JP5067994B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP5067994B2
JP5067994B2 JP2001285167A JP2001285167A JP5067994B2 JP 5067994 B2 JP5067994 B2 JP 5067994B2 JP 2001285167 A JP2001285167 A JP 2001285167A JP 2001285167 A JP2001285167 A JP 2001285167A JP 5067994 B2 JP5067994 B2 JP 5067994B2
Authority
JP
Japan
Prior art keywords
epoxy resin
less
resin composition
spherical silica
fused spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001285167A
Other languages
Japanese (ja)
Other versions
JP2003096268A (en
Inventor
秀俊 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001285167A priority Critical patent/JP5067994B2/en
Publication of JP2003096268A publication Critical patent/JP2003096268A/en
Application granted granted Critical
Publication of JP5067994B2 publication Critical patent/JP5067994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、成形性に優れた半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、IC、LSI等の半導体素子を、外的刺激(機械的、熱的衝撃、化学的作用等)から保護するためには、生産コストの点を考慮してエポキシ樹脂組成物で封入成形するのが一般的になっている。一方、近年の半導体素子の高集積化とそれに伴う寸法の増大とは相反しており、最近の電子機器の小型化による半導体装置の寸法の小型化・薄型化が求められ、かつプリント回路基板への実装方法も従来のピン挿入型から表面実装型へ移行し、又環境負荷の低減のため鉛を含まない半田の導入により、更に実装温度も高くなる方向にあり、表面実装半田処理時の熱衝撃による半導体装置のクラックや、半導体素子・リードフレームとエポキシ樹脂組成物の硬化物との剥離といった問題が生じ易くなり、従来以上に耐熱衝撃性に優れた特性を付与できるエポキシ樹脂組成物が強く求められている。
【0003】
これらのクラックや剥離は、半田処理前の半導体装置自身が吸水し、半田処理時の高温下でその水分が爆発的に水蒸気化することによって生じると考えられており、それを防ぐためにエポキシ樹脂組成物の硬化物の低吸水化、即ちエポキシ樹脂組成物に低吸水性を付与する等の手法がよく用いられている。エポキシ樹脂組成物の吸水性は構成する樹脂成分の影響が大きく、そのため低吸水化の手法のひとつとして無機充填材を高充填化し、樹脂成分の含有量を減少させる技術がある。しかしながら無機充填材を高充填するに伴い成形溶融時のエポキシ樹脂組成物の流動性、充填性が悪化する。溶融時のエポキシ樹脂組成物の流動性、充填性が著しく悪化すると、エポキシ樹脂組成物の硬化物が低吸水性を有していても耐半田クラック性が悪くなる。そこで無機充填材を高充填し、硬化物が低吸水性の特性を有するエポキシ樹脂組成物で、かつ溶融時の流動性、充填性が良好なエポキシ樹脂組成物を得るために、溶融時のエポキシ樹脂組成物の流動性、充填性を向上させることのできる無機充填材が求められている。
【0004】
又エポキシ樹脂組成物中には、通常難燃性を付与するために臭素含有化合物等のハロゲン系難燃剤及びアンチモン化合物が配合されている。近年、地球環境に配慮した企業活動の重視により有害性のおそれのある物質の削減・撤廃の動きがあり、ハロゲン系難燃剤及びアンチモン化合物を使用しないで、難燃性に優れたエポキシ樹脂組成物の開発が要求されている。これらに代わる環境対応難燃剤としては、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物や赤燐を含むエポキシ樹脂組成物が提案されているが、これを用いた半導体装置の耐湿信頼性、高温保管性については未だ不十分の場合もあり、更には成形性、硬化性共、十分に満足の得られるエポキシ樹脂組成物が得られないという問題があり、これらの難燃剤を用いなくとも成形性、硬化性を満足させるエポキシ樹脂組成物が求められている。
【0005】
【発明が解決しようとする課題】
本発明は、成形時の流動性、充填性、耐半田クラック性及び難燃性に優れた半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
[1](A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)硬化促進剤及び(D)無機充填材を必須とし、前記無機充填材がレーザー回折・散乱法による(1)平均粒径60μm以上〜80μm未満で対数標準偏差0.5以下の溶融球状シリカ75重量%以上〜85重量%以下、(2)平均粒径5μm以上〜15μm未満で対数標準偏差0.5以下の溶融球状シリカ10重量%以上〜20重量%以下、(3)平均粒径1μm以上〜5μm未満で対数標準偏差0.5以下の溶融球状シリカ2重量%以上〜8重量%以下で構成され、かつ0.5μm以下の微粒シリカ2重量%以下である溶融球状シリカを含む半導体封止用エポキシ樹脂組成物であって、前記溶融球状シリカが、全無機充填材中70〜100重量%であることを特徴とする半導体封止用エポキシ樹脂組成物、
【0007】
【化3】
(Rは、水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。nは平均値で、1〜5の正数)
【0008】
【化4】
(Rは、水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。nは平均値で、1〜5の正数)
【0009】
[2]前記溶融球状シリカが、全無機充填材中70〜100重量%である第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3]第[1]又は[2]項記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0010】
【発明実施の形態】
本発明で用いられる一般式(1)で示されるエポキシ樹脂は、エポキシ基間に疎水性構造を有しており、このエポキシ樹脂と一般式(2)で示されるフェノール樹脂を用いたエポキシ樹脂組成物の硬化物は、疎水性の構造を多く含むことから吸水率が低く、又架橋密度が低いためガラス転移温度を越えた高温域での弾性率が低いという特徴があり表面実装の半田処理時の熱応力を低減し、耐半田クラック性、半田処理後の基材との密着性に優れている。更にエポキシ基間の疎水性構造は、剛直なビフェニル骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有している。一般式(1)で示されるエポキシ樹脂の具体例を以下に示すが、これらに限定されるものでない。
【0011】
【化5】
(式中のnは平均値で、1〜5の正数)
【0012】
一般式(1)で示されるエポキシ樹脂は、分子内にエポキシ基を有するモノマー、オリゴマー、ポリマー、例えばビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂及びトリアジン核含有エポキシ樹脂等のエポキシ樹脂と併用しても差し支えない。併用する場合の一般式(1)のエポキシ樹脂の配合量としては、全エポキシ樹脂中に70重量%以上が好ましく、70重量%未満だとエポキシ樹脂組成物が燃焼し易くなったり、硬化物の吸水率が高くなったり、弾性率が高くなり、耐半田クラック性に悪影響を及ぼすおそれがある。
【0013】
本発明で用いられる一般式(2)で示されるフェノール樹脂は、水酸基間に疎水性構造を有しており、前記一般式(1)で示されるエポキシ樹脂と一般式(2)で示されるフェノール樹脂を用いたエポキシ樹脂組成物の硬化物は、疎水性の構造を多く含むことから吸水率が低く、又架橋密度が低いため、 ガラス転移温度を越えた高温域での弾性率が低いという特徴があり表面実装時の半田リフローでの熱応力を低減し、耐半田クラック性、半田処理後の基材との密着性に優れている。更にフェニル基間の疎水性構造は剛直なビフェニル骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有する。一般式(2)で示されるフェノール樹脂の具体例を以下に示すが、これに限定されるものでない。
【0014】
【化6】
(式中のnは平均値で、1〜5の正数)
【0015】
一般式(2)で示されるフェノール樹脂は、分子内にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ビスフェノールA、トリフェノールメタン等のフェノール樹脂と併用しても差し支えない。併用する場合の一般式(2)で示されるフェノール樹脂の配合量としては、全フェノール樹脂中に70重量%以上が好ましい。70重量%未満だと燃焼し易くなったり、吸水率が高くなったり、弾性率が高くなり、耐半田クラック性に悪影響を及ぼすおそれがある。一般式(1)で示されるエポキシ樹脂と一般式(2)で示されるフェノール樹脂とを組合せて用いた場合には、半導体装置の低吸水性、吸水後の半田処理での耐半田クラック性、密着性等の高信頼性の特性が得られる。 全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基の当量比としては、エポキシ基数/フェノール性水酸基数=0.7〜1.5の範囲が好ましく、更に好ましくは0.9〜1.2である。0.7〜1.5の範囲を外れると、エポキシ樹脂組成物の硬化性の低下或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じるので好ましくない。
【0016】
本発明に用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用されているものを広く使用することができる。例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、トリフェニルホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられ、これらは単独でも混合して用いてもよい。
【0017】
本発明で用いられる溶融球状シリカは、レーザー回折・散乱法による(1)平均粒径60μm以上〜80μm未満で対数標準偏差0.5以下の溶融球状シリカ75重量%以上〜85重量%以下、(2)平均粒径5μm以上〜15μm未満で対数標準偏差0.5以下の溶融球状シリカ10重量%以上〜20重量%以下、(3)平均粒径1μm以上〜5μm未満で対数標準偏差0.5以下の溶融球状シリカ2重量%以上〜8重量%以下で構成され、かつ0.5μm以下の微粒シリカを2重量%以下含むものである。本発明で言う対数標準偏差は、下記の式で表される値Aを用いた(参照:「粉体工学の基礎」粉体工学の基礎編集委員会編 日刊工業新聞社刊)。Aの値が小さいほど粒度分布が狭いことを意味している。
A={ln(D2/D1)}×0.5
ここで、D1は積算残留分率84.1%のときの粒子径、D2は積算残留分率15.9%のときの粒子径である。積算残留分率とは、(100−粒度頻度の積算)を言う。
図1で示す粒度分布で例を示すと、D1=54.2μm、D2=97.8μmとすると A={ln(97.8/54.2)}×0.5=0.3 となる。
【0018】
レーザー回折・散乱法による前記粒径の溶融球状シリカからなる構成要件を満たさない場合、溶融球状シリカの最蜜充填性が低下する。最蜜充填性が小さい溶融球状シリカを用いたエポキシ樹脂組成物は、流動する際に溶融球状シリカ同士の衝突頻度が高まり、エポキシ樹脂組成物が十分な流動性、充填性を得られないので好ましくない。
更に前記粒径の溶融球状シリカから構成される溶融球状シリカは、0.5μm以下の微粒シリカを2重量%以下含むものであり、この値を越えると全体の比表面積が増加し溶融球状シリカ/樹脂間の接触面積が増えるため、エポキシ樹脂組成物は十分な流動性、充填性を確保することができないため好ましくない。
【0019】
本発明に用いられる溶融球状シリカは、全無機充填材中70〜100重量%含まれることが望ましい。70重量%未満だと十分な流動性が得られないおそれがある。。併用するときの他の無機充填材としては、一般に封止材料に用いられているものでよく、例えば溶融破砕シリカ、溶融球状シリカ、結晶シリカ、角とり結晶シリカ、2次凝集シリカ、アルミナ、球状アルミナ、チタンホワイト、水酸化アルミニウム、窒化珪素、窒化アルミニウム等が挙げられ、粒度分布については必要に応じて適宜選択すればよい。
又本発明に用いられる溶融球状シリカを含む無機充填材の配合量は、全エポキシ樹脂組成物中70〜95重量%が好ましい。70重量%未満だと吸水性が高くなり耐半田クラック性が低下するので好ましくない。95重量%を越えると実用上必要な流動性を確保できないので好ましくない。
【0020】
本発明における溶融球状シリカの粒度分布は、JIS M 8100(粉塊混合物−サンプリング方法)に準じて、溶融球状シリカを採取し、JIS R 1622−1995(ファインセラミックス原料粒子径分布測定のための試料調製)に準じて、溶融球状シリカを測定用試料として調製し、JIS R 1629−1997(ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法)に準じて、(株)島津製作所・製のレーザー回折式粒度分布測定装置SALD−7000(レーザー波長:405nm)を用い、水等を分散剤として、溶融球状シリカの屈折率が実数部1.45、虚数部0.00の条件で測定した体積基準の粒度分布である。又平均粒径は体積基準の積算残留分率が50%のときの粒子径である。
【0021】
従来、半導体封止用エポキシ樹脂組成物に配合する無機充填材としては、一般に溶融球状シリカ、溶融破砕シリカ、結晶シリカ等が用いられているが、本発明の特性を有する溶融球状シリカを用いることにより、従来の種々の粒度構成の充填材に比べ流動性、充填性を向上でき、溶融球状シリカの配合量の高いエポキシ樹脂組成物を得ることができ、その結果としてエポキシ樹脂組成物の硬化物の耐吸水性の向上に寄与し、半導体装置の耐半田クラック性を向上させることができる。
【0022】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他、必要に応じて臭素化エポキシ樹脂、酸化アンチモン、リン化合物、水酸化マグネシウム、水酸化アルミニウム、硼酸化合物等の難燃剤類、酸化ビスマス水和物等の無機イオン交換体、γ−グリシドキシプロピルトリメトキシシランやγ−アミノプロピルトリエトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することもできる。
【0023】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分及びその他の添加剤等をミキサー等を用いて常温混合し、ロール、ニーダー、押し出し機等の混錬機で溶融混錬し、冷却後粉砕する一般的な方法で得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。
【0024】
【実施例】
以下、本発明を実施例で具体的に説明する。
式(9)で示されるエポキシ樹脂A(軟化点60℃、エポキシ当量270)9.8重量部
【0025】
【化7】
【0026】
式(10)で示されるフェノール樹脂C(軟化点75℃、水酸基当量195)7.1重量部
【0027】
【化8】
【0028】
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという
) 0.2重量部
γ−グリシドキシプロピルトリメトキシシラン 0.3重量部
カーボンブラック 0.3重量部
カルナバワックス 0.3重量部
シリカA(レーザー回折・散乱法により測定した平均粒径72μmで対数標準偏差0.3の溶融球状シリカ79重量%、平均粒径9.6μmで対数標準偏差0.2の溶融球状シリカ16重量%、平均粒径3.9μmで対数標準偏差が0.2の溶融球状シリカ5重量%で構成され、かつ0.5μm以下の微粒シリカを含ま
ない) 82.0重量部
上記の全成分をミキサーを用いて混合した後、表面温度が90℃と45℃の2本ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。
【0029】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9Mpa、硬化時間120秒で測定した。単位はcm。
耐半田クラック性:マルチプランジャー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で80pQFP(厚さ2.0mm、チップサイズ6mm×6mm)を成形した。ポストキュアとして175℃で8時間処理したパッケージ6個を、85℃、相対湿度85%の環境下で168時間処理し、その後IRリフロー処理(最大260℃で10秒)を行なった。顕微鏡で処理後パッケージの外部クラックを、又超音波探傷装置で内部の剥離及びクラックの有無を観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/6と表示する。
充填性:マルチプランジャー成形機を用いて、金型温度180℃、注入圧力9.8MPa、硬化時間60秒の条件で144pLQFP(パッケージサイズは20mm×20mm、厚み1.4mm、模擬半導体素子の寸法は12mm×12mm、リードフレームはCu製)を10回連続で成形し、未充填回数が、5回以上を×、1〜4回を△、発生なしを○で表した。
難燃性:低圧トランスファー成形機を用いて、金型温度175℃、9.8MPa、硬化時間120秒で試験片を成形し、ポストキュアとして175℃で8時間処理した後、UL−94垂直試験(試験片厚さ1.6mm及び3.2mm)を行ない、難燃性を判断した。
【0030】
実施例1〜4、6、7 及び比較例1〜
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1、表2に示す。
実施例1以外に使用した原料の特性を以下に示す。
ビフェニル型エポキシ樹脂B(ジャパンエポキシレジン(株)製、YX−4000、軟化点105℃、エポキシ当量193)
フェノールアラルキル樹脂D(三井化学(株)製、XL−225、軟化点75℃、水酸基当量175)
溶融シリカB(レーザー回折・散乱法により測定した平均粒径が1.6μmの溶融シリカで、対数標準偏差が0.5以下のピークが存在しない溶融球状シリカ)
溶融シリカC(レーザー回折・散乱法により測定した平均粒径が22μmの溶融シリカで、対数標準偏差が0.5以下のピークが存在しない溶融球状シリカ)
【0031】
【表1】
【0032】
【表2】
【0033】
【発明の効果】
本発明のエポキシ樹脂組成物は成形時の流動性、充填性に優れており、これを用いた半導体装置の耐半田クラック性及び難燃性向上に寄与する。
【図面の簡単な説明】
【図1】粒度分布の粒子径と積算残留分率の関係を示す図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in moldability and a semiconductor device using the same.
[0002]
[Prior art]
Conventionally, in order to protect semiconductor elements such as diodes, transistors, ICs, and LSIs from external stimuli (mechanical, thermal shock, chemical action, etc.), an epoxy resin composition in consideration of production costs It is common to encapsulate with. On the other hand, the recent high integration of semiconductor elements and the accompanying increase in dimensions are contrary to each other, and the recent downsizing of electronic equipment demands a reduction in size and thickness of semiconductor devices, and to the printed circuit board. The mounting method has shifted from the conventional pin insertion type to the surface mounting type, and the introduction of solder that does not contain lead in order to reduce the environmental burden has led to higher mounting temperatures. There is a tendency to cause problems such as cracks in the semiconductor device due to impacts and peeling of the semiconductor element / lead frame from the cured epoxy resin composition, and the epoxy resin composition capable of imparting superior thermal shock resistance characteristics is stronger than before. It has been demanded.
[0003]
These cracks and delamination are thought to occur when the semiconductor device itself absorbs water before soldering and the moisture explosively vaporizes at a high temperature during soldering. To prevent it, the epoxy resin composition A technique of reducing water absorption of a cured product, that is, imparting low water absorption to an epoxy resin composition, is often used. The water absorption of the epoxy resin composition is greatly influenced by the constituent resin component. Therefore, as one of the methods for reducing the water absorption, there is a technique of increasing the amount of the inorganic filler and reducing the content of the resin component. However, as the inorganic filler is highly filled, the fluidity and filling properties of the epoxy resin composition during molding and melting deteriorate. When the fluidity and filling property of the epoxy resin composition at the time of melting are remarkably deteriorated, the solder crack resistance is deteriorated even if the cured product of the epoxy resin composition has low water absorption. Therefore, in order to obtain an epoxy resin composition that is highly filled with an inorganic filler and the cured product has low water absorption characteristics, and that has good fluidity and filling properties when melted, the epoxy resin when melted is obtained. There is a need for inorganic fillers that can improve the fluidity and filling properties of resin compositions.
[0004]
The epoxy resin composition usually contains a halogen-based flame retardant such as a bromine-containing compound and an antimony compound in order to impart flame retardancy. In recent years, there has been a movement to reduce or eliminate substances that may be harmful due to the importance of corporate activities in consideration of the global environment. Epoxy resin compositions with excellent flame resistance without using halogenated flame retardants and antimony compounds Development is required. As environmentally friendly flame retardants to replace these, epoxy resin compositions containing metal hydroxides such as aluminum hydroxide and magnesium hydroxide and red phosphorus have been proposed, but moisture resistance reliability of semiconductor devices using the same, There are cases where high-temperature storage properties are still insufficient, and there is a problem that an epoxy resin composition that is sufficiently satisfactory in terms of both moldability and curability cannot be obtained, and molding is possible without using these flame retardants. There is a need for an epoxy resin composition that satisfies the properties and curability.
[0005]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in fluidity, filling property, solder crack resistance and flame retardancy during molding, and a semiconductor device using the same.
[0006]
[Means for Solving the Problems]
The present invention
[1] (A) an epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2), (C) a curing accelerator, and (D) an inorganic filler, which are essential. Filler is measured by laser diffraction / scattering method. (1) Fused spherical silica having an average particle diameter of 60 μm to less than 80 μm and a logarithmic standard deviation of 0.5 or less, 75 wt% to 85 wt%, (2) Average particle diameter of 5 μm or more 10 wt% or more and 20 wt% or less of fused spherical silica having a logarithmic standard deviation of 0.5 or less with a logarithmic standard deviation of 0.5 or less, and (3) 2 wt% of fused spherical silica having an average particle diameter of 1 to 5 μm % To 8% by weight and a fused silica resin containing 2% by weight or less of finely divided silica of 0.5 μm or less , wherein the fused spherical silica is all inorganic. 70-1 in filler Epoxy resin composition for semiconductor encapsulation, which is a 0 wt%,
[0007]
[Chemical 3]
(R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. N is an average value and is a positive number of 1 to 5)
[0008]
[Formula 4]
(R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. N is an average value and is a positive number of 1 to 5)
[0009]
[2] The epoxy resin composition for semiconductor encapsulation according to item [1], wherein the fused spherical silica is 70 to 100% by weight in the total inorganic filler,
[3] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition according to the item [1] or [2].
It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin represented by the general formula (1) used in the present invention has a hydrophobic structure between epoxy groups, and an epoxy resin composition using this epoxy resin and a phenol resin represented by the general formula (2). The cured product has a low water absorption because it contains a lot of hydrophobic structures, and has a low cross-link density, so it has a low elastic modulus in the high temperature range that exceeds the glass transition temperature. It is excellent in solder crack resistance and adhesion to the substrate after soldering. Furthermore, since the hydrophobic structure between epoxy groups is a rigid biphenyl skeleton, it has a feature that there is little decrease in heat resistance for a low crosslinking density. Although the specific example of the epoxy resin shown by General formula (1) is shown below, it is not limited to these.
[0011]
[Chemical formula 5]
(Where n is an average value and is a positive number from 1 to 5)
[0012]
The epoxy resin represented by the general formula (1) is a monomer, oligomer or polymer having an epoxy group in the molecule, such as bisphenol A type epoxy resin, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, naphthol novolak type epoxy resin. , Dicyclopentadiene modified phenol type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin and triazine nucleus-containing epoxy resin There is no problem. The amount of the epoxy resin of the general formula (1) when used in combination is preferably 70% by weight or more in the total epoxy resin, and if it is less than 70% by weight, the epoxy resin composition tends to burn or There is a possibility that the water absorption rate becomes high and the elastic modulus becomes high, and the solder crack resistance is adversely affected.
[0013]
The phenol resin represented by the general formula (2) used in the present invention has a hydrophobic structure between hydroxyl groups, and the epoxy resin represented by the general formula (1) and the phenol represented by the general formula (2). A cured product of an epoxy resin composition using a resin has a low water absorption because it contains a lot of hydrophobic structures, and also has a low cross-link density, so it has a low elastic modulus in a high temperature range exceeding the glass transition temperature. It reduces thermal stress during solder reflow during surface mounting, and has excellent solder crack resistance and adhesion to the substrate after soldering. Furthermore, since the hydrophobic structure between the phenyl groups is a rigid biphenyl skeleton, it has a feature that there is little decrease in heat resistance for a low crosslinking density. Although the specific example of the phenol resin shown by General formula (2) is shown below, it is not limited to this.
[0014]
[Chemical 6]
(Where n is an average value and is a positive number from 1 to 5)
[0015]
The phenol resin represented by the general formula (2) is a monomer, oligomer, or polymer having a phenolic hydroxyl group in the molecule, such as a phenol novolak resin, a cresol novolak resin, a phenol aralkyl resin, a terpene-modified phenol resin, or a dicyclopentadiene-modified phenol resin. Further, it may be used in combination with phenol resins such as bisphenol A and triphenolmethane. As a compounding quantity of the phenol resin shown by General formula (2) in the case of using together, 70 weight% or more is preferable in all the phenol resins. If it is less than 70% by weight, it tends to burn, the water absorption rate increases, the elastic modulus increases, and solder crack resistance may be adversely affected. When the epoxy resin represented by the general formula (1) and the phenol resin represented by the general formula (2) are used in combination, the semiconductor device has low water absorption, solder crack resistance in the solder treatment after water absorption, Highly reliable characteristics such as adhesion can be obtained. The equivalent ratio of epoxy groups of all epoxy resins to phenolic hydroxyl groups of all phenol resins is preferably in the range of epoxy group number / phenolic hydroxyl group number = 0.7 to 1.5, more preferably 0.9 to 1.2. It is. If it is out of the range of 0.7 to 1.5, the curability of the epoxy resin composition is lowered, the glass transition temperature of the cured product is lowered, and the moisture resistance reliability is lowered.
[0016]
As a hardening accelerator used for this invention, what is necessary is just to accelerate | stimulate hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for the sealing material can be used widely. For example, amine compounds such as 1,8-diazabicyclo (5,4,0) undecene-7, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, and imidazoles such as 2-methylimidazole Examples thereof include compounds, and these may be used alone or in combination.
[0017]
The fused spherical silica used in the present invention is obtained by laser diffraction / scattering method (1) 75% by weight to 85% by weight of fused spherical silica having an average particle size of 60 μm to less than 80 μm and a logarithmic standard deviation of 0.5 or less. 2) fused spherical silica having an average particle diameter of 5 μm to less than 15 μm and a logarithmic standard deviation of 0.5 or less, and 10% by weight to 20% by weight or less, and (3) an average particle diameter of 1 μm to less than 5 μm with a logarithmic standard deviation of 0.5. The following fused spherical silica is composed of 2% by weight to 8% by weight and contains 2% by weight or less of fine silica of 0.5 μm or less. As the logarithmic standard deviation referred to in the present invention, the value A represented by the following formula was used (see: “Basics of Powder Engineering” edited by the Basic Editing Committee of Powder Engineering, published by Nikkan Kogyo Shimbun). The smaller the value of A, the narrower the particle size distribution.
A = {ln (D2 / D1)} × 0.5
Here, D1 is the particle diameter when the cumulative residual fraction is 84.1%, and D2 is the particle diameter when the cumulative residual fraction is 15.9%. The cumulative residual fraction means (100-integration of particle size frequency).
In the particle size distribution shown in FIG. 1, when D1 = 54.2 μm and D2 = 97.8 μm, A = {ln (97.8 / 54.2)} × 0.5 = 0.3.
[0018]
When the constituent requirements of the fused spherical silica having the above-mentioned particle diameter by the laser diffraction / scattering method are not satisfied, the honey-filling property of the fused spherical silica is lowered. Epoxy resin compositions using fused spherical silica with a minimum honey filling property are preferred because the frequency of collision between fused spherical silicas increases when flowing, and the epoxy resin composition cannot obtain sufficient fluidity and filling properties. Absent.
Further, the fused spherical silica composed of fused spherical silica having the above particle size contains 2% by weight or less of fine silica of 0.5 μm or less. If this value is exceeded, the total specific surface area increases and the fused spherical silica / Since the contact area between the resins increases, the epoxy resin composition is not preferable because sufficient fluidity and filling properties cannot be ensured.
[0019]
The fused spherical silica used in the present invention is desirably contained in an amount of 70 to 100% by weight in the total inorganic filler. If it is less than 70% by weight, sufficient fluidity may not be obtained. . Other inorganic fillers used in combination may be those generally used for sealing materials, such as fused crushed silica, fused spherical silica, crystalline silica, chamfered crystalline silica, secondary agglomerated silica, alumina, spherical Alumina, titanium white, aluminum hydroxide, silicon nitride, aluminum nitride and the like can be mentioned, and the particle size distribution may be appropriately selected as necessary.
The blending amount of the inorganic filler containing fused spherical silica used in the present invention is preferably 70 to 95% by weight in the total epoxy resin composition. If it is less than 70% by weight, the water absorption is increased and the solder crack resistance is lowered, which is not preferable. If it exceeds 95% by weight, it is not preferable because the fluidity necessary for practical use cannot be secured.
[0020]
The particle size distribution of the fused spherical silica in the present invention is obtained by collecting fused spherical silica in accordance with JIS M 8100 (powder mixture-sampling method) and JIS R 1622-1995 (sample for fine ceramic raw material particle size distribution measurement). In accordance with JIS R 1629-1997 (Method for measuring particle size distribution by laser diffraction / scattering method of fine ceramic raw material), manufactured by Shimadzu Corporation Was measured using a laser diffraction particle size distribution analyzer SALD-7000 (laser wavelength: 405 nm) with water or the like as a dispersant and a refractive index of fused spherical silica of real part 1.45 and imaginary part 0.00. Volume-based particle size distribution. The average particle diameter is the particle diameter when the volume-based cumulative residual fraction is 50%.
[0021]
Conventionally, as the inorganic filler to be blended in the epoxy resin composition for semiconductor encapsulation, generally fused spherical silica, fused crushed silica, crystalline silica, etc. are used, but fused spherical silica having the characteristics of the present invention should be used. As a result, it is possible to improve the fluidity and filling properties compared to conventional fillers with various particle sizes, and to obtain an epoxy resin composition with a high blended amount of fused spherical silica, and as a result, a cured product of the epoxy resin composition This contributes to improving the water absorption resistance of the semiconductor device and can improve the solder crack resistance of the semiconductor device.
[0022]
In addition to the components (A) to (D), the epoxy resin composition of the present invention includes flame retardants such as brominated epoxy resin, antimony oxide, phosphorus compound, magnesium hydroxide, aluminum hydroxide, and boric acid compound as necessary. , Inorganic ion exchangers such as bismuth oxide hydrate, coupling agents such as γ-glycidoxypropyltrimethoxysilane and γ-aminopropyltriethoxysilane, colorants such as carbon black and bengara, silicone oil, silicone rubber Various additives such as a low stress component such as natural wax, synthetic wax, higher fatty acids and metal salts thereof or mold release agents such as paraffin, and antioxidants can also be blended.
[0023]
The epoxy resin composition of the present invention is a mixture of components (A) to (D) and other additives at room temperature using a mixer or the like, and melt-kneaded with a kneader such as a roll, a kneader or an extruder, It is obtained by a general method of grinding after cooling.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be molded and cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0024]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples.
9.8 parts by weight of epoxy resin A represented by formula (9) (softening point 60 ° C., epoxy equivalent 270)
[Chemical 7]
[0026]
Phenol resin C represented by the formula (10) (softening point 75 ° C., hydroxyl group equivalent 195) 7.1 parts by weight
[Chemical 8]
[0028]
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.2 part by weight γ-glycidoxypropyltrimethoxysilane 0.3 part by weight carbon black 0.3 part by weight carnauba wax 0 .3 parts by weight silica A (79% by weight fused spherical silica having an average particle size of 72 μm and logarithmic standard deviation of 0.3 measured by laser diffraction / scattering method, fused spherical particles having an average particle size of 9.6 μm and logarithmic standard deviation of 0.2 82.0 parts by weight of all of the above-mentioned components, comprising 16% by weight of silica, 5% by weight of fused spherical silica having an average particle size of 3.9 μm and a logarithmic standard deviation of 0.2, and not containing fine silica of 0.5 μm or less) The components were mixed using a mixer, then kneaded using two rolls having surface temperatures of 90 ° C. and 45 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods.
[0029]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 Mpa, and a curing time of 120 seconds. The unit is cm.
Solder crack resistance: Using a multi-plunger molding machine, 80 pQFP (thickness 2.0 mm, chip size 6 mm × 6 mm) was molded under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. . Six packages treated as post-cure at 175 ° C. for 8 hours were treated in an environment of 85 ° C. and 85% relative humidity for 168 hours, and then IR reflow treatment (maximum 260 ° C. for 10 seconds) was performed. The external cracks of the package after treatment with a microscope and the presence or absence of internal peeling and cracks were observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 6 is displayed.
Fillability: 144 pLQFP using a multi-plunger molding machine under conditions of a mold temperature of 180 ° C., an injection pressure of 9.8 MPa, and a curing time of 60 seconds (package size is 20 mm × 20 mm, thickness is 1.4 mm, dimensions of the simulated semiconductor element) Is 12 mm × 12 mm, the lead frame is made of Cu), and the unfilled number of times is 5 times or more, ×, 1-4 times are indicated by Δ, and no occurrence is indicated by ○.
Flame retardancy: Using a low-pressure transfer molding machine, test specimens were molded at a mold temperature of 175 ° C., 9.8 MPa, and a curing time of 120 seconds, treated as post-cure at 175 ° C. for 8 hours, and then subjected to UL-94 vertical test. (Test specimen thickness 1.6 mm and 3.2 mm) was performed, and the flame retardancy was judged.
[0030]
Examples 1 to 4, 6, 7 and Comparative Examples 1 to 8
According to the composition of Table 1 and Table 2, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
The characteristics of the raw materials used other than Example 1 are shown below.
Biphenyl type epoxy resin B (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000, softening point 105 ° C., epoxy equivalent 193)
Phenol aralkyl resin D (Mitsui Chemicals, XL-225, softening point 75 ° C., hydroxyl equivalent 175)
Fused silica B (Fused silica with an average particle diameter of 1.6 μm measured by the laser diffraction / scattering method and no peak with a logarithmic standard deviation of 0.5 or less)
Fused silica C (fused silica with an average particle size of 22 μm measured by laser diffraction / scattering method and no peak with a logarithmic standard deviation of 0.5 or less)
[0031]
[Table 1]
[0032]
[Table 2]
[0033]
【Effect of the invention】
The epoxy resin composition of the present invention is excellent in fluidity and filling property at the time of molding, and contributes to improvement of solder crack resistance and flame retardancy of a semiconductor device using the epoxy resin composition.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the particle size of a particle size distribution and the cumulative residual fraction.

Claims (2)

(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)硬化促進剤及び(D)無機充填材を必須とし、前記無機充填材がレーザー回折・散乱法による(1)平均粒径60μm以上〜80μm未満で対数標準偏差0.5以下の溶融球状シリカ75重量%以上〜85重量%以下、(2)平均粒径5μm以上〜15μm未満で対数標準偏差0.5以下の溶融球状シリカ10重量%以上〜20重量%以下、(3)平均粒径1μm以上〜5μm未満で対数標準偏差0.5以下の溶融球状シリカ2重量%以上〜8重量%以下で構成され、かつ0.5μm以下の微粒シリカ2重量%以下である溶融球状シリカを含む半導体封止用エポキシ樹脂組成物であって、前記溶融球状シリカが、全無機充填材中77.0/(77.0+10.0)×100〜100重量%であることを特徴とする半導体封止用エポキシ樹脂組成物。
(Rは、水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。nは平均値で、1〜5の正数)
(Rは、水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。nは平均値で、1〜5の正数)
(A) An epoxy resin represented by the general formula (1), (B) a phenol resin represented by the general formula (2), (C) a curing accelerator and (D) an inorganic filler are essential, and the inorganic filler is By laser diffraction / scattering method (1) Fused spherical silica having an average particle size of 60 μm to less than 80 μm and a logarithmic standard deviation of 0.5 or less, 75 wt% to 85 wt%, (2) Average particle size of 5 μm to less than 15 μm (3) fused spherical silica having an average particle size of 1 μm to less than 5 μm and a logarithmic standard deviation of 0.5 or less, An epoxy resin composition for encapsulating a semiconductor comprising fused spherical silica composed of 8% by weight or less and 2% by weight or less of fine silica of 0.5 μm or less, wherein the fused spherical silica is contained in all inorganic fillers 77.0 / (7 .0 + 10.0) epoxy resin composition for semiconductor encapsulation, which is a × 100 to 100 wt%.
(R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. N is an average value and is a positive number of 1 to 5)
(R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. N is an average value and is a positive number of 1 to 5)
請求項1のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1.
JP2001285167A 2001-09-19 2001-09-19 Epoxy resin composition and semiconductor device Expired - Fee Related JP5067994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285167A JP5067994B2 (en) 2001-09-19 2001-09-19 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285167A JP5067994B2 (en) 2001-09-19 2001-09-19 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003096268A JP2003096268A (en) 2003-04-03
JP5067994B2 true JP5067994B2 (en) 2012-11-07

Family

ID=19108369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285167A Expired - Fee Related JP5067994B2 (en) 2001-09-19 2001-09-19 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5067994B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402575C (en) * 2003-10-20 2008-07-16 住友电木株式会社 Epoxy resin composition and semiconductor device
EP1557880A1 (en) * 2004-01-21 2005-07-27 Nitto Denko Corporation Resin composition for encapsulating semiconductor
JP5281250B2 (en) * 2007-03-29 2013-09-04 株式会社アドマテックス Inorganic powder for resin composition addition and resin composition

Also Published As

Publication number Publication date
JP2003096268A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP5130912B2 (en) Epoxy resin composition and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP2006328360A (en) Epoxy resin composition and semiconductor device
JP5067994B2 (en) Epoxy resin composition and semiconductor device
JP4561220B2 (en) Epoxy resin composition and semiconductor device
JP4802421B2 (en) Epoxy resin composition and semiconductor device
JP2006124420A (en) Epoxy resin composition and semiconductor device
JP4569260B2 (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP2002080694A (en) Epoxy resin composition and semiconductor device
JP4765294B2 (en) Semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP2003040981A (en) Epoxy resin composition and semiconductor device
JP5191072B2 (en) Epoxy resin composition and semiconductor device
JPH0625385A (en) Epoxy resin composition and semiconductor device
JP2006206748A (en) Epoxy resin composition and semiconductor device
JP2005139260A (en) Epoxy resin composition and semiconductor device
JP2003089718A (en) Epoxy resin composition and semiconductor device
JP2005281597A (en) Epoxy resin composition and semiconductor device
JP2003206391A (en) Epoxy resin composition and semiconductor device
JP2005041981A (en) Epoxy resin composition and semiconductor device
JP2002293886A (en) Epoxy resin composition and semiconductor device
JP2004002495A (en) Epoxy resin composition and semiconductor device
JP2009203289A (en) Epoxy resin composition for sealing and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5067994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees