JP4380237B2 - Thermosetting resin composition epoxy resin composition and semiconductor device - Google Patents

Thermosetting resin composition epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4380237B2
JP4380237B2 JP2003180845A JP2003180845A JP4380237B2 JP 4380237 B2 JP4380237 B2 JP 4380237B2 JP 2003180845 A JP2003180845 A JP 2003180845A JP 2003180845 A JP2003180845 A JP 2003180845A JP 4380237 B2 JP4380237 B2 JP 4380237B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor device
semiconductor
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003180845A
Other languages
Japanese (ja)
Other versions
JP2005015583A (en
Inventor
秀樹 折原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003180845A priority Critical patent/JP4380237B2/en
Publication of JP2005015583A publication Critical patent/JP2005015583A/en
Application granted granted Critical
Publication of JP4380237B2 publication Critical patent/JP4380237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
半導体封止用エポキシ樹脂組成物をトランスファー成形したLSIのパッケージング手法は、低コスト、大量生産に適した方法として採用されており、信頼性の点でも主剤であるエポキシ樹脂や硬化剤であるフェノール樹脂の改良により、特性の向上が図られてきた。現在LSI集積度の急激な上昇に伴う接続端子数の拡大に対処するため、パッケージの同一面積内でパッケージのピン数を増加させる方法がとられている。その結果、リードピッチは150μm以下、ワイヤーボンディングピッチに至っては、今や50μm以下になりつつある。
【0003】
一方、半導体封止用エポキシ樹脂組成物には、従来から着色剤としてカーボンブラックが使用されてきた。カーボンブラックの一次粒子の平均粒径は10〜100nmと非常に小さいが、粒径が0.1μm程度から最大5mm程度の二次凝集物が存在することがあり、内部接続のピッチが広かった以前には何の問題も無かった。ファインピッチ化が進んだ現在、内部のリード間やワイヤー間に導電性のカーボンブラックの凝集物が入り込み、その間を導通させてしまうリーク不良がしばしば発生するようになってきた。そこで、このような不具合が発生しないエポキシ樹脂組成物が望まれている。これまで、カーボンブラックの平均粒径や比表面積を管理する方法(例えば、特許文献1参照)や、カーボンブラックの凝集物の最大粒径を管理する方法(例えば、特許文献2参照)などが提案されているが、完全に凝集物の発生を防ぐことは困難であった。
【0004】
【特許文献1】
特開2000−169675号公報(第2頁〜5頁)
【特許文献2】
特開2001−19833号公報(第2頁〜5頁)
【0005】
【発明が解決しようとする課題】
本発明は、カーボンブラックの二次凝集物によるリード間、ワイヤー間のリーク不良が発生しないファインピッチ化に対応可能なエポキシ樹脂組成物、及びこれを用いて半導体素子を封止してなる半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
[1](A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)溶融シリカ、結晶シリカ、タルク、アルミナ及び窒化珪素からなる群より選ばれる1または2以上の無機充填材、並びに(E)全エポキシ樹脂組成物に対して0.1〜1.0重量%の炭化ホウ素を含むことを特徴とする半導体封止用エポキシ樹脂組成物、
[2]第[1]項記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0007】
【発明の実施の形態】
本発明は、エポキシ樹脂、フェノール樹脂、硬化促進剤、無機充填材及び炭化ホウ素を含むことを特徴とするリード間、ワイヤー間のリーク不良が発生しないファインピッチ化に対応可能な半導体封止用エポキシ樹脂組成物及び半導体装置についてである。
本発明に用いるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂等が挙げられ、通常半導体封止用エポキシ樹脂組成物に使用されるエポキシ樹脂を用いればよい。これらは単独で用いても併用しても差し支えない。
【0008】
本発明に用いるフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂等が挙げられ、通常半導体封止用エポキシ樹脂組成物に使用されるフェノール樹脂を用いればよい。これらは単独で用いても併用しても差し支えない。
全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の比としては0.8〜1.3が好ましい。
【0009】
本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用するものを用いることができる。例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、2−メチルイミダゾール、テトラフェニルホスホニウム・テトラフェニルボレート等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0010】
本発明に用いる無機充填材としては、一般に封止材料に使用されているものを用いることができる。例えば溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、これらは単独でも併用しても差し支えない。無機充填材の配合量は、成形性と耐半田性のバランスから、全エポキシ樹脂組成物中60〜95重量%とすることが好ましく、更に好ましくは70〜92重量%である。下限値を下回ると、吸水率の上昇に伴う耐半田性が低下し、上限値を越えると、ワイヤースイープ及びパッドシフト等の成形性の問題が生じ好ましくない。
【0011】
本発明に用いる炭化ホウ素は、酸化ホウ素と炭素を高温で焼成した炭化物の一種である。炭化ホウ素は、カーボンブラックに代わる着色剤であり、カーボンブラックと比べて凝集しにくく、導電性も低い。炭化ホウ素の配合量は、全エポキシ樹脂組成物中0.1〜1.0重量%とすることが好ましい。下限値を下回るとエポキシ樹脂組成物の硬化物の外観色が灰色に近くなり、実用上の不具合となる。上限値を超えると、凝集物の発生確率が高くなり、リーク不良が発生しやすくなる。
【0012】
本発明では、(A)〜(E)成分の他、必要に応じて、臭素化エポキシ樹脂、三酸化アンチモン等の難燃剤、シランカップリング剤、天然ワックス、合成ワックス等の離型剤及び、シリコーンオイル、ゴム等の低応力剤等の添加剤を適宜配合しても差し支えない。
本発明でのエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0013】
【実施例】
以下に、本発明の実施例を示すが、本発明はこれらにより限定されるものではない。配合割合は重量部とする。
実施例1

Figure 0004380237
をヘンシェルミキサーを用いて常温で混合した後、表面温度が95℃と45℃の2本ロールを用いて混練し、冷却後粉砕して、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0014】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
リーク不良:45μmピッチでボンディングした160pLQFPを低圧トランスファー成形機にて金型温度175℃、注入圧力9.3MPa、硬化時間120秒の条件で成形し、パッド間のリークの有無を判定した。20個のパッケージについて不良個数で示した。
離型性:タブレット化した前記エポキシ樹脂組成物を用い、80pQFP(厚さ2.0mm、チップサイズ9.0mm×9.0mm)を低圧トランスファー成形機にて175℃、注入圧力8.3MPa、硬化時間60秒の条件で成形し、離型性の評価を行った。得られた成形品が自動成形機で支障なく搬送できるものを離型性〇、ピックアップ不良等により搬送に支障があるものを離型性×とした。
耐半田性:離型性評価用に成形した80pQFPを175℃で4時間ポストキュアした後、85℃、相対湿度85%の恒温恒湿槽に168時間放置し、その後240℃のIRリフロー処理してクラック及び内部剥離の発生数を調べた。処理後のクラック、内部剥離の発生がないものを合格とした(n=20)。
【0015】
実施例2〜7、比較例1〜4
表1の配合に従い、実施例1と同様にエポキシ樹脂組成物を得て、実施例1と同様にして評価を行った。結果を表1に示す。実施例1以外で用いた成分について以下に示す。
オルソクレゾールノボラック型エポキシ樹脂(軟化点55℃、エポキシ当量200)
フェノールノボラック樹脂(軟化点81℃、水酸基当量105)
カーボンブラックA(一次粒子径85nm)
カーボンブラックB(一次粒子径15nm)
複合酸化物系顔料(大日精化工業(株)製、Black#3550、一次粒子径40nm、)
【0016】
溶融混合物の製造例
溶融混合物A:ビフェニル型エポキシ樹脂(融点105℃、エポキシ当量191)7.1重量部とフェノールアラルキル樹脂(軟化点71℃、水酸基当量174)6.4重量部と炭化ホウ素0.3重量部と溶融球状シリカB10重量部をヘンシェルミキサーを用いて常温で混合した後、得られた混合物を二軸混練機を用いて溶融混合し、冷却後粉砕して溶融混合物Aとした。
溶融混合物B:ビフェニル型エポキシ樹脂(融点105℃、エポキシ当量191)7.1重量部とフェノールアラルキル樹脂(軟化点71℃、水酸基当量174)6.4重量部とカーボンブラックB0.3重量部と溶融球状シリカB10重量部をヘンシェルミキサーを用いて常温で混合した後、得られた混合物を二軸混練機を用いて溶融混合し、冷却後粉砕して溶融混合物Bとした。
【0017】
【表1】
Figure 0004380237
【0018】
【発明の効果】
本発明のエポキシ樹脂組成物は、カーボンブラックの二次凝集物を含まず、これを用いて封止された半導体装置は、リード間やワイヤー間のリーク不良が発生せず、信頼性に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.
[0002]
[Prior art]
LSI packaging method using transfer molding of epoxy resin composition for semiconductor encapsulation has been adopted as a low-cost, suitable method for mass production. From the point of view of reliability, epoxy resin is the main agent and phenol is the curing agent. Improvements in the resin have improved the properties. Currently, in order to cope with an increase in the number of connection terminals accompanying a rapid increase in the degree of integration of LSI, a method of increasing the number of pins of the package within the same area of the package is employed. As a result, the lead pitch is 150 μm or less, and the wire bonding pitch is now 50 μm or less.
[0003]
On the other hand, carbon black has been conventionally used as a colorant in epoxy resin compositions for semiconductor encapsulation. The average particle size of the primary particles of carbon black is very small as 10 to 100 nm, but there may be secondary agglomerates with a particle size of about 0.1 μm to a maximum of about 5 mm before the internal connection pitch was wide. There were no problems. At the present time when fine pitches have been advanced, conductive carbon black agglomerates enter between internal leads and between wires, and leakage defects have often occurred that cause electrical conduction between them. Therefore, an epoxy resin composition that does not cause such a problem is desired. So far, methods for managing the average particle size and specific surface area of carbon black (see, for example, Patent Document 1) and methods for managing the maximum particle size of carbon black aggregates (for example, see Patent Document 2) have been proposed. However, it was difficult to completely prevent the generation of aggregates.
[0004]
[Patent Document 1]
JP 2000-169675A (pages 2 to 5)
[Patent Document 2]
JP 2001-19833 (pages 2-5)
[0005]
[Problems to be solved by the invention]
The present invention relates to an epoxy resin composition that can cope with fine pitch generation that does not cause leakage defects between leads and wires due to secondary aggregates of carbon black, and a semiconductor device in which a semiconductor element is sealed using the same Is to provide.
[0006]
[Means for Solving the Problems]
The present invention
[1] One or more inorganic fillers selected from the group consisting of (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) fused silica, crystalline silica, talc, alumina and silicon nitride And (E) an epoxy resin composition for semiconductor encapsulation characterized by containing 0.1 to 1.0% by weight of boron carbide based on the total epoxy resin composition ,
[2] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to the item [1],
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to an epoxy for semiconductor encapsulation that can cope with fine pitch formation that does not cause leakage defects between leads and wires, including an epoxy resin, a phenol resin, a curing accelerator, an inorganic filler, and boron carbide. It is about a resin composition and a semiconductor device.
The epoxy resin used in the present invention includes monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, biphenyl type epoxy resin, bisphenol Type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy Resin, phenol aralkyl type epoxy resin, etc. are mentioned, The epoxy resin normally used for the epoxy resin composition for semiconductor sealing should just be used. These may be used alone or in combination.
[0008]
The phenol resin used in the present invention includes monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol A novolak resin, a dicyclopentadiene-modified phenol resin, a terpene-modified phenol resin, a triphenolmethane type resin, a phenol aralkyl resin, and the like may be used. A phenol resin that is usually used in an epoxy resin composition for semiconductor encapsulation may be used. These may be used alone or in combination.
The ratio of the number of epoxy groups of all epoxy resins to the number of phenolic hydroxyl groups of all phenol resins is preferably 0.8 to 1.3.
[0009]
As a hardening accelerator used for this invention, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for a sealing material can be used. Examples thereof include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole, tetraphenylphosphonium / tetraphenylborate and the like, and these may be used alone or in combination. .
[0010]
As the inorganic filler used in the present invention, those generally used for sealing materials can be used. Examples thereof include fused silica, crystalline silica, talc, alumina, silicon nitride and the like, and these may be used alone or in combination. The blending amount of the inorganic filler is preferably 60 to 95% by weight, more preferably 70 to 92% by weight, based on the balance between moldability and solder resistance. If the lower limit is not reached, the solder resistance due to the increase in water absorption rate is lowered, and if the upper limit is exceeded, moldability problems such as wire sweep and pad shift are caused.
[0011]
Boron carbide used in the present invention is a kind of carbide obtained by firing boron oxide and carbon at a high temperature. Boron carbide is a colorant that replaces carbon black, and is less likely to aggregate and less conductive than carbon black. It is preferable that the compounding quantity of boron carbide shall be 0.1-1.0 weight% in all the epoxy resin compositions. If the lower limit is not reached, the appearance color of the cured product of the epoxy resin composition becomes almost gray, which becomes a practical problem. When the upper limit is exceeded, the probability of occurrence of agglomerates increases and leak defects tend to occur.
[0012]
In the present invention, in addition to the components (A) to (E), if necessary, a flame retardant such as a brominated epoxy resin or antimony trioxide, a release agent such as a silane coupling agent, natural wax, or synthetic wax, and Additives such as silicone oil and low stress agents such as rubber may be added as appropriate.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0013]
【Example】
Examples of the present invention will be shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.
Example 1
Figure 0004380237
Was mixed at room temperature using a Henschel mixer, then kneaded using two rolls with surface temperatures of 95 ° C. and 45 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0014]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Leak failure: 160 pLQFP bonded at a pitch of 45 μm was molded with a low-pressure transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 9.3 MPa, and a curing time of 120 seconds, and the presence or absence of leakage between pads was determined. The number of defectives is shown for 20 packages.
Release property: Using the tableted epoxy resin composition, 80 pQFP (thickness 2.0 mm, chip size 9.0 mm × 9.0 mm) was cured at 175 ° C., injection pressure 8.3 MPa, and cured at a low pressure transfer molding machine. Molding was performed under the condition of time 60 seconds, and the releasability was evaluated. The molded product obtained was able to be transported without any trouble by an automatic molding machine.
Solder resistance: 80pQFP molded for mold release evaluation was post-cured at 175 ° C for 4 hours, then left in a constant temperature and humidity chamber at 85 ° C and 85% relative humidity for 168 hours, and then IR reflow treatment at 240 ° C The number of occurrences of cracks and internal delamination was examined. The thing which does not generate | occur | produce the crack after a process and internal peeling was set as the pass (n = 20).
[0015]
Examples 2-7, Comparative Examples 1-4
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1. Components used in Examples other than Example 1 are shown below.
Orthocresol novolac type epoxy resin (softening point 55 ° C, epoxy equivalent 200)
Phenol novolac resin (softening point 81 ° C, hydroxyl group equivalent 105)
Carbon black A (primary particle size 85nm)
Carbon black B (primary particle size 15nm)
Composite oxide pigment (Daiichi Seika Kogyo Co., Ltd., Black # 3550, primary particle size 40 nm)
[0016]
Production Examples of Melt Mixture Melt Mixture A: 7.1 parts by weight of biphenyl type epoxy resin (melting point 105 ° C., epoxy equivalent 191), 6.4 parts by weight of phenol aralkyl resin (softening point 71 ° C., hydroxyl group equivalent 174) and boron carbide 0 .3 parts by weight and 10 parts by weight of fused spherical silica B were mixed at room temperature using a Henschel mixer, and the resulting mixture was melt-mixed using a twin-screw kneader, cooled and pulverized to obtain a molten mixture A.
Melted mixture B: 7.1 parts by weight of biphenyl type epoxy resin (melting point 105 ° C., epoxy equivalent 191), 6.4 parts by weight of phenol aralkyl resin (softening point 71 ° C., hydroxyl group equivalent 174) and 0.3 parts by weight of carbon black B After 10 parts by weight of fused spherical silica B was mixed at room temperature using a Henschel mixer, the resulting mixture was melt-mixed using a twin-screw kneader, cooled and pulverized to obtain molten mixture B.
[0017]
[Table 1]
Figure 0004380237
[0018]
【The invention's effect】
The epoxy resin composition of the present invention does not contain secondary aggregates of carbon black, and a semiconductor device encapsulated using this has excellent reliability with no leakage between leads or wires. Yes.

Claims (2)

(A)エポキシ樹脂、
(B)フェノール樹脂、
(C)硬化促進剤、
(D)溶融シリカ、結晶シリカ、タルク、アルミナ及び窒化珪素からなる群より選択される1または2以上の無機充填材、並びに
(E)全エポキシ樹脂組成物に対して0.1〜1.0重量%の炭化ホウ素、
を含むことを特徴とする半導体封止用エポキシ樹脂組成物。
(A) epoxy resin,
(B) phenolic resin,
(C) a curing accelerator,
(D) fused silica, with respect to crystalline silica, talc, one or more inorganic fillers selected from the group consisting of alumina and silicon nitride, and (E) the total epoxy resin composition 0.1-1.0 Wt% boron carbide,
An epoxy resin composition for encapsulating a semiconductor, comprising:
請求項1記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to claim 1.
JP2003180845A 2003-06-25 2003-06-25 Thermosetting resin composition epoxy resin composition and semiconductor device Expired - Fee Related JP4380237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003180845A JP4380237B2 (en) 2003-06-25 2003-06-25 Thermosetting resin composition epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003180845A JP4380237B2 (en) 2003-06-25 2003-06-25 Thermosetting resin composition epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2005015583A JP2005015583A (en) 2005-01-20
JP4380237B2 true JP4380237B2 (en) 2009-12-09

Family

ID=34181715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180845A Expired - Fee Related JP4380237B2 (en) 2003-06-25 2003-06-25 Thermosetting resin composition epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4380237B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022090522A (en) * 2020-12-07 2022-06-17 株式会社東芝 Insulating resin composition, insulating member comprising the cured material, and electrical machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182949A (en) * 1996-12-27 1998-07-07 Nitto Denko Corp Epoxy resin composition and semiconductor device using the same
JP3975305B2 (en) * 1997-03-27 2007-09-12 大阪瓦斯株式会社 Epoxy resin composition and molded body
JP2001192433A (en) * 2000-01-07 2001-07-17 Osaka Gas Co Ltd Epoxy resin composition and its cured product
JP3479884B2 (en) * 2000-02-29 2003-12-15 大塚化学ホールディングス株式会社 Flame retardant epoxy resin composition and electronic component
JP3394029B2 (en) * 2000-03-21 2003-04-07 大塚化学株式会社 Flame-retardant epoxy resin composition, molded product thereof, and electronic component
JP3989349B2 (en) * 2002-09-30 2007-10-10 京セラケミカル株式会社 Electronic component sealing device

Also Published As

Publication number Publication date
JP2005015583A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP5130912B2 (en) Epoxy resin composition and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JPWO2011064964A1 (en) Mold for measuring fluid characteristics, method for measuring fluid characteristics, resin composition for semiconductor encapsulation, and method for manufacturing semiconductor device
JP2004018803A (en) Epoxy resin composition and semiconductor device
JP2006274186A (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP4380237B2 (en) Thermosetting resin composition epoxy resin composition and semiconductor device
TW202225244A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP5162833B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4691886B2 (en) Epoxy resin composition and semiconductor device
JP2003277585A (en) Epoxy resin composition and semiconductor device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
JP4539118B2 (en) Epoxy resin composition and semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP3973137B2 (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5093977B2 (en) Area mounted semiconductor device
JP2862777B2 (en) Epoxy resin composition
JP3976390B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation, and semiconductor device obtained thereby
JP4296820B2 (en) Epoxy resin composition and semiconductor device
JPH10182831A (en) Epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees