【0001】
【発明の属する技術分野】
本発明は、半導体封止用エポキシ樹脂組成物、およびこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また、半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田処理時に高温にさらされ、気化した水蒸気の爆発的応力により半導体装置にクラックが発生したり、或いは半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生したりすることにより、電気的信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田性の向上が大きな課題となっている。この耐半田性を向上させる手段として、種々の提案がなされており、代表的なものとしては、(1)低粘度の樹脂成分を使用して無機質充填材を高充填化し、樹脂成分を減少させて、エポキシ樹脂組成物の硬化物を低熱膨張化、低吸湿化させる、(2)吸湿性が少なく可撓性を有する樹脂の使用等が挙げられる。
【0003】
低粘度樹脂成分としては、低粘度のエポキシ樹脂や結晶性エポキシ樹脂、硬化剤としての低粘度のフェノール樹脂が挙げられ、これらは一般的に低分子量化合物であり、このため成形時の加熱により3次元化して得られる架橋構造の架橋密度は低くなり、機械的強度や熱時弾性率が低い硬化物となるため、金型からの離型時に硬化物が金型に付着したり、或いは成形品の割れ・欠けが発生する等、離型性に劣るという欠点を有する。離型性を向上させるためには離型剤を多量に配合することが対策として挙げられるが、多量の離型剤成分が金型側に付着することによる金型汚れ、型取られ及び各部材界面へのワックスの染み出しによって耐リフロークラック性の低下といった問題があった。
このため、金型汚れが少なく、離型性に優れ、かつ耐リフロー性を両立するエポキシ樹脂組成物の開発が望まれていた。
金型汚れが少なく、離型性に優れ、かつ耐リフロー性を両立するエポキシ樹脂組成物としては、融点ピーク温度が100℃以下のワックスと融点ピーク温度が110〜150℃のワックスとを併用するものが提案されている(例えば、特許文献1参照。)が、ワックスの染み出しによる耐リフロークラック性の低下の抑制は未だ十分とは言えなかった。
【0004】
【特許文献1】
特開2001−323133号公報(第2〜5頁)
【0005】
【発明が解決しようとする課題】
本発明は、フレームやICチップに対する接着性を損なうことなく、金型からの離型性に優れ、パッケージ外観も良好である半導体封止用エポキシ樹脂組成物、およびこれを用いた半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
[1] (A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機質充填材、(E)ワックス及び(F)一般式(1)で示される化合物を必須成分とし、上記の一般式(1)で示される化合物が全エポキシ樹脂組成物中に対して0.1〜5.0重量%含まれることを特徴とする半導体封止用エポキシ樹脂組成物、
【化2】
【0007】
[2] 請求項1記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0008】
【発明の実施の形態】
本発明は、特に主要な構成として、一般式(1)のような構造をもつワックス分散剤を含むことにより、接着性が良好でかつ離型性、成形性にも優れ、パッケージ汚れも改善された半導体封止用エポキシ樹脂組成物及び半導体装置が得られるものである。
以下、本発明について詳細に説明する。
【0009】
本発明に用いるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造等を特に限定するものではないが、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ナフトール型エポキシ樹脂等が挙げられ、単独でも混合して用いてもよい。特に一般式(2)に示される様なビフェニル骨格を分子構造中に含んだエポキシ樹脂は、低吸水性と高強度性に優れた特性を発現するので好適に用いられる。
【化3】
【0010】
この骨格構造を有したエポキシ樹脂としては、4,4’−ビス(2,3−エポキシプロポキシ)ビフェニル又は4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4’−ビフェノールや4,4’−(3,3’,5,5’−テトラメチル)ビフェノールとを反応して得られるエポキシ樹脂、更には一般式(3)で示される構造のエポキシ樹脂が挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。一般式(3)で示される構造のエポキシ樹脂のなかでは、R1、R2、R3、R4が水素である物が好適に使用される。
【化4】
【0011】
本発明に用いるフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造等を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ナフトールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、単独でも混合して用いてもよい。これらの配合量としては、全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の比で0.8〜1.3が好ましい。
【0012】
本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に半導体用封止材料に使用するものを用いることができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート(、ベンゾキノンをアダクトしたトリフェニルホスフィン)等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0013】
本発明に用いる無機充填材としては、無機充填材全般を好適に使用できるが、特に表面に活性水素を含有している無機充填材全般を用いることが有効である。
例えば溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられる。
多くの無機充填材の表面は、元来化学的に活性であり大気中の水分と反応して活性水素を生成しやすく、特に溶融シリカや結晶シリカの表面にはSi−OH基が多量に存在し、アルミナ表面にはAl−OH基が存在する。これらの無機充填材は単独でも混合して用いてもよい。これらの内では球形度の高い溶融球状シリカを全量用いるか、或いは溶融球状シリカに一部破砕シリカを併用することが好ましい。無機充填材の平均粒径としては0.01〜40μm、最大粒径としては150μm以下が好ましく、特に平均粒径0.2〜35μm、最大粒径74μm以下がより好ましい。また粒子の大きさの異なるものを混合することによって充填量を多くすることができる。
【0014】
本発明に用いるワックスとしては、一般に半導体封止材料に用いられるワックス全般を用いることができる。例えば、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0015】
本発明に用いる一般式(1)で示される化合物は、ワックス分散剤であり、これを配合することにより接着性が良好でかつ離型性、成形性にも優れ、パッケージ汚れも改善された半導体封止用エポキシ樹脂組成物が得られる。一般式(1)で示される化合物としては、構造式中のmで示されているアルキル部分の炭素数が5〜30であることが必要であり、10〜25のものが好ましい。上記下限値を下回るとワックスの分散が悪くなり、離型性低下となる恐れがあり、上限値を超えると粘度上昇・フレームとの密着性低下となる恐れがあるので好ましくない。また、一般式(1)で示される化合物の添加量は、全エポキシ樹脂組成物中に対して0.1〜5.0重量%であることが必要である。上記下限値を下回るとワックスの分散が悪くなり、離型性低下となる恐れがあり、上限値を超えると粘度上昇・フレームとの密着性低下となる恐れがあるので好ましくない。
【化5】
【0016】
本発明のエポキシ樹脂組成物は、(A)〜(F)成分を必須とするが、これ以外に必要に応じてカップリング剤、カーボンブラック等の着色剤及びシリコーンオイル、ゴム等の低応力添加剤、臭素化エポキシ樹脂、三酸化アンチモン、トリフェニルホスフェート、フェノキシホスファゼン、水酸化マグネシウム、水酸化マグネシウムの亜鉛固溶体、水酸化アルミニウム、硼酸亜鉛、モリブデン酸亜鉛、等々の難燃剤を適宜配合しても差し支えない。
【0017】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分及びその他の添加剤等を混合機を用いて充分に均一に混合した後、更に混練機で溶融混練し、冷却後粉砕して得られる。なお混合機としては特に限定しないが、例えばボールミル、ヘンシェルミキサー、Vブレンダーやダブルコーンブレンダー、コンクリートミキサーやリボンブレンダー等のブレンダー類がある。また混練機も特に限定しないが、熱ロール、加熱ニーダー、一軸もしくは二軸のスクリュー型混練機等が好適に使用される。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
【0018】
【実施例】
以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
を混合し、熱ロールを用いて、95℃で8分間混練して冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、以下の方法で評価した。結果を表1に示す。
【0019】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が流動性が良好である。単位はcm。
離型荷重:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間90秒で直径15mm、厚さ1.5mmの円盤状の成形品を10ショット連続で成形し、10ショット目の成形品を金型から抜き出す際に必要な荷重をプッシュ/プルゲージにて測定した。尚、測定は各品番5回づつ行い、その平均値を離型荷重の値とした。単位はN。
密着強度:リードフレーム上にトランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で2mm×2mm×2mmの密着強度試験片を成形した。リードフレームにはCu(F1)、Ag(F2)、42アロイ(F3)、NiPdAu(F4)の4種類を用いた。その後、自動せん断強度測定装置(DAGE社製、PC2400)を用いて、エポキシ樹脂組成物の硬化物とフレームとのせん断強度を測定した。単位はN/mm2。
金型・パッケージ汚れ:トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間2分で144pQFP(20×20×1.7mm厚さ)を200回連続で成形した。成形品表面と金型表面の両方に白化があるものを×、どちらか片方に白化があるものを△、どちらにも白化のないものを○と判定した。
耐半田性:トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間2分で144pQFP(20×20×1.7mm厚さ)を成形し、175℃、8時間で後硬化させ、85℃、相対湿度85%の環境下で168時間加湿処理し、その後240℃の半田槽に10秒間浸漬した。その後、顕微鏡でPKG外観を観察し、クラックが無いものを×あるものを〇とした。また、超音波探傷装置で内部を透視し内部素子との剥離があるものは×ないものは○とした。
【0020】
実施例2〜9、比較例1〜2
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1に示す。実施例1以外で使用した原料について以下に示す。
エポキシ樹脂2:4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルビフェニル、ジャパンエポキシレジン(株)製、YX−4000HK。エポキシ当量190g/eq、融点105℃(以下E−2という)フェノール樹脂2:パラキシリレン変性フェノールノボラック樹脂、三井化学(株)製、XLC−4L、水酸基当量165g/eq、軟化点79℃(以下、H−2という)
ワックス分散剤2(式(1)で表されるワックス分散剤、m=20)
【0021】
【表1】
【0022】
【発明の効果】
本発明に従うと、エポキシ樹脂組成物はフレームやICチップに対する接着性を損なうことなく、金型からの離型性に優れた特性を有しており、このエポキシ樹脂組成物を用いて封止した半導体装置はパッケージ汚れが生じない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.
[0002]
[Prior art]
In recent years, electronic devices have become smaller, lighter, and higher in performance, and semiconductor elements have become more highly integrated, and surface mounting of semiconductor devices has been promoted. The demand for compositions has become increasingly severe. In particular, surface mounting of semiconductor devices has become common, and moisture-absorbed semiconductor devices are exposed to high temperatures during soldering, and cracks are generated in the semiconductor devices due to the explosive stress of vaporized water vapor, or semiconductors Debonding occurs at the interface between the element or the lead frame and the cured product of the epoxy resin composition, resulting in defects that greatly impair the electrical reliability, and the prevention of these defects, that is, the improvement in solder resistance is significant. It has become a challenge. Various proposals have been made as means for improving the solder resistance. As typical examples, (1) a low-viscosity resin component is used to increase the filling of the inorganic filler, thereby reducing the resin component. And (2) use of a resin having low hygroscopicity and flexibility so that the cured product of the epoxy resin composition has low thermal expansion and low moisture absorption.
[0003]
Examples of the low-viscosity resin component include low-viscosity epoxy resins and crystalline epoxy resins, and low-viscosity phenol resins as curing agents, which are generally low molecular weight compounds. The cross-linked density of the cross-linked structure obtained by dimensionalization becomes low, resulting in a cured product with low mechanical strength and thermal elastic modulus. Therefore, the cured product adheres to the mold when released from the mold, or a molded product. It has the disadvantage that it is inferior in releasability, such as cracking and chipping. In order to improve releasability, a large amount of a release agent is included as a countermeasure. However, mold contamination due to a large amount of a release agent component adhering to the mold side, mold removal, and each member There was a problem that the reflow crack resistance was lowered due to the seepage of the wax to the interface.
For this reason, there has been a demand for the development of an epoxy resin composition with little mold contamination, excellent releasability, and compatibility with reflow resistance.
As an epoxy resin composition having little mold contamination, excellent releasability, and having both reflow resistance, a wax having a melting point peak temperature of 100 ° C. or lower and a wax having a melting point peak temperature of 110 to 150 ° C. are used in combination. Although a thing is proposed (for example, refer patent document 1), it cannot be said that suppression of the reflow crack-resistant fall by the oozing-out of a wax was still enough.
[0004]
[Patent Document 1]
JP 2001-323133 A (pages 2 to 5)
[0005]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for encapsulating a semiconductor which has excellent mold releasability and good package appearance without deteriorating adhesion to a frame or IC chip, and a semiconductor device using the same To do.
[0006]
[Means for Solving the Problems]
The present invention
[1] (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, (E) wax, and (F) compound represented by general formula (1) as essential components An epoxy resin composition for encapsulating a semiconductor, wherein the compound represented by the general formula (1) is contained in an amount of 0.1 to 5.0% by weight based on the total epoxy resin composition,
[Chemical 2]
[0007]
[2] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition for semiconductor sealing according to claim 1;
It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In particular, the present invention includes a wax dispersant having a structure represented by the general formula (1) as a main configuration, so that the adhesiveness is good, the mold release property and the moldability are excellent, and the package dirt is also improved. Thus, an epoxy resin composition for semiconductor encapsulation and a semiconductor device can be obtained.
Hereinafter, the present invention will be described in detail.
[0009]
The epoxy resin used in the present invention refers to monomers, oligomers, and polymers generally having two or more epoxy groups in one molecule, and its molecular weight, molecular structure, etc. are not particularly limited. For example, biphenyl type epoxy resins, Bisphenol type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type Examples thereof include an epoxy resin, a phenol aralkyl type epoxy resin (having a phenylene skeleton, a biphenylene skeleton, etc.), a naphthol type epoxy resin, and the like. In particular, an epoxy resin containing a biphenyl skeleton as shown in the general formula (2) in the molecular structure is preferably used because it exhibits characteristics excellent in low water absorption and high strength.
[Chemical 3]
[0010]
Examples of the epoxy resin having this skeleton structure include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5. Epoxy resin based on '-tetramethylbiphenyl, epoxy obtained by reacting epichlorohydrin with 4,4'-biphenol or 4,4'-(3,3 ', 5,5'-tetramethyl) biphenol Examples of the resin include an epoxy resin having a structure represented by the general formula (3), and these may be used alone or in combination of two or more. Among the epoxy resins having a structure represented by the general formula (3), those in which R 1 , R 2 , R 3 , and R 4 are hydrogen are preferably used.
[Formula 4]
[0011]
The phenol resin used in the present invention refers to monomers, oligomers, and polymers generally having two or more phenolic hydroxyl groups in one molecule, and the molecular weight, molecular structure, etc. thereof are not particularly limited. For example, phenol novolak resin, Cresol novolak resin, dicyclopentadiene modified phenol resin, terpene modified phenol resin, triphenolmethane type resin, phenol aralkyl resin (having phenylene skeleton, biphenylene skeleton, etc.), naphthol aralkyl resin (having phenylene skeleton, biphenylene skeleton, etc.), etc. May be used alone or in combination. As these compounding quantities, 0.8-1.3 are preferable by the ratio of the number of epoxy groups of all the epoxy resins, and the number of phenolic hydroxyl groups of all the phenol resins.
[0012]
As a hardening accelerator used for this invention, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for the sealing material for semiconductors can be used. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, amine compounds such as tributylamine and benzyldimethylamine, imidazole compounds such as 2-methylimidazole, and triphenyl Organic phosphines such as phosphine, methyldiphenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetrabenzoic acid borate, tetraphenylphosphonium / tetranaphthoic acid borate, tetraphenylphosphonium / tetranaphthoyloxyborate, tetraphenyl Tetra-substituted phosphonium / tetra-substituted borate such as phosphonium / tetranaphthyloxyborate (triphenylphosphine adducted with benzoquinone) Gerare, it no problem is used singly or in admixture.
[0013]
As the inorganic filler used in the present invention, all inorganic fillers can be suitably used, but it is particularly effective to use all inorganic fillers containing active hydrogen on the surface.
Examples thereof include fused silica, crystalline silica, talc, alumina, silicon nitride and the like.
The surface of many inorganic fillers is inherently chemically active, and easily reacts with moisture in the atmosphere to generate active hydrogen. Especially, the surface of fused silica or crystalline silica contains a large amount of Si-OH groups. In addition, Al—OH groups exist on the alumina surface. These inorganic fillers may be used alone or in combination. Among these, it is preferable to use the entire amount of fused spherical silica having a high sphericity, or to use partially crushed silica in combination with fused spherical silica. The average particle size of the inorganic filler is preferably 0.01 to 40 μm, and the maximum particle size is preferably 150 μm or less, and more preferably the average particle size is 0.2 to 35 μm and the maximum particle size is 74 μm or less. Moreover, the filling amount can be increased by mixing particles having different particle sizes.
[0014]
As the wax used in the present invention, all waxes generally used for semiconductor sealing materials can be used. Examples include natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate, and metal salts thereof or mold release agents such as paraffin. These may be used alone or in combination. There is no problem.
[0015]
The compound represented by the general formula (1) used in the present invention is a wax dispersant, and by incorporating this, a semiconductor having good adhesiveness, excellent releasability and moldability, and improved package contamination. An epoxy resin composition for sealing is obtained. As a compound shown by General formula (1), it is required that carbon number of the alkyl part shown by m in a structural formula is 5-30, and the thing of 10-25 is preferable. If the value is below the lower limit, the dispersion of the wax may be deteriorated and the releasability may be lowered. If the upper limit is exceeded, the viscosity may be increased and the adhesion to the frame may be lowered. Moreover, the addition amount of the compound shown by General formula (1) needs to be 0.1-5.0 weight% with respect to all the epoxy resin compositions. If the value is below the lower limit, the dispersion of the wax may be deteriorated and the releasability may be lowered. If the upper limit is exceeded, the viscosity may be increased and the adhesion to the frame may be lowered.
[Chemical formula 5]
[0016]
The epoxy resin composition of the present invention includes the components (A) to (F), but in addition to this, a low-stress additive such as a coupling agent, a colorant such as carbon black, and silicone oil or rubber is added as necessary. , Flame retardant such as brominated epoxy resin, antimony trioxide, triphenyl phosphate, phenoxyphosphazene, magnesium hydroxide, magnesium hydroxide zinc solid solution, aluminum hydroxide, zinc borate, zinc molybdate, etc. There is no problem.
[0017]
In the epoxy resin composition of the present invention, the components (A) to (E) and other additives are sufficiently uniformly mixed using a mixer, then melt-kneaded with a kneader, cooled and pulverized. can get. The mixer is not particularly limited, and examples thereof include blenders such as a ball mill, a Henschel mixer, a V blender, a double cone blender, a concrete mixer, and a ribbon blender. The kneader is not particularly limited, but a hot roll, a heating kneader, a uniaxial or biaxial screw type kneader, or the like is preferably used.
The epoxy resin composition of the present invention is used to encapsulate various electronic components such as semiconductor elements, and to manufacture semiconductor devices by conventional molding methods such as transfer molding, compression molding, and injection molding. do it.
[0018]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.
Example 1
Were mixed for 8 minutes at 95 ° C. using a heat roll, cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0019]
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. Spiral flow is a parameter for fluidity, and the larger the value, the better the fluidity. The unit is cm.
Mold release load: Using a transfer molding machine, a disk-shaped molded product having a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 90 seconds and a diameter of 15 mm and a thickness of 1.5 mm was molded continuously for 10 shots. The load required when the molded product of the 10th shot was extracted from the mold was measured with a push / pull gauge. The measurement was performed 5 times for each product number, and the average value was taken as the value of the release load. The unit is N.
Adhesion strength: A 2 mm × 2 mm × 2 mm adhesion strength test piece was molded on a lead frame using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. Four types of lead frames were used: Cu (F1), Ag (F2), 42 alloy (F3), and NiPdAu (F4). Thereafter, the shear strength between the cured product of the epoxy resin composition and the frame was measured using an automatic shear strength measuring apparatus (manufactured by DAGE, PC2400). The unit is N / mm 2 .
Mold / Package Dirt: Using a transfer molding machine, 144 pQFP (20 × 20 × 1.7 mm thickness) was continuously molded 200 times with a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, and a curing time of 2 minutes. The case where both the surface of the molded product and the mold surface were whitened was judged as x, the case where one of them was whitened was judged as Δ, and the case where neither was whitened was judged as ○.
Solder resistance: Using a transfer molding machine, 144 pQFP (20 × 20 × 1.7 mm thickness) was molded at a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, and a curing time of 2 minutes, and at 175 ° C. for 8 hours. It was post-cured, humidified for 168 hours in an environment of 85 ° C. and 85% relative humidity, and then immersed in a solder bath at 240 ° C. for 10 seconds. Thereafter, the appearance of the PKG was observed with a microscope, and those with no cracks were marked with ◯. In addition, the case where the inside was seen through with an ultrasonic flaw detector and there was peeling from the internal element was rated as “Good”.
[0020]
Examples 2-9, Comparative Examples 1-2
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1. The raw materials used other than Example 1 are shown below.
Epoxy resin 2: 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl, YX-4000HK, manufactured by Japan Epoxy Resin Co., Ltd. Epoxy equivalent 190 g / eq, melting point 105 ° C. (hereinafter referred to as E-2) phenol resin 2: paraxylylene-modified phenol novolac resin, manufactured by Mitsui Chemicals, XLC-4L, hydroxyl group equivalent 165 g / eq, softening point 79 ° C. (hereinafter, H-2)
Wax dispersant 2 (wax dispersant represented by formula (1), m = 20)
[0021]
[Table 1]
[0022]
【The invention's effect】
According to the present invention, the epoxy resin composition has excellent properties for releasing from the mold without impairing the adhesion to the frame or IC chip, and is sealed using this epoxy resin composition. The semiconductor device does not cause package contamination.