oxide and the inorganic substance, and is not particularly limited. However, it is desirable that the blending ratio of the inorganic substance is sufficient to cover at least the surface of magnesium oxide. Moreover, the said mixture ratio can also be determined to such an extent that sufficient moisture-proof improvement effect is acquired in the characteristic evaluation at the time of setting it as a sealing material.

本発明に用いる無機物による表面処理が施された酸化マグネシュウムの形状は特に限定するものではないが、球形のものを用いるのが好ましい。破砕状のものでは、表面積が増えることにより耐湿性の低下を招くだけではなく、無機物による表面処理が施された酸化マグネシュウムの充填量の低下により本来の目的である高熱伝導化が充分に達成できない恐れがある。加えて、金型磨耗に関しても破砕状より球状の方が有利である。
また、本発明に用いる無機物による表面処理が施された酸化マグネシュウムの配合量は、特に限定されないが、全エポキシ樹脂組成物中70重量%以上、95重量%以下が好ましい。上記範囲内であると、充分な熱伝導性と充分な流動性を得ることができる。
The shape of the magnesium oxide subjected to the surface treatment with the inorganic material used in the present invention is not particularly limited, but it is preferable to use a spherical one. In the case of crushed materials, not only does the moisture resistance decrease due to an increase in the surface area, but the original purpose of high thermal conductivity cannot be sufficiently achieved due to a decrease in the filling amount of magnesium oxide that has been surface-treated with an inorganic substance. There is a fear. In addition, in terms of mold wear, a spherical shape is more advantageous than a crushed shape.
Moreover, the compounding quantity of the magnesium oxide surface-treated with the inorganic substance used for this invention is although it does not specifically limit, 70 to 95 weight% is preferable in all the epoxy resin compositions. When it is within the above range, sufficient thermal conductivity and sufficient fluidity can be obtained.

また、本発明においては、無機物による表面処理が施された酸化マグネシュウムを配合する効果を損なわない範囲で、その他の無機充填材を併用することができる。併用する無機充填材としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、最も好適に使用されるものとしては、球状の溶融シリカである。これらの無機充填材は、単独でも混合して用いても差し支えない。
また、無機物による表面処理が施された酸化マグネシュウムとその他の無機充填材の合計の配合量は、特に限定されないが、全エポキシ樹脂組成物中75重量%以上、95重量%以下が好ましい。上記範囲内であると、良好な耐半田リフロー性と充分な流動性を得ることができる。
Moreover, in this invention, another inorganic filler can be used together in the range which does not impair the effect which mix | blends the magnesium oxide surface-treated with the inorganic substance. As the inorganic filler to be used in combination, those which are generally used in epoxy resin compositions for semiconductor encapsulation can be used. For example, fused silica, crystalline silica, talc, alumina, silicon nitride and the like can be mentioned, and the most suitably used is spherical fused silica. These inorganic fillers may be used alone or in combination.
Further, the total blending amount of the magnesium oxide subjected to the surface treatment with the inorganic substance and the other inorganic filler is not particularly limited, but is preferably 75% by weight or more and 95% by weight or less in the total epoxy resin composition. Within the above range, good solder reflow resistance and sufficient fluidity can be obtained.

本発明のエポキシ樹脂組成物は、エポキシ樹脂、フェノール硬化剤、硬化促進剤、表面処理が施された酸化マグネシュウムを必須成分とするが、更にこれ以外にエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤、カーボンブラック等の着色剤、天然ワックス、合成ワックス等の離型剤、ゴム等の低応力添加剤、臭素化エポキシ樹脂や三酸化アンチモン、水酸化アルミニウム等の難燃剤、酸化ビスマス水和物等の無機イオン交換体等、種々の添加剤を適宜配合しても差し支えない。   The epoxy resin composition of the present invention comprises an epoxy resin, a phenol curing agent, a curing accelerator, and surface-treated magnesium oxide as essential components, but in addition to this, epoxy silane, mercaptosilane, aminosilane, alkylsilane, Silane coupling agents such as ureido silane and vinyl silane, colorants such as carbon black, mold release agents such as natural wax and synthetic wax, low stress additives such as rubber, brominated epoxy resin, antimony trioxide, aluminum hydroxide, etc. Various additives such as flame retardants and inorganic ion exchangers such as bismuth oxide hydrate may be appropriately blended.

また、本発明のエポキシ樹脂組成物は、ミキサー等を用いて原料を充分に均一に混合した後、更に熱ロール又はニーダー等の混練機で溶融混練し、冷却、粉砕しパウダー状にして成形材料とする。成形方法によっては、更に得られたパウダーを加圧してタブレット化して用いる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
In addition, the epoxy resin composition of the present invention is obtained by mixing the raw materials sufficiently uniformly using a mixer or the like, and then melt-kneading with a kneader such as a hot roll or a kneader, cooling and pulverizing to form a powder. And Depending on the molding method, the obtained powder is further compressed into a tablet and used.
The epoxy resin composition of the present invention is used to encapsulate various electronic components such as semiconductor elements, and to manufacture semiconductor devices by conventional molding methods such as transfer molding, compression molding, and injection molding. do it.

以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
ビフェニルエポキシ樹脂[エポキシ当量195g/eq、軟化点55℃、溶融粘度(150℃)0.02Pa・s] 12.77重量部
アラルキルフェノールノボラック樹脂A[水酸基当量175g/eq、軟化点67℃、溶融粘度(150℃)1.4Pa・s] 11.38重量部
トリフェニルホスフィン 0.25重量部
球状酸化マグネシュウムA[平均粒径17μm、無機表面処理品](協和化学工業(株)製、パイロキスマ 3320A) 75.00重量部
カーボンブラック 0.30重量部
カルナバワックス 0.30重量部
をミキサーにて混合し後、熱ロールを用いて、95℃で8分間混練して冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、以下の方法で評価した。結果を表1に示す。
Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.
Example 1
Biphenyl epoxy resin [epoxy equivalent 195 g / eq, softening point 55 ° C., melt viscosity (150 ° C.) 0.02 Pa · s] 12.77 parts by weight Aralkylphenol novolac resin A [hydroxyl equivalent 175 g / eq, softening point 67 ° C., melting Viscosity (150 ° C.) 1.4 Pa · s] 11.38 parts by weight Triphenylphosphine 0.25 parts by weight Spherical magnesium oxide A [average particle size 17 μm, inorganic surface-treated product] (Pyroxuma 3320A, manufactured by Kyowa Chemical Industry Co., Ltd.) ) 75.00 parts by weight Carbon black 0.30 parts by weight Carnauba wax 0.30 parts by weight was mixed with a mixer, then kneaded at 95 ° C. for 8 minutes using a hot roll, cooled and pulverized to obtain an epoxy resin composition I got a thing. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:低圧トランスファー成形機を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件でエポキシ樹脂組成物を注入し、流動長を測定した。単位はcm。
Evaluation method Spiral flow: Using a low-pressure transfer molding machine, a spiral flow measurement mold conforming to EMMI-1-66, epoxy resin under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds The composition was injected and the flow length was measured. The unit is cm.

煮沸吸湿率:トランスファー成形機を用い、金型温度175℃、注入圧9.8MPa、硬化時間2分で、直径50mm、3mm厚のテストピースを成形した。175℃/8hrでポストキュアー、125℃/20hrで乾燥させ乾燥重量を求めた。その後、100℃の煮沸水中で24hr浸漬処理した後、再び重量を測定し、乾燥重量からの増加分を乾燥重量で割り煮沸吸湿率を求めた。煮沸処理後、テストピースが割れているものは、ろ紙でろ過し破片をすべて集め重量を測定した。   Boiling moisture absorption: Using a transfer molding machine, a test piece having a diameter of 50 mm and a thickness of 3 mm was molded at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes. It was post-cured at 175 ° C./8 hr and dried at 125 ° C./20 hr to determine the dry weight. Thereafter, after immersion treatment in boiling water at 100 ° C. for 24 hours, the weight was measured again, and the increase from the dry weight was divided by the dry weight to obtain the boiling moisture absorption rate. After the boiling treatment, the broken test piece was filtered with a filter paper to collect all the pieces and measure the weight.

テストピースクラック:上記煮沸吸湿率、測定時にテストピースの外観を観察し、クラック、割れを確認した。   Test piece crack: The above-mentioned boiling moisture absorption rate, the appearance of the test piece was observed during measurement, and cracks and cracks were confirmed.

耐湿性:トランスファー成形機を用い、金型温度175℃、注入圧9.8MPa、硬化時間2分で、16pSOP(モールドサイズ11mm×7mm、厚さ1.95mm、半導体素子サイズ3.5mm×3.0mm、厚さ0.48mm、半導体素子のボンディングパッドと42アロイフレームを25μm径の金線で12箇所ボンディングしている。半導体素子はアルミ配線幅10μm、配線間距離10μm、アルミ蒸着厚み1μm。)を成形し、175℃、2時間で後硬化してサンプルを得た。得られた半導体装置15個を室温に冷却後、140℃、相対湿度85%の環境下で20V印加(ボンディングした12箇所のうち6箇所を陽極、6箇所を陰極)、200Hr処理してからパッケージを取り出し、各々の端子にテスターを当てて、回路の抵抗値を測定した。抵抗値が初期値の200%を超えたものを不良とし、不良箇所がn箇所であるときn/15と表示した(陽極:3箇所×5個、陰極:3箇所×5個)。   Moisture resistance: 16 pSOP (mold size 11 mm × 7 mm, thickness 1.95 mm, semiconductor element size 3.5 mm × 3.3) using a transfer molding machine with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes. (0mm, thickness 0.48mm, bonding pad of semiconductor element and 42 alloy frame are bonded at 12 places with 25μm diameter gold wire. Semiconductor element has aluminum wiring width 10μm, wiring distance 10μm, aluminum deposition thickness 1μm.) Was molded and post-cured at 175 ° C. for 2 hours to obtain a sample. After 15 semiconductor devices obtained were cooled to room temperature, 20V was applied in an environment of 140 ° C. and 85% relative humidity (6 out of 12 bonded locations were anodes and 6 locations were cathodes), treated for 200 hours, and then packaged. The resistance value of the circuit was measured by applying a tester to each terminal. When the resistance value exceeded 200% of the initial value, it was regarded as defective, and indicated as n / 15 when there were n defective portions (anode: 3 locations × 5, cathode: 3 locations × 5).

・熱伝導率:トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分で、直径40mm、厚さ30mmの成形品を成形し、175℃、8時間で後硬化し、得られた成形品の熱伝導率を熱伝導率計(京都電子工業社製QTM−500)で測定した。単位はW/mK。3W/mK以上を合格とした。 ・ Thermal conductivity: Using a transfer molding machine, a molded product with a diameter of 40 mm and a thickness of 30 mm was molded at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes, and after 175 ° C. for 8 hours. It hardened | cured and the heat conductivity of the obtained molded article was measured with the heat conductivity meter (QTM-500 by Kyoto Electronics Industry Co., Ltd.). The unit is W / mK. 3 W / mK or more was accepted.

実施例2〜5、比較例1〜4
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1に示す。
実施例1以外で用いた成分について、以下に示す。
球状酸化マグネシュウムB[平均粒径17μm、シランカップリング表面処理品]:酸化マグネシュウムC(協和化学工業(株)製、パイロキスマ 3320)100重量部に対してシランカップリング剤(日本ユニカー製 A−1100)10重量部をヘンシェルミキサーにて混合し酸化マグネシュウムBを調製した。
球状酸化マグネシュウムC[平均粒径17μm、表面処理なし](協和化学製 パイロキスマ 3320)
破砕状酸化マグネシュウム[平均粒径12μm、表面処理なし]
球状アルミナ[平均粒径20μm、表面処理なし]
球状溶融シリカ[平均粒径23μm、表面処理なし]
Examples 2-5, Comparative Examples 1-4
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
The components used in other than Example 1 are shown below.
Spherical magnesium oxide B [average particle size 17 μm, silane coupling surface-treated product]: Magnesium oxide C (manufactured by Kyowa Chemical Industry Co., Ltd., Pyroxuma 3320) with 100 parts by weight of silane coupling agent (Nihon Unicar A-1100) ) 10 parts by weight was mixed with a Henschel mixer to prepare magnesium oxide B.
Spherical magnesium oxide C [average particle size 17 μm, no surface treatment] (Pyroxuma 3320, manufactured by Kyowa Chemical)
Crushed magnesium oxide [average particle size 12 μm, no surface treatment]
Spherical alumina [average particle size 20 μm, no surface treatment]
Spherical fused silica [average particle size 23 μm, no surface treatment]

Figure 2006257309
Figure 2006257309

本発明に従うと、半導体素子の封止成形時における金型磨耗が少なく、高熱伝導性を有し、且つ耐湿信頼性が高い半導体封止用エポキシ樹脂組成物を得ることができるため、特に高熱放散性が要求される半導体装置に好適に用いることができる。   According to the present invention, an epoxy resin composition for semiconductor encapsulation having a low mold wear during the molding of a semiconductor element, high thermal conductivity, and high moisture resistance reliability can be obtained. Therefore, it can be suitably used for a semiconductor device requiring high performance.

Claims (4)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、及び(D)無機物による表面処理が施された酸化マグネシュウムを含有することを特徴とする半導体封止用エポキシ樹脂組成物。 An epoxy resin composition for semiconductor encapsulation, comprising (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, and (D) magnesium oxide subjected to a surface treatment with an inorganic substance. 請求項1に記載のエポキシ樹脂組成物において、前記樹脂組成物の硬化物を100℃の煮沸水に24hr浸漬処理した時の吸湿率が0.1重量%以上、1重量%以下である半導体封止用エポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the moisture absorption when the cured product of the resin composition is immersed in boiling water at 100 ° C. for 24 hours is 0.1 wt% or more and 1 wt% or less. Stopping epoxy resin composition. 請求項1又は2に記載のエポキシ樹脂組成物において、前記(D)無機物による表面処理が施された酸化マグネシュウムの粒子形状が球状である半導体封止用エポキシ樹脂組成物。 3. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the particle shape of magnesium oxide that has been surface-treated with the inorganic substance (D) is spherical. 請求項1ないし3のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。   A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to any one of claims 1 to 3.
JP2005078185A 2005-03-17 2005-03-17 Epoxy resin composition for sealing semiconductor and semiconductor device Pending JP2006257309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078185A JP2006257309A (en) 2005-03-17 2005-03-17 Epoxy resin composition for sealing semiconductor and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078185A JP2006257309A (en) 2005-03-17 2005-03-17 Epoxy resin composition for sealing semiconductor and semiconductor device

Publications (1)

Publication Number Publication Date
JP2006257309A true JP2006257309A (en) 2006-09-28

Family

ID=37096917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078185A Pending JP2006257309A (en) 2005-03-17 2005-03-17 Epoxy resin composition for sealing semiconductor and semiconductor device

Country Status (1)

Country Link
JP (1) JP2006257309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061894A1 (en) * 2009-11-20 2011-05-26 パナソニック電工株式会社 Prepreg, laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
JP2017088696A (en) * 2015-11-06 2017-05-25 株式会社トクヤマ Composite filler and resin composition containing the same
US11854919B2 (en) * 2016-05-30 2023-12-26 Resonac Corporation Sealing composition and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061894A1 (en) * 2009-11-20 2011-05-26 パナソニック電工株式会社 Prepreg, laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
KR20120095938A (en) * 2009-11-20 2012-08-29 파나소닉 주식회사 Prepreg, laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
US8603624B2 (en) 2009-11-20 2013-12-10 Panasonic Corporation Prepreg, laminate, metal clad laminate, circuit board, and circuit board for LED mounting
KR101718178B1 (en) 2009-11-20 2017-03-20 파나소닉 아이피 매니지먼트 가부시키가이샤 Prepreg, laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
JP2017088696A (en) * 2015-11-06 2017-05-25 株式会社トクヤマ Composite filler and resin composition containing the same
US11854919B2 (en) * 2016-05-30 2023-12-26 Resonac Corporation Sealing composition and semiconductor device

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP2006265370A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP4961635B2 (en) Epoxy resin composition and semiconductor device
TW201829609A (en) Resin composition, resin sheet and semiconductor device, and method for manufacturing semiconductor device wherein the resin sheet is excellent in operability and formability and capable of maintaining flexibility for a long period of time
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
JP2005089486A (en) Epoxy resin composition and semiconductor device
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
JP4774778B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2005089710A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2006001986A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2005053978A (en) Epoxy resin composition for semiconductor sealing, and semiconductor device
JPH07188515A (en) Resin composition for semiconductor sealing
JP4380237B2 (en) Thermosetting resin composition epoxy resin composition and semiconductor device
WO2020026818A1 (en) Flaky resin composition for encapsulation and semiconductor device
JPH1180509A (en) Epoxy resin composition and semiconductor device
JP2005139260A (en) Epoxy resin composition and semiconductor device
JP3317473B2 (en) Epoxy resin composition
JP2001253999A (en) Epoxy resin molding material and semiconductor device
JP4379977B2 (en) Epoxy resin composition and semiconductor device