JP4687195B2 - Epoxy resin composition for semiconductor encapsulation and semiconductor device - Google Patents
Epoxy resin composition for semiconductor encapsulation and semiconductor device Download PDFInfo
- Publication number
- JP4687195B2 JP4687195B2 JP2005099391A JP2005099391A JP4687195B2 JP 4687195 B2 JP4687195 B2 JP 4687195B2 JP 2005099391 A JP2005099391 A JP 2005099391A JP 2005099391 A JP2005099391 A JP 2005099391A JP 4687195 B2 JP4687195 B2 JP 4687195B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- general formula
- resin composition
- integer
- represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XYGSHALTXQHCBD-UHFFFAOYSA-N C=NC(CC1)C1O Chemical compound C=NC(CC1)C1O XYGSHALTXQHCBD-UHFFFAOYSA-N 0.000 description 1
- 0 CC(C)(*)C1(CCC2)OC2(C)CC(*)C1 Chemical compound CC(C)(*)C1(CCC2)OC2(C)CC(*)C1 0.000 description 1
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Description
本発明は、半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。 The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.
従来からダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物を用いて封止されている。特に集積回路では、エポキシ樹脂、フェノール樹脂、及び溶融シリカ、結晶シリカ等の無機充填剤を配合した耐熱性、耐湿性に優れたエポキシ樹脂組成物が用いられている。ところが近年、電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、半導体素子の封止に用いられているエポキシ樹脂組成物への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田リフロー処理時に高温にさらされる。更に、環境負荷物質の撤廃の一環として、鉛を含まない半田への代替が進められており、鉛フリー半田は従来の半田に比べ融点が高いため表面実装時のリフロー温度は、従来よりも20℃程度高く、260℃が必要とされる。その為、半導体装置が従来以上に高い温度にさらされることになり、半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生したり、半導体装置にクラックを生じたりする等、半導体装置の信頼性を大きく損なう不良が生じ易くなっている。 Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed using an epoxy resin composition. In particular, an integrated circuit uses an epoxy resin composition excellent in heat resistance and moisture resistance in which an epoxy resin, a phenol resin, and an inorganic filler such as fused silica or crystalline silica are blended. However, in recent years, with the trend toward smaller, lighter, and higher performance electronic devices, higher integration of semiconductor elements has progressed year by year, and semiconductor devices have been encapsulated as surface mounting has been promoted. The demands on the epoxy resin compositions used are becoming increasingly severe. In particular, in the current situation where surface mounting of semiconductor devices has become common, a semiconductor device that has absorbed moisture is exposed to high temperatures during solder reflow processing. Furthermore, as part of the elimination of environmentally hazardous substances, replacement with lead-free solder is being promoted, and lead-free solder has a higher melting point than conventional solder, so the reflow temperature during surface mounting is 20 As high as ℃, 260 ℃ is required. Therefore, the semiconductor device is exposed to a higher temperature than before, peeling occurs at the interface between the semiconductor element or the lead frame and the cured epoxy resin composition, or the semiconductor device is cracked. Therefore, a defect that greatly impairs the reliability of the semiconductor device is likely to occur.
一方、近年環境への配慮から、従来半導体封止材に難燃剤として使用されてきた臭素含有有機化合物等のハロゲン系難燃剤、及び三酸化ニアンチモン、四酸化ニアンチモン等のアンチモン化合物の使用を制限する動きがあり、それらに代わる難燃化手法が求められている。半導体封止材の代替難燃化手法として、環境への害が少ない水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物を使用する手法が提案されているが、これらは多量に配合しないと難燃効果が発現せず、しかも充分な難燃性が得られる程度に配合量を増やすとエポキシ樹脂組成物の成形時の流動性、硬化性及び硬化物の機械強度が低下し、前記の鉛フリー半田実装温度域における耐半田リフロー性を低下させるという問題があった。 On the other hand, in consideration of the environment in recent years, halogen-based flame retardants such as bromine-containing organic compounds that have been used as flame retardants in conventional semiconductor encapsulants, and antimony compounds such as niantimony trioxide and niantimony tetroxide have been used. There is a movement to limit, and an alternative flame retardant technique is required. As an alternative flame retardant technique for semiconductor encapsulants, a technique that uses metal hydroxides such as aluminum hydroxide and magnesium hydroxide, which are less harmful to the environment, has been proposed. If the blending amount is increased to such an extent that the flame effect is not exhibited and sufficient flame retardancy is obtained, the fluidity, curability and mechanical strength of the cured product at the time of molding of the epoxy resin composition are lowered, and the above lead-free There was a problem that the solder reflow resistance in the solder mounting temperature range was lowered.
これらの問題に対して、低吸水、可撓性、難燃性を有するレジンを用いて耐半田リフロー性を向上させる方法が提案されている(例えば、特許文献1、2又は3参照。)が、鉛フリー半田を用いた場合にも対応できるようにするために、無機充填剤をより高充填化しようとすると、流動性が不足するという問題が発生するため、実現が困難であった。
以上のような状況から、難燃性付与剤を使用することなく高い耐燃性を有し、かつ流動性を損なうことなく、鉛フリー半田にも対応可能な高い耐半田リフロー性を有する半導体封止用樹脂組成物の開発が望まれていた。
To solve these problems, a method for improving solder reflow resistance using a resin having low water absorption, flexibility, and flame retardancy has been proposed (for example, see Patent Documents 1, 2, or 3). In order to make it possible to cope with the case where lead-free solder is used, it has been difficult to realize an increase in the amount of the inorganic filler because a problem of insufficient fluidity occurs.
Based on the above situation, semiconductor encapsulation with high flame resistance without using a flame retardant and high solder reflow resistance that can handle lead-free solder without impairing fluidity Development of a resin composition for use has been desired.
本発明は、上記のような問題点を解決するためになされたものであり、その目的とするところは、難燃性付与剤を使用することなく高い耐燃性を有し、かつ流動性を損なうことなく、鉛フリー半田にも対応可能な高い耐半田リフロー性を有する半導体封止用エポキシ樹脂組成物、及びこれを用いて半導体素子を封止してなる信頼性の高い半導体装置を提供することにある。 The present invention has been made in order to solve the above-described problems, and the object of the present invention is to have high flame resistance without using a flame retardant and to impair fluidity. To provide an epoxy resin composition for semiconductor encapsulation having high solder reflow resistance that can also be used for lead-free solder, and a highly reliable semiconductor device in which a semiconductor element is encapsulated using the epoxy resin composition It is in.
本発明は、
[1] (A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)一般式(3)で示される硬化促進剤、(D)シランカップリング剤、及び(E)無機充填剤を必須成分として含むエポキシ樹脂組成物であって、該エポキシ樹脂組成物中に、前記(C)一般式(3)で示される硬化促進剤が0.05重量%以上、0.5重量%以下、前記(E)無機充填剤が84重量%以上、92重量%以下の割合で含まれ、前記(A)一般式(1)で示されるエポキシ樹脂の軟化点が35℃以上、60℃以下であることを特徴とする半導体封止用エポキシ樹脂組成物、
The present invention
[1] (A) Epoxy resin represented by general formula (1), (B) Phenol resin represented by general formula (2), (C) Curing accelerator represented by general formula (3), (D) Silane An epoxy resin composition comprising a coupling agent and (E) an inorganic filler as essential components, wherein the curing accelerator represented by the general formula (3) (C) is 0.00 in the epoxy resin composition. 05 wt% or more and 0.5 wt% or less, and the (E) inorganic filler is contained in a proportion of 84 wt% or more and 92 wt% or less . An epoxy resin composition for semiconductor encapsulation, characterized by having a softening point of 35 ° C. or more and 60 ° C. or less ,
[2] 第[1]項に記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
[2] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to the item [1 ] ,
It is.
本発明に従うと、ハロゲン系難燃剤、及びアンチモン化合物、その他の難燃性付与剤を使用することなく、難燃グレードがUL−94のV−0となり、かつ流動性を損なうことなく、鉛フリー半田にも対応可能な高い耐半田リフロー性を有する半導体封止用エポキシ樹脂組成物、及びこれを用いて半導体素子を封止してなる信頼性の高い半導体装置を高い生産性で得ることができる。このため、本発明の半導体封止用エポキシ樹脂組成物は、工業的な樹脂封止型半導体装置、特に鉛フリー半田を使用する表面実装用の樹脂封止型半導体装置の製造に好適に用いることができる。 According to the present invention, the flame retardant grade is UL-94 V-0 without using halogen-based flame retardants, antimony compounds, and other flame retardants, and lead-free without impairing fluidity. An epoxy resin composition for semiconductor encapsulation having high solder reflow resistance that can also be applied to solder, and a highly reliable semiconductor device in which a semiconductor element is encapsulated using the composition can be obtained with high productivity. . For this reason, the epoxy resin composition for semiconductor encapsulation of the present invention is preferably used for the production of industrial resin-encapsulated semiconductor devices, particularly resin-encapsulated semiconductor devices for surface mounting using lead-free solder. Can do.
本発明は(A)前記一般式(1)で示されるエポキシ樹脂、(B)前記一般式(2)で示されるフェノール樹脂、(C)前記一般式(3)で示される硬化促進剤、(D)シランカップリング剤、及び(E)無機充填剤を必須成分として含むエポキシ樹脂組成物であって、該エポキシ樹脂組成物中に、前記(C)成分が0.05重量%以上、0.5重量%以下、(E)成分が84重量%以上、92重量%以下の割合で含まれることにより、ハロゲン系難燃剤、アンチモン化合物、その他の難燃性付与剤を使用することなく難燃グレードがUL−94のV−0となり、かつ流動性を損なうことなく、鉛フリー半田にも対応可能な高い耐半田リフロー性を有する半導体封止用エポキシ樹脂組成物が得られるものである。
以下、各成分について詳細に説明する。
The present invention includes (A) an epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2), (C) a curing accelerator represented by the general formula (3), D) An epoxy resin composition containing a silane coupling agent and (E) an inorganic filler as essential components, in which the component (C) is 0.05% by weight or more; By containing 5% by weight or less and (E) component in a proportion of 84% by weight or more and 92% by weight or less, flame retardant grade without using halogen flame retardants, antimony compounds, and other flame retardants Is a V-0 of UL-94, and an epoxy resin composition for semiconductor encapsulation having high solder reflow resistance that can be applied to lead-free solder without impairing fluidity can be obtained.
Hereinafter, each component will be described in detail.
本発明に用いられる一般式(1)で示されるエポキシ樹脂(A)は、樹脂骨格が疎水性を示すので硬化物が低吸湿性を示すと共に、硬化物の架橋点間距離が長くなるため半田リフロー温度での弾性率が低い特長を有し、このため発生する応力が低く密着性にも優れるため、耐半田リフロー性が良好であり好ましい。更に、樹脂骨格に占める芳香族環含有率が高いために、樹脂そのものの難燃性も高い。
一般式(1)のRは水素または炭素数1〜4のアルキル基を示し、互いに同一であっても異なっていても良い。aは0〜4の整数、bは0〜4の整数、cは0〜3の整数、dは0〜4の整数、nは平均値で0又は10以下の正数であるが、これらの内では硬化性の点から式(4)の樹脂等が好ましい。nが上記範囲内であると、樹脂の粘度が増大することによる封止成形時における樹脂組成物の流動性の低下を抑えることができ、より一層の低吸湿化のための無機充填剤の高充填化が可能となる。
R in the general formula (1) represents hydrogen or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. a is an integer of 0 to 4, b is an integer of 0 to 4, c is an integer of 0 to 3, d is an integer of 0 to 4, and n is an average value of 0 or a positive number of 10 or less. Among them, the resin of the formula (4) is preferable from the viewpoint of curability. When n is within the above range, it is possible to suppress a decrease in fluidity of the resin composition at the time of sealing molding due to an increase in the viscosity of the resin, and a higher inorganic filler for further reducing moisture absorption. Filling is possible.
また本発明では、一般式(1)で示されるエポキシ樹脂(A)を用いることによる特徴を損なわない範囲で、他のエポキシ樹脂と併用することができる。併用することができるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニル骨格等を有する)、ジシクロペンタジエン変性フェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。他のエポキシ樹脂を併用する場合の配合量としては、全エポキシ樹脂に対して、一般式(1)で示されるエポキシ樹脂が、70重量%以上、100重量%以下であることが好ましい。一般式(1)で示されるエポキシ樹脂の配合量が上記範囲内であると、良好な低吸湿性、耐半田リフロー性を得ることができる。 Moreover, in this invention, it can use together with another epoxy resin in the range which does not impair the characteristic by using the epoxy resin (A) shown by General formula (1). Examples of the epoxy resin that can be used in combination include monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. For example, phenol novolac type epoxy Resin, ortho-cresol novolak type epoxy resin, naphthol novolak type epoxy resin, phenol aralkyl type epoxy resin having biphenylene skeleton, naphthol aralkyl type epoxy resin (having phenylene skeleton, biphenyl skeleton, etc.), dicyclopentadiene modified phenol type epoxy resin, Examples include stilbene type epoxy resins, triphenol methane type epoxy resins, alkyl-modified triphenol methane type epoxy resins, triazine nucleus-containing epoxy resins, and the like. It may be used in combination with more than kind. When the other epoxy resin is used in combination, the epoxy resin represented by the general formula (1) is preferably 70% by weight or more and 100% by weight or less based on the total epoxy resin. When the blending amount of the epoxy resin represented by the general formula (1) is within the above range, good low moisture absorption and solder reflow resistance can be obtained.
本発明に用いられる一般式(2)で示されるフェノール樹脂(B)は、フェノール性水酸基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は低吸湿性を示すと共に、硬化物の架橋点間距離が長くなるためガラス転移温度(以下、「Tg」ともいう)を超えた高温域での弾性率が低いという特長を有し、このため発生する応力が低く密着性にも優れるため、耐半田リフロー性が良好であり好ましい。またこれらのフェノール樹脂は樹脂骨格に占める芳香族環含有率が高いために、樹脂そのものの難燃性も高く、架橋密度が低い割には耐熱性が高いという特徴を有している。
一般式(2)のRは水素または炭素数1〜4のアルキル基を示し、互いに同一であっても異なっていても良い。aは0〜4の整数、bは0〜4の整数、cは0〜3の整数、dは0〜4の整数、nは平均値で0又は10以下の正数であるが、これらの内では硬化性の点から式(5)の樹脂等が好ましい。nが上記nが上記範囲内であると、樹脂の粘度が増大することによる封止成形時における樹脂組成物の流動性の低下を抑えることができ、より一層の低吸湿化のための無機充填剤の高充填化が可能となる。
R in the general formula (2) represents hydrogen or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. a is an integer of 0 to 4, b is an integer of 0 to 4, c is an integer of 0 to 3, d is an integer of 0 to 4, and n is an average value of 0 or a positive number of 10 or less. Among them, the resin of the formula (5) is preferable from the viewpoint of curability. When n is in the above range, the decrease in fluidity of the resin composition at the time of sealing molding due to an increase in the viscosity of the resin can be suppressed, and inorganic filling for further reducing moisture absorption High filling of the agent becomes possible.
本発明では、一般式(2)のフェノール樹脂(B)を配合することによる特徴を損なわない範囲で、他のフェノール樹脂を併用することができる。併用することができるフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン骨格を有するフェノールアラルキル樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。他のフェノール樹脂を併用する場合の配合量としては、全フェノール樹脂に対して、一般式(2)で示されるフェノール樹脂が70重量%以上、100重量%以下であることが好ましい。一般式(2)で示されるフェノール樹脂の配合量が上記範囲内であると、良好な低吸湿性、耐半田リフロー性を得ることができる。 In this invention, another phenol resin can be used together in the range which does not impair the characteristic by mix | blending the phenol resin (B) of General formula (2). Examples of the phenol resin that can be used in combination include monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. Examples include cresol novolac resin, naphthol aralkyl resin, triphenolmethane resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin having a phenylene skeleton, etc. These may be used alone or in combination of two or more. May be used in combination. As a compounding quantity when using other phenol resins together, it is preferable that the phenol resin shown by General formula (2) is 70 to 100 weight% with respect to all the phenol resins. When the blending amount of the phenol resin represented by the general formula (2) is within the above range, good low moisture absorption and solder reflow resistance can be obtained.
本発明に用いられる全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の当量比としては、好ましくは0.5以上、2以下であり、特に0.7以上、1.5以下がより好ましい。上記範囲内であると、耐湿性、硬化性などの低下を抑えることができる。 The equivalent ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins used in the present invention is preferably 0.5 or more and 2 or less, more preferably 0.7 or more and 1.5 or less. preferable. When it is within the above range, it is possible to suppress a decrease in moisture resistance, curability and the like.
本発明に用いられる一般式(1)で示されるエポキシ樹脂(A)と(一般式(2)で示されるフェノール樹脂B)とは、予め溶融混合して用いることにより分散性を向上させることができる。また、特に一般式(1)で示されるエポキシ樹脂(A)として軟化点が45℃以下のものを使用する場合には、上記のように一般式(2)で示されるフェノール樹脂(B)と予め溶融混合することにより、溶融混合物の軟化点を元の一般式(1)で示されるエポキシ樹脂(A)の軟化点より高くすることができ、原料の取り扱い性を向上させることができる。 The epoxy resin (A) represented by the general formula (1) and the (phenol resin B represented by the general formula (2)) used in the present invention can be improved in dispersibility by being previously melt-mixed. it can. In particular, when using an epoxy resin (A) represented by the general formula (1) having a softening point of 45 ° C. or lower, the phenol resin (B) represented by the general formula (2) as described above By melt-mixing in advance, the softening point of the molten mixture can be made higher than the softening point of the epoxy resin (A) represented by the original general formula (1), and the handleability of the raw material can be improved.
本発明で用いられる一般式(3)で示される硬化促進剤(C)は、テトラ置換ホスホニムとジヒドロキシナフタレンとの分子化合物であり、エポキシ樹脂組成物の貯蔵時の保管安定性と封止成形時の速硬化性とを両立させることができるものである。本発明で用いられる一般式(3)で示される硬化促進剤(C)は、エポキシ樹脂全エポキシ樹脂組成物に対し、0.05重量%以上、0.5重量%以下の割合で含まれることが必須であるが、0.1重量%以上、0.4重量%以下の割合で含まれることがより好ましい上記範囲内であると、エポキシ樹脂組成物の硬化性の低下を抑えることができ、また封止成形時における流動性の低下や、未充填、金線変形といった問題の発生を抑えることができる。 The curing accelerator (C) represented by the general formula (3) used in the present invention is a molecular compound of a tetra-substituted phosphonium and dihydroxynaphthalene, and the storage stability of the epoxy resin composition during storage and the sealing molding It is possible to achieve both the fast curability. The curing accelerator (C) represented by the general formula (3) used in the present invention is contained in a proportion of 0.05% by weight or more and 0.5% by weight or less based on the total epoxy resin composition of the epoxy resin. Is in the above range, more preferably 0.1 wt% or more and 0.4 wt% or less, it is possible to suppress a decrease in curability of the epoxy resin composition, In addition, it is possible to suppress the occurrence of problems such as a decrease in fluidity at the time of sealing molding, unfilling, and gold wire deformation.
また、本発明においては、一般式(3)で示される硬化促進剤(C)とともに、必要に応じて一般に封止材料に使用されているエポキシ基とフェノール性水酸基との硬化反応を促進させる硬化促進剤を併用しても構わない。併用することができる硬化促進剤としては、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、トリフェニルホスフィン等の有機リン系化合物等が挙げられるが、これらに限定されるものではない。これらの併用可能な硬化促進剤は単独で用いても2種類以上を併用してもよい。これらの内では、特に1,8−ジアザビシクロ(5,4,0)ウンデセン−7が、各種基材に対する密着性の向上のために有効であり、またテトラフェニルホスホニウム・テトラナフトイックアシッドボレートは、エポキシ樹脂組成物の常温保管特性を大幅に向上させる効果がある。 Moreover, in this invention, the hardening which accelerates | stimulates the hardening reaction of the epoxy group and phenolic hydroxyl group which are generally used for the sealing material as needed with the hardening accelerator (C) shown by General formula (3). An accelerator may be used in combination. Examples of the curing accelerator that can be used in combination include diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, amine compounds such as tributylamine and benzyldimethylamine, Examples include, but are not limited to, organophosphorus compounds such as tetraphenylphosphonium / tetranaphthoic acid borate and triphenylphosphine. These curing accelerators that can be used in combination may be used alone or in combination of two or more. Among these, 1,8-diazabicyclo (5,4,0) undecene-7 is particularly effective for improving adhesion to various substrates, and tetraphenylphosphonium tetranaphthoic acid borate is This has the effect of greatly improving the room temperature storage characteristics of the epoxy resin composition.
本発明に用いるシランカップリング剤(D)は、エポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等特に限定せず、エポキシ樹脂組成物と無機充填剤との間で反応し、エポキシ樹脂組成物と無機充填剤の界面強度を向上させるものであればよい。
また、シランカップリング材(D)は一般式(3)で示される硬化促進剤(C)のような芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物と比較的安定な中間体を形成するため、一般式(3)で示される硬化促進剤(C)の硬化遅延効果を発現し、エポキシ樹脂組成物の貯蔵時の保管安定性、及び封止成形時の粘度特性と流動特性を著しく改善させることができる。このため、シランカップリング剤(D)は一般式(3)で示される硬化促進剤(C)の効果を充分に得るためには必須である。これらのシランカップリング剤(D)は単独で用いても併用してもよい。本発明に用いるシランカップリング剤(D)の配合量は、全エポキシ樹脂組成物中0.01重量%以上、1重量%以下が好ましく、より好ましくは0.05重量%以上、0.8以下、特に好ましくは0.1重量%以上、0.6重量%以下である。シランカップリング剤(D)の配合量が上記範囲内であると、一般式(3)で示される硬化促進剤(C)の効果を充分に発揮することができ、またエポキシ樹脂組成物の硬化物と各種基材との密着性低下による半導体装置(以下、「半導体パッケージ」又は単に「パッケージ」ともいう。)における耐半田クラック性の低下を抑えることができる。或いは、エポキシ樹脂組成物の吸水性の上昇による半導体パッケージの耐半田クラック性の低下も抑えることができる。
The silane coupling agent (D) used in the present invention is not particularly limited, such as epoxy silane, amino silane, ureido silane, mercapto silane, etc., and reacts between the epoxy resin composition and the inorganic filler, and the epoxy resin composition and the inorganic silane coupling agent (D). What is necessary is just to improve the interface strength of a filler.
Further, the silane coupling material (D) is relatively a compound having a hydroxyl group bonded to two or more adjacent carbon atoms constituting an aromatic ring such as the curing accelerator (C) represented by the general formula (3). In order to form a stable intermediate, the curing accelerator (C) represented by the general formula (3) exhibits a curing retardation effect, the storage stability of the epoxy resin composition during storage, and the viscosity during sealing molding Properties and flow properties can be significantly improved. For this reason, the silane coupling agent (D) is essential to sufficiently obtain the effect of the curing accelerator (C) represented by the general formula (3). These silane coupling agents (D) may be used alone or in combination. The blending amount of the silane coupling agent (D) used in the present invention is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.05% by weight or more and 0.8 or less in the total epoxy resin composition. Particularly preferably, it is 0.1% by weight or more and 0.6% by weight or less. When the amount of the silane coupling agent (D) is within the above range, the effect of the curing accelerator (C) represented by the general formula (3) can be sufficiently exerted, and the epoxy resin composition can be cured. It is possible to suppress a decrease in solder crack resistance in a semiconductor device (hereinafter also referred to as “semiconductor package” or simply “package”) due to a decrease in adhesion between the object and various base materials. Or the fall of the solder crack resistance of a semiconductor package by the raise of the water absorption of an epoxy resin composition can also be suppressed.
本発明に用いられる無機充填剤(E)の種類については特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば溶融シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレー、ガラス繊維等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。特に溶融シリカが好ましい。溶融シリカは、破砕状、球状のいずれでも使用可能であるが、含有量を高め、且つエポキシ樹脂組成物の溶融粘度の上昇を抑えるためには、球状シリカを主に用いる方がより好ましい。更に球状シリカの含有量を高めるためには、球状シリカの粒度分布をより広くとるよう調整することが望ましい。全無機充填剤の含有量は、成形性、信頼性のバランスから全エポキシ樹脂組成物中に84重量%以上、92重量%以下であることが必須であり、好ましくは87重量%以上、92重量%以下である。無機充填剤(E)の含有量が上記範囲内であると、エポキシ樹脂組成物が低吸湿性、低熱膨張性で良好な耐半田性を発揮することができる。また、エポキシ樹脂組成物の流動性の低下による封止成形時の充填不良等の発生や、エポキシ樹脂組成物の高粘度化による半導体装置内での金線変形等の発生を抑えることができる。 There is no restriction | limiting in particular about the kind of inorganic filler (E) used for this invention, What is generally used for the sealing material can be used. For example, fused silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, aluminum hydroxide, talc, clay, glass fiber, etc. may be mentioned, and these may be used alone or in combination of two or more. Good. In particular, fused silica is preferable. Although fused silica can be used in either crushed or spherical shape, it is more preferable to mainly use spherical silica in order to increase the content and suppress an increase in the melt viscosity of the epoxy resin composition. In order to further increase the content of spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider. The content of the total inorganic filler is required to be 84% by weight or more and 92% by weight or less, preferably 87% by weight or more and 92% by weight in the total epoxy resin composition from the balance of moldability and reliability. % Or less. When the content of the inorganic filler (E) is within the above range, the epoxy resin composition can exhibit good solder resistance with low hygroscopicity and low thermal expansion. In addition, it is possible to suppress the occurrence of poor filling at the time of sealing molding due to a decrease in fluidity of the epoxy resin composition, and the occurrence of gold wire deformation in the semiconductor device due to the increase in viscosity of the epoxy resin composition.
本発明のエポキシ樹脂組成物は、(A)〜(E)成分から構成されるが、必要に応じてカーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型材、酸化ビスマス等水和物等の無機イオン交換体、酸化防止剤等の各種添加剤を適宜配合してもよい。更に、必要に応じて無機充填剤をカップリング剤やエポキシ樹脂あるいはフェノール樹脂で予め処理して用いてもよく、処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接無機充填剤に添加し、混合機を用いて処理する方法等がある。 The epoxy resin composition of the present invention is composed of the components (A) to (E), but if necessary, a colorant such as carbon black or bengara, a low stress component such as silicone oil or silicone rubber, a natural wax, Various additives such as synthetic wax, mold release materials such as higher fatty acids and their metal salts or paraffin, inorganic ion exchangers such as hydrates such as bismuth oxide, and antioxidants may be appropriately blended. Further, if necessary, an inorganic filler may be used after being pretreated with a coupling agent, an epoxy resin or a phenol resin. As a treatment method, a method of removing the solvent after mixing with a solvent, There is a method of adding to an inorganic filler and processing using a mixer.
本発明に用いるエポキシ樹脂組成物は、(A)〜(E)成分、その他の添加剤等を、ミキサーを用いて常温混合した後、ロール、ニーダー等の押出機等の混練機で溶融混練し、冷却後粉砕して得ることができる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
The epoxy resin composition used in the present invention is obtained by mixing the components (A) to (E) and other additives at room temperature using a mixer, and then melt-kneading with a kneader such as an extruder such as a roll or a kneader. It can be obtained by pulverizing after cooling.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it can be cured by a conventional molding method such as transfer molding, compression molding, injection molding, etc. Good.
以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
・エポキシ樹脂1:式(4)で示されるエポキシ樹脂(軟化点44℃、エポキシ当量234) 6.42重量部
Example 1
Epoxy resin 1: epoxy resin represented by formula (4) (softening point 44 ° C., epoxy equivalent 234) 6.42 parts by weight
・フェノール樹脂1:式(5)で示されるフェノール樹脂(軟化点107℃、水酸基当量198) 4.28重量部
・硬化促進剤1:式(6)で示される硬化促進剤(式(6)において、m=1)
0.20重量部
0.20 parts by weight
・シランカップリング剤1:γ−メルカプトトリプロピルメトキシシラン
0.20重量部
・溶融球状シリカ(平均粒径25μm) 88.00重量部
・カーボンブラック 0.40重量部
Silane coupling agent 1: γ-mercaptotripropylmethoxysilane
0.20 parts by weight-fused spherical silica (average particle size 25 μm) 88.00 parts by weight-carbon black 0.40 parts by weight
・シリコーンオイル:式(7)で示されるポリオルガノシロキサン 0.20重量部
・カルナバワックス 0.30重量部
をミキサーを用いて混合した後、表面温度が95℃と25℃の2本ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物の特性を以下の方法で評価した。結果を表1に示す。
-Carnauba wax 0.30 part by weight was mixed using a mixer, then kneaded using two rolls having surface temperatures of 95 ° C and 25 ° C, cooled and pulverized to obtain an epoxy resin composition. The characteristics of the obtained epoxy resin composition were evaluated by the following methods. The results are shown in Table 1.
評価方法
スパイラルフロー:低圧トランスファー成形機を用いて、EMMI−1−66に準じたスパイラルフロー測定用の金型に、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件でエポキシ樹脂組成物を注入し、流動長を測定した。単位はcm。80cm以下であると金線変形やパッケージ未充填などの成形不良が生じる可能性がある。
Evaluation method Spiral flow: Using a low-pressure transfer molding machine, a mold for spiral flow measurement according to EMMI-1-66 is epoxy with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. The resin composition was injected and the flow length was measured. The unit is cm. If it is 80 cm or less, molding defects such as gold wire deformation and unfilled packages may occur.
硬化性(ゲルタイム):175℃の熱盤上にエポキシ樹脂組成物粉末を30gのせ、これを金属ヘラで練り、ゲル化するまでの時間を測定した。一般的なトランスファー成形は50秒以上、120秒以下程度で成形されるため、ゲルタイムが45秒以上の場合は、成形不良が生じる可能性がある。 Curability (gel time): 30 g of the epoxy resin composition powder was placed on a hot platen of 175 ° C., kneaded with a metal spatula, and the time until gelation was measured. Since general transfer molding is performed in about 50 seconds or more and 120 seconds or less, if the gel time is 45 seconds or more, molding defects may occur.
難燃性:トランスファー成形機を用いて、成形温度175℃、注入圧力9.8Mpa、硬化時間120秒で、試験片(127mm×12.7mm×1.6mm)を成形し、アフターベークとして175℃、8時間処理した後、UL−94垂直法に準じてΣF、Fmaxを測定し、難燃性を判定した。 Flame retardancy: Using a transfer molding machine, a test piece (127 mm × 12.7 mm × 1.6 mm) was molded at a molding temperature of 175 ° C., an injection pressure of 9.8 Mpa, and a curing time of 120 seconds, and after-baking at 175 ° C. After 8 hours of treatment, ΣF and Fmax were measured according to the UL-94 vertical method to determine flame retardancy.
耐半田リフロー性:80pQFP(銅フレーム:14mm×20mm×2mm厚、パッドサイズ:8mm×8mm、チップサイズ:7mm×7mm)を低圧トランスファー自動成形機を用いて、実施例、比較例記載の封止樹脂で、金型温度175℃、注入圧力9.6MPa、硬化時間90秒で封止成形した後、175℃、4時間後硬化し、各16個のサンプルを別々に85℃、相対湿度60%の環境下で168時間と85℃、相対湿度85%の環境下で168時間処理し、その後IRリフロー(260℃)で10秒間処理した。超音波探傷装置を用いて観察し、内部クラック及び各種界面剥離の有無を調べた。内部クラック又は各種界面の剥離が1つでも見つかったものは不良とし、不良パッケージの個数がn個であるとき、n/16と表示した。 Solder reflow resistance: 80pQFP (copper frame: 14mm x 20mm x 2mm thickness, pad size: 8mm x 8mm, chip size: 7mm x 7mm) Sealing described in Examples and Comparative Examples using a low-pressure transfer automatic molding machine The resin was molded at a mold temperature of 175 ° C., an injection pressure of 9.6 MPa, a curing time of 90 seconds, and then cured after 175 ° C. for 4 hours. Each of the 16 samples was separately treated at 85 ° C. and a relative humidity of 60%. For 168 hours at 85 ° C. and a relative humidity of 85% for 168 hours, followed by IR reflow (260 ° C.) for 10 seconds. Observation was carried out using an ultrasonic flaw detector, and the presence or absence of internal cracks and various interface peelings was examined. Those in which even one internal crack or peeling of various interfaces was found were regarded as defective. When the number of defective packages was n, it was indicated as n / 16.
実施例2〜10、比較例1〜8
表1、2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1、2に示す。
実施例1以外で用いた原材料を以下に示す。
・エポキシ樹脂2:式(4)で示されるエポキシ樹脂(軟化点55℃、エポキシ当量236)
According to the composition of Tables 1 and 2, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
The raw materials used other than Example 1 are shown below.
Epoxy resin 2: epoxy resin represented by formula (4) (softening point 55 ° C., epoxy equivalent 236)
・エポキシ3:ビフェニル型エポキシ樹脂(油化シェルエポキシ(株)製、YX−4000K、エポキシ当量185、融点105℃)
・エポキシ4:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製、YL−6810、エポキシ当量170g/eq、融点47℃)
・フェノール樹脂2:パラキシレン変性ノボラック型フェノール樹脂(三井化学(株)製、XLC−4L、水酸基当量168、軟化点62℃)
・硬化促進剤2:トリフェニルホスフィン
・シランカップリング剤2:Nフェニルγ−アミノプロピルトリメトキシシラン
・シランカップリング剤3:γ−グリシジルプロピルトリメトキシシラン
Epoxy 3: biphenyl type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., YX-4000K, epoxy equivalent 185, melting point 105 ° C.)
Epoxy 4: bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin, YL-6810, epoxy equivalent 170 g / eq, melting point 47 ° C.)
-Phenolic resin 2: paraxylene-modified novolak type phenolic resin (manufactured by Mitsui Chemicals, XLC-4L, hydroxyl equivalent 168, softening point 62 ° C)
Curing accelerator 2: Triphenylphosphine Silane coupling agent 2: N-phenyl γ-aminopropyltrimethoxysilane Silane coupling agent 3: γ-glycidylpropyltrimethoxysilane
Claims (2)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005099391A JP4687195B2 (en) | 2005-03-30 | 2005-03-30 | Epoxy resin composition for semiconductor encapsulation and semiconductor device |
KR1020077011274A KR101235075B1 (en) | 2004-11-02 | 2005-11-01 | Epoxy resin composition and semiconductor device |
CN2010102211314A CN101906238B (en) | 2004-11-02 | 2005-11-01 | Epoxy resin composition and semiconductor device |
KR1020127018866A KR101254523B1 (en) | 2004-11-02 | 2005-11-01 | Epoxy resin composition and semiconductor device |
KR1020127018865A KR101254524B1 (en) | 2004-11-02 | 2005-11-01 | Epoxy resin composition and semiconductor device |
SG200906929-5A SG170630A1 (en) | 2004-11-02 | 2005-11-01 | Epoxy resin composition and semiconductor device |
CN2005800346988A CN101039984B (en) | 2004-11-02 | 2005-11-01 | Epoxy resin composition and semiconductor device |
PCT/JP2005/020088 WO2006049156A1 (en) | 2004-11-02 | 2005-11-01 | Epoxy resin composition and semiconductor device |
US11/263,822 US7741388B2 (en) | 2004-11-02 | 2005-11-01 | Epoxy resin composition and semiconductor device |
TW101105593A TWI455990B (en) | 2004-11-02 | 2005-11-02 | Epoxy resin composition and semiconductor device |
MYPI20055179A MY144740A (en) | 2004-11-02 | 2005-11-02 | Epoxy resin composition and semiconductor device |
TW101105594A TWI455991B (en) | 2004-11-02 | 2005-11-02 | Epoxy resin composition and semiconductor device |
TW094138353A TWI369370B (en) | 2004-11-02 | 2005-11-02 | Epoxy resin composition and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005099391A JP4687195B2 (en) | 2005-03-30 | 2005-03-30 | Epoxy resin composition for semiconductor encapsulation and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006274185A JP2006274185A (en) | 2006-10-12 |
JP4687195B2 true JP4687195B2 (en) | 2011-05-25 |
Family
ID=37209236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005099391A Active JP4687195B2 (en) | 2004-11-02 | 2005-03-30 | Epoxy resin composition for semiconductor encapsulation and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4687195B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010095709A (en) * | 2008-09-16 | 2010-04-30 | Hitachi Chem Co Ltd | Epoxy resin composition for sealing and electronic parts device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001089551A (en) * | 1999-09-27 | 2001-04-03 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2001288250A (en) * | 2000-04-03 | 2001-10-16 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003089718A (en) * | 2001-09-18 | 2003-03-28 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2004067717A (en) * | 2002-08-01 | 2004-03-04 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
-
2005
- 2005-03-30 JP JP2005099391A patent/JP4687195B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001089551A (en) * | 1999-09-27 | 2001-04-03 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2001288250A (en) * | 2000-04-03 | 2001-10-16 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003089718A (en) * | 2001-09-18 | 2003-03-28 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2004067717A (en) * | 2002-08-01 | 2004-03-04 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2006274185A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5130912B2 (en) | Epoxy resin composition and semiconductor device | |
JP4692885B2 (en) | Epoxy resin composition and semiconductor device | |
JP4687074B2 (en) | Epoxy resin composition and semiconductor device | |
JP4496740B2 (en) | Epoxy resin composition and semiconductor device | |
JP4687195B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP2012251048A (en) | Epoxy resin composition for sealing semiconductor, and semiconductor device | |
JP2004352894A (en) | Epoxy resin composition and semiconductor device | |
JP5098125B2 (en) | Epoxy resin composition and semiconductor device | |
JP4946030B2 (en) | Epoxy resin composition and semiconductor device | |
JP5067994B2 (en) | Epoxy resin composition and semiconductor device | |
JP2005281584A (en) | Epoxy resin composition and semiconductor device | |
JP2006104393A (en) | Epoxy resin composition and semiconductor device | |
JPH0645740B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP2005154717A (en) | Epoxy resin composition and semiconductor device | |
JP2006182803A (en) | Epoxy resin composition and semiconductor device | |
JP5142427B2 (en) | Epoxy resin composition and semiconductor device | |
JP5093977B2 (en) | Area mounted semiconductor device | |
JP2006111672A (en) | Semiconductor sealing resin composition and semiconductor device | |
JP4802421B2 (en) | Epoxy resin composition and semiconductor device | |
JP2007045916A (en) | Resin composition for sealing, and resin-sealed type semiconductor device | |
JP2003064157A (en) | Epoxy resin composition and semiconductor device | |
JP2002317102A (en) | Epoxy resin composition and semiconductor device | |
JP5673613B2 (en) | Epoxy resin composition and semiconductor device | |
JP2005139260A (en) | Epoxy resin composition and semiconductor device | |
JP2014156607A (en) | Epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110131 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4687195 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |