JP5055778B2 - Epoxy resin composition, epoxy resin molding material and semiconductor device - Google Patents

Epoxy resin composition, epoxy resin molding material and semiconductor device Download PDF

Info

Publication number
JP5055778B2
JP5055778B2 JP2006029062A JP2006029062A JP5055778B2 JP 5055778 B2 JP5055778 B2 JP 5055778B2 JP 2006029062 A JP2006029062 A JP 2006029062A JP 2006029062 A JP2006029062 A JP 2006029062A JP 5055778 B2 JP5055778 B2 JP 5055778B2
Authority
JP
Japan
Prior art keywords
epoxy resin
general formula
resin composition
represented
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006029062A
Other languages
Japanese (ja)
Other versions
JP2007204722A (en
Inventor
文広 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006029062A priority Critical patent/JP5055778B2/en
Publication of JP2007204722A publication Critical patent/JP2007204722A/en
Application granted granted Critical
Publication of JP5055778B2 publication Critical patent/JP5055778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、エポキシ樹脂組成物、エポキシ樹脂成形材料及びそれを用いた半導体装置に関するものである。   The present invention relates to an epoxy resin composition, an epoxy resin molding material, and a semiconductor device using the same.

近年の電子機器の小型化、軽量化、高機能化の市場動向において、半導体の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、新規にエリア実装型半導体装置が開発され、従来構造の半導体装置から移行し始めている。エリア実装型半導体装置としては、ボールグリッドアレイ(以下、BGAという)、あるいは更に小型化を追求したチップサイズパッケージ(以下、CSPという)が代表的であるが、これらは従来のクワッドフラットパッケージ(以下、QFPという)、スモールアウトラインパッケージ(以下、SOPという)に代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。エリア実装型半導体装置の構造としては、ビスマレイミド・トリアジン(以下、BTという)樹脂/銅箔回路基板に代表される硬質回路基板あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その素子搭載面、即ち基板の片面のみが樹脂組成物の成形材料(以下、樹脂成形材料という。)等で成形・封止されている。また基板の素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装する回路基板との接合を行う特徴を有している。更に素子を搭載する基板としては、上記有機回路基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。   In recent years, electronic devices have become smaller, lighter, and more functional, and as the integration of semiconductors has progressed year by year and the surface mounting of semiconductor devices has been promoted, new area-mounted semiconductor devices have been developed. It has been developed and is beginning to shift from conventional semiconductor devices. Typical area-mounting semiconductor devices are a ball grid array (hereinafter referred to as BGA) or a chip size package (hereinafter referred to as CSP) in pursuit of further miniaturization, but these are conventional quad flat packages (hereinafter referred to as CSP). The surface mount type semiconductor device represented by the small outline package (hereinafter referred to as SOP) has been developed to meet the demand for high pin count and high speed approaching the limit. The structure of the area mounting type semiconductor device includes a hard circuit board represented by bismaleimide triazine (hereinafter referred to as BT) resin / copper foil circuit board or a flexible circuit board represented by polyimide resin film / copper foil circuit board. A semiconductor element is mounted on one side, and only the element mounting surface, that is, one side of the substrate is molded and sealed with a molding material (hereinafter referred to as a resin molding material) of a resin composition. In addition, solder balls are two-dimensionally formed in parallel on the surface opposite to the element mounting surface of the substrate, and are joined to a circuit substrate on which a semiconductor device is mounted. Further, as a substrate on which the element is mounted, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been devised.

これらエリア実装型半導体装置の構造は基板の素子搭載面のみを樹脂成形材料で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。ごく希に、リードフレーム等の金属基板等では、半田ボール形成面でも数十μm程度の封止樹脂層が存在することもあるが、素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため有機基板や金属基板と樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合あるいは樹脂成形材料の成形・硬化時の硬化収縮による影響により、これらの半導体装置では成形直後から反りが発生しやすい。また、樹脂成形材料の流動性不足及び高粘度により、成形時に金線が流れて、金線接触が起こる。更には、これらの半導体装置を実装する回路基板上に半田接合を行う場合、エポキシ樹脂組成物の硬化物の吸湿により半導体装置内部に存在する水分が高温で急激に気化することによる応力で半導体装置にクラックが発生する。さらに、近年、環境問題から従来よりも高融点の無鉛半田の使用が増加しており、この半田の適用により実装温度を従来よりも約20℃高くする必要があり、実装後の半導体装置の信頼性が現状より著しく低下する問題が生じている。このようなことからエポキシ樹脂組成物のレベルアップによる半導体装置の信頼性の向上要求が加速的に強くなってきており、樹脂の高流動化と無機充填剤の高充填化が進んでいる。
また、成形時に低粘度で高流動性を維持するために、溶融粘度の低い樹脂の使用(例えば、特許文献1参照。)や、また無機充填剤の配合量を高めるために無機充填剤をシランカップリング剤で表面処理する方法が知られている(例えば、特許文献2参照。)。しかしこれらは種々ある要求特性のいずれかのみを満足するものが多く、実装時の耐半田性と高流動化が両立できる手法は未だ見出されておらず、流動性と耐半田性に優れた更なる技術が求められていた。
These area-mounted semiconductor devices have a single-side sealing configuration in which only the element mounting surface of the substrate is sealed with a resin molding material and the solder ball forming surface side is not sealed. Very rarely, a metal substrate such as a lead frame may have a sealing resin layer of about several tens of μm on the solder ball forming surface, but a sealing resin of about several hundred μm to several mm on the device mounting surface. Since the layer is formed, it is substantially single-sided sealed. For this reason, these semiconductor devices are immediately after molding due to the mismatch between thermal expansion and thermal shrinkage between the organic substrate or metal substrate and the cured resin composition, or the effects of curing shrinkage during molding and curing of the resin molding material. Warp is likely to occur. Further, due to insufficient fluidity and high viscosity of the resin molding material, the gold wire flows at the time of molding, and gold wire contact occurs. Furthermore, when solder bonding is performed on a circuit board on which these semiconductor devices are mounted, the semiconductor device is caused by stress caused by moisture in the semiconductor device being rapidly vaporized at a high temperature due to moisture absorption of a cured product of the epoxy resin composition. Cracks occur. Furthermore, in recent years, the use of lead-free solder having a higher melting point than ever is increasing due to environmental problems, and it is necessary to raise the mounting temperature by about 20 ° C. compared to the prior art by applying this solder. There is a problem in that the property is significantly lower than the current state. For these reasons, the demand for improving the reliability of semiconductor devices by increasing the level of the epoxy resin composition is acceleratingly increasing, and higher fluidization of resins and higher filling of inorganic fillers are progressing.
In addition, in order to maintain low viscosity and high fluidity during molding, use of a resin having a low melt viscosity (see, for example, Patent Document 1), and in order to increase the compounding amount of the inorganic filler, the inorganic filler is changed to silane. A method of surface treatment with a coupling agent is known (for example, see Patent Document 2). However, many of these satisfy only one of various required characteristics, and no method has yet been found that can achieve both solder resistance during mounting and high fluidization, and has excellent fluidity and solder resistance. There was a need for more technology.

特開平7−130919号公報(第2〜10頁)JP-A-7-130919 (pages 2 to 10) 特開平8−20673号公報(第2〜6頁)JP-A-8-20673 (pages 2-6)

本発明は、上記事情に鑑みてなされたものであり、その目的は、特定の樹脂成分、特定の化合物を用いて流動性、耐半田性に優れ、特にエリア実装型半導体封止用に適したエポキシ樹脂組成物、エポキシ樹脂成形材料、及びこれを用いた半導体装置を提供するものである。   The present invention has been made in view of the above circumstances, and the object thereof is excellent in fluidity and solder resistance using a specific resin component and a specific compound, and particularly suitable for area mounting type semiconductor encapsulation. An epoxy resin composition, an epoxy resin molding material, and a semiconductor device using the same are provided.

本発明は、
[1] エポキシ樹脂(A)、フェノール樹脂系硬化剤(B)、シランカップリング剤(C)、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)、硬化促進剤(E)、及び無機充填剤(F)を含むエポキシ樹脂組成物であって、前記エポキシ樹脂(A)が下記一般式(1)で表されるエポキシ樹脂(a1)を含み、前記フェノール樹脂系硬化剤(B)が下記一般式(2)で表されるフェノール樹脂(b1)及び下記一般式(3)で表されるフェノール樹脂(b2)を含み、前記一般式(3)で表されるフェノール樹脂(b2)が全フェノール樹脂系硬化剤に対し5重量%以上60重量%以下の割合で含まれ、前記芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)がカテコール、ピロガロール、又は2,3−ジヒドロキシナフタレンであり、無機充填剤(F)として溶融シリカをエポキシ樹脂組成物中に対し81重量%以上、90重量%以下の割合で含むことを特徴とする半導体封止用エポキシ樹脂組成物、
The present invention
[1] Epoxy resin (A), phenol resin-based curing agent (B), silane coupling agent (C), compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring, An epoxy resin composition comprising a curing accelerator (E) and an inorganic filler (F) , wherein the epoxy resin (A) comprises an epoxy resin (a1) represented by the following general formula (1), The phenol resin-based curing agent (B) includes a phenol resin (b1) represented by the following general formula (2) and a phenol resin (b2) represented by the following general formula (3). The phenol resin (b2) represented is contained in a proportion of 5 wt% to 60 wt% with respect to the total phenol resin curing agent, and hydroxyl groups are bonded to two or more adjacent carbon atoms constituting the aromatic ring. Compound (D) Catechol, pyrogallol, or 2,3-dihydroxynaphthalene, containing a fused silica as an inorganic filler (F) in a proportion of 81% by weight to 90% by weight with respect to the epoxy resin composition Epoxy resin composition for sealing,

Figure 0005055778
(ただし、上記一般式(1)において、R1〜R8は、水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても異なっていてもよい、)
Figure 0005055778
(However, in the general formula (1), R1 to R8 are groups selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other.)

Figure 0005055778
(ただし、上記一般式(2)において、R、Rは水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい、nは平均値で、5以下の正数、)
Figure 0005055778
(However, in the above general formula (2), R 1, R 2 is a group selected from an alkyl group having 1 to 4 carbon hydrogen atom or a carbon, it may be the same or may be different from one another, n Is an average value, a positive number less than 5 )

Figure 0005055778
(ただし、上記一般式(3)において、Rは水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい、nは平均値で、1〜5の正数、)
Figure 0005055778
(However, in the said General formula (3), R is a group selected from a hydrogen atom or a C1-C4 alkyl group, and may mutually be same or different, n is an average value. , A positive number from 1 to 5,

[2] 前記シランカップリング剤(C)が全エポキシ樹脂組成物に対し0.01以上1重量%以下の割合で含まれる第[1]項に記載のエポキシ樹脂組成物、
[3] 前記芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)が全エポキシ樹脂組成物に対し0.01以上1重量%以下の割合で含まれる第[1]項又は第[2]項に記載のエポキシ樹脂組成物、
[2] The epoxy resin composition according to item [1], wherein the silane coupling agent (C) is contained at a ratio of 0.01 to 1% by weight with respect to the total epoxy resin composition,
[3] The compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring is contained in a ratio of 0.01 to 1% by weight based on the total epoxy resin composition. 1] or epoxy resin composition according to item [2],

] 第[1]項ないし第[]項のいずれかに記載のエポキシ樹脂組成物を混合及び/又は溶融混練してなる半導体封止用エポキシ樹脂成形材料、
] 第[]項に記載のエポキシ樹脂成形材料を用いて、半導体素子を封止してなることを特徴とする半導体装置、
] 第[]項に記載のエポキシ樹脂成形材料を用いて、基板の片面に半導体素子が搭載された基板面側の片面を封止してなることを特徴とする半導体装置、
である。
[ 4 ] An epoxy resin molding material for semiconductor encapsulation formed by mixing and / or melt-kneading the epoxy resin composition according to any one of [1] to [ 3 ],
[ 5 ] A semiconductor device comprising a semiconductor element sealed using the epoxy resin molding material according to the item [ 4 ],
[ 6 ] A semiconductor device characterized by sealing one side of a substrate surface on which a semiconductor element is mounted on one side of the substrate, using the epoxy resin molding material according to item [ 4 ],
It is.

本発明に従うと、流動性に優れ、且つ耐半田性に優れた特性を有し、特にエリア実装型の半導体装置においては、金線変形が小さく、耐半田性等の高信頼性との両立が可能となるという、顕著な効果が得られるものである。   According to the present invention, it has excellent fluidity and excellent solder resistance. Particularly in an area mounting type semiconductor device, gold wire deformation is small, and high reliability such as solder resistance is compatible. The remarkable effect that it becomes possible is obtained.

本発明は、エポキシ樹脂(A)、フェノール樹脂系硬化剤(B)、シランカップリング剤(C)、及び芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)を含むエポキシ樹脂組成物であって、前記エポキシ樹脂(A)が一般式(1)で表されるエポキシ樹脂(a1)を含み、前記フェノール樹脂系硬化剤(B)が一般式(2)で表されるフェノール樹脂(b1)及び下記一般式(3)で表されるフェノール樹脂(b2)を含み、前記一般式(3)で表されるフェノール樹脂(b2)が全フェノール樹脂系硬化剤に対し5重量%以上60重量%以下の割合で含まれることによって、流動性に優れ、且つ耐半田性に優れた特性を有し、特にエリア実装型の半導体装置においては、金線変形が小さく、耐半田性等の高信頼性との両立が可能となるという、顕著な効果が得られるものである。
以下、本発明について詳細に説明する。
The present invention relates to an epoxy resin (A), a phenol resin-based curing agent (B), a silane coupling agent (C), and a compound in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring (D ), Wherein the epoxy resin (A) includes an epoxy resin (a1) represented by the general formula (1), and the phenol resin curing agent (B) is represented by the general formula (2) A phenol resin (b1) represented by the following general formula (3) and the phenol resin (b2) represented by the general formula (3) is an all-phenol resin curing agent: With respect to the amount of 5% by weight or more and 60% by weight or less, the composition has excellent fluidity and solder resistance, and in an area mounting type semiconductor device, the deformation of the gold wire is small. Solder resistance Of that it is compatible with high reliability becomes possible, in which remarkable effects can be obtained.
Hereinafter, the present invention will be described in detail.

本発明では、エポキシ樹脂(A)として、一般式(1)で表されるエポキシ樹脂(a1)を用いる。本発明で用いられる一般式(1)で表されるエポキシ樹脂(a1)は、結晶性で低分子量の樹脂であるため溶融粘度が低く、これを用いたエポキシ樹脂成形材料は流動性に優れ成形性が良好となる。また、一般式(1)で表されるエポキシ樹脂(a1)は2官能であるため、これを用いたエポキシ樹脂組成物の硬化物は架橋密度が低く抑えられ、高温での弾性率が低く、半田処理時等の応力緩和に適しており、耐半田性が良好となる。
一般式(1)で表されるエポキシ樹脂(a1)の内では、作業性、実用性のバランスの取れた4,4’−ジグリシジルビフェニル、あるいは3,3’,5,5’−テトラメチル−4,4’−ジグリシジルビフェニル及びこの両者の溶融混合物等が好ましい。一般式(1)で表されるエポキシ樹脂(a1)の具体例を下記式(6)に示すが、これらに限定されるものではない。
In this invention, the epoxy resin (a1) represented by General formula (1) is used as an epoxy resin (A). The epoxy resin (a1) represented by the general formula (1) used in the present invention is a crystalline and low molecular weight resin and thus has a low melt viscosity, and an epoxy resin molding material using this is excellent in fluidity and molded. Property is improved. In addition, since the epoxy resin (a1) represented by the general formula (1) is bifunctional, the cured product of the epoxy resin composition using the epoxy resin composition has a low crosslinking density and a low elastic modulus at high temperature. Suitable for stress relaxation during solder processing, etc., and good solder resistance.
Among the epoxy resins (a1) represented by the general formula (1), 4,4′-diglycidylbiphenyl or 3,3 ′, 5,5′-tetramethyl has a good balance between workability and practicality. -4,4'-diglycidylbiphenyl and a molten mixture of both are preferred. Although the specific example of the epoxy resin (a1) represented by General formula (1) is shown in following formula (6), it is not limited to these.

Figure 0005055778
Figure 0005055778

本発明では、エポキシ樹脂(A)として、一般式(1)で表されるエポキシ樹脂(a1)を配合することによる特徴を損なわない範囲で、他のエポキシ樹脂を併用することができる。併用する場合、一般式(1)で表されるエポキシ樹脂(a1)の配合割合は、全エポキシ樹脂中の少なくとも30重量%以上が好ましく、より好ましくは50重量%以上、更に好ましくは80重量%以上である。上記範囲内であると、樹脂成形材料の流動性と成形性の向上を図ることができ、また、樹脂硬化物の耐半田性の向上を図ることができる。併用可能なエポキシ樹脂としては特に限定はしないが、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェニレン及び/又はビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。併用するエポキシ樹脂は、成形時の溶融粘度が非常に低い一般式(1)で表されるエポキシ樹脂(a1)を配合することによる特徴を損なわないよう、極力粘度の低いものを使用することが望ましい。   In this invention, another epoxy resin can be used together in the range which does not impair the characteristic by mix | blending the epoxy resin (a1) represented by General formula (1) as an epoxy resin (A). When used together, the blending ratio of the epoxy resin (a1) represented by the general formula (1) is preferably at least 30% by weight or more, more preferably 50% by weight or more, further preferably 80% by weight in the total epoxy resin. That's it. Within the above range, the fluidity and moldability of the resin molding material can be improved, and the solder resistance of the cured resin can be improved. Although it does not specifically limit as an epoxy resin which can be used together, For example, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a triphenolmethane type epoxy resin, a phenol aralkyl type epoxy resin having a phenylene and / or biphenylene skeleton, a naphthol type Examples include epoxy resins, naphthalene-type epoxy resins, alkyl-modified triphenol methane-type epoxy resins, triazine nucleus-containing epoxy resins, dicyclopentadiene-modified phenol-type epoxy resins, and these can be used alone or in combination of two or more. You may use together. The epoxy resin used in combination may be one having a viscosity as low as possible so as not to impair the characteristics of the epoxy resin (a1) represented by the general formula (1) having a very low melt viscosity at the time of molding. desirable.

本発明では、フェノール樹脂系硬化剤(B)として、一般式(2)で表されるフェノール樹脂(b1)及び一般式(3)で表されるフェノール樹脂(b2)を用いる。本発明で用いられる一般式(2)で表されるフェノール樹脂(b1)は、フェノール性水酸基間に疎水性のフェニレン骨格、又は疎水性で剛直なビフェニレン骨格を有しており、これらを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、Tgを越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また、難燃性にも優れ、架橋密度が低い割には耐熱性が高いという特徴を有している。
しかしながら、その反面、一般式(2)で表されるフェノール樹脂(b1)のみの使用では、硬化性がやや悪く、良好な成形性が得られない場合がある。本発明では、一般式(2)で表されるフェノール樹脂(b1)を用いることによる効果を損なわずに、硬化性、成形性の向上を図るため、一般式(3)で表されるフェノール樹脂(b2)を全フェノール樹脂系硬化剤中に対し5重量%以上60重量%以下の割合で併用する。一般式(3)で表されるフェノール樹脂(b2)は、樹脂骨格の架橋点間距離が短く、架橋密度が高いため、一般式(2)で表されるフェノール樹脂(b1)と一般式(3)で表されるフェノール樹脂(b2)とを上記割合で併用したエポキシ樹脂組成物の硬化物又は成形材料は、一般式(2)で表されるフェノール樹脂(b1)のみを使用した場合と比べ、高Tg、低粘度、高流動性、良好な硬化性、成形性を得ることができる。また、一般式(2)で表されるフェノール樹脂(b1)の具体例を下記式(7)に、一般式(3)で表されるフェノール樹脂(b2)の具体例を下記式(8)に示すが、これらに限定されるものではない。
In this invention, the phenol resin (b1) represented by General formula (2) and the phenol resin (b2) represented by General formula (3) are used as a phenol resin type hardening | curing agent (B). The phenol resin (b1) represented by the general formula (2) used in the present invention has a hydrophobic phenylene skeleton or a hydrophobic and rigid biphenylene skeleton between phenolic hydroxyl groups, and these were used. A cured product of the epoxy resin composition has a low moisture absorption rate, a low elastic modulus in a high temperature range exceeding Tg, and excellent adhesion to a semiconductor element, an organic substrate, and a metal substrate. Moreover, it has the characteristics that it is excellent in flame retardancy and has high heat resistance for a low crosslinking density.
However, on the other hand, when only the phenol resin (b1) represented by the general formula (2) is used, the curability is somewhat poor and good moldability may not be obtained. In the present invention, the phenol resin represented by the general formula (3) is used in order to improve curability and moldability without impairing the effects of using the phenol resin (b1) represented by the general formula (2). (B2) is used in a proportion of 5 wt% to 60 wt% with respect to the total phenol resin curing agent. Since the phenol resin (b2) represented by the general formula (3) has a short distance between the crosslinking points of the resin skeleton and a high crosslinking density, the phenol resin (b1) represented by the general formula (2) and the general formula ( The cured product or molding material of the epoxy resin composition in which the phenol resin (b2) represented by 3) is used together in the above ratio is the case where only the phenol resin (b1) represented by the general formula (2) is used. In comparison, high Tg, low viscosity, high fluidity, good curability, and moldability can be obtained. A specific example of the phenol resin (b1) represented by the general formula (2) is shown in the following formula (7), and a specific example of the phenol resin (b2) represented by the general formula (3) is shown in the following formula (8). However, it is not limited to these.

Figure 0005055778
(ただし、上記式(7)において、nは平均値で1〜5の正数。)
Figure 0005055778
(In the above formula (7), n is an average value and is a positive number of 1 to 5.)

Figure 0005055778
(ただし、上記式(8)において、nは平均値で1〜5の正数。)
Figure 0005055778
(In the above formula (8), n is an average value and is a positive number of 1 to 5.)

本発明で用いられる一般式(3)で表されるフェノール樹脂(b2)の配合割合は、全フェノール樹脂系硬化剤中に5重量%以上60重量%以下であることが必須であるが、好ましくは10重量%以上55重量%以下である。上記範囲内であると、エポキシ樹脂成形材料の流動性が得られ、即ち封止成形時に金線変形を発生し難くする効果を充分に得ることができる。また、上記範囲内であると、エポキシ樹脂組成物の硬化物の吸水性が大きくなることによる半導体装置における耐半田性の低下を引き起こす恐れが少なく、また、難燃性の低下を引き起こす恐れも少ない。   The blending ratio of the phenol resin (b2) represented by the general formula (3) used in the present invention is essential to be 5% by weight or more and 60% by weight or less in the total phenol resin curing agent, preferably Is 10 wt% or more and 55 wt% or less. Within the above range, the fluidity of the epoxy resin molding material can be obtained, that is, the effect of making it difficult for gold wire deformation to occur during sealing molding can be sufficiently obtained. Further, if it is within the above range, there is little risk of causing a decrease in solder resistance in the semiconductor device due to an increase in water absorption of the cured product of the epoxy resin composition, and there is also a small risk of causing a decrease in flame retardancy. .

また、本発明で用いられる一般式(2)で表されるフェノール樹脂(b1)と一般式(3)で表されるフェノール樹脂(b2)とを上記の範囲で併用することの効果が損なわない範囲で、更にその他のフェノール樹脂系硬化剤と併用することもできる。併用することができるその他のフェノール樹脂系硬化剤としては、例えばトリフェノールメタン型フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン骨格を有するフェノールアラルキル樹脂、ナフトールアラルキル樹脂等が挙げられ、これらは1種類を単独で用いても2種以上を併用してもよい。   Moreover, the effect of using together the phenol resin (b1) represented by General formula (2) used by this invention and the phenol resin (b2) represented by General formula (3) in the said range is not impaired. It can be used in combination with other phenolic resin-based curing agents. Examples of other phenolic resin-based curing agents that can be used in combination include triphenolmethane type phenolic resin, terpene modified phenolic resin, dicyclopentadiene modified phenolic resin, phenol aralkyl resin having a phenylene skeleton, naphthol aralkyl resin, and the like. These may be used alone or in combination of two or more.

本発明に用いられる全エポキシ樹脂のエポキシ基数(Ep)と全フェノール樹脂系硬化剤のフェノール性水酸基数(Ph)との当量比(Ep/Ph)としては、好ましくは0.5以上2以下であり、特に好ましくは0.7以上1.5以下である。上記範囲内であると、耐湿性、硬化性等の低下を引き起こす恐れが少ない。   The equivalent ratio (Ep / Ph) between the number of epoxy groups (Ep) of all epoxy resins used in the present invention and the number of phenolic hydroxyl groups (Ph) of all phenol resin curing agents is preferably 0.5 or more and 2 or less. Yes, particularly preferably from 0.7 to 1.5. If it is within the above range, there is little possibility of causing a decrease in moisture resistance, curability and the like.

本発明で用いられるシランカップリング剤(C)は、エポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等、特に限定するものではなく、エポキシ樹脂と無機充填剤との間で反応し、エポキシ樹脂と無機充填剤の界面強度を向上させるものであればよい。エポキシシランとしては、例えば、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられ、アミノシランとしては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニルγ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−6−(アミノヘキシル)3−アミノプロピルトリメトキシシラン、N−(3−(トリメトキシシリルプロピル)−1,3−ベンゼンジメタナンなどが挙げられ、ウレイドシランとしては、例えば、γ−ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザンなどが挙げられ、メルカプトシランとしては、例えば、γ−メルカプトプロピルトリメトキシシランが挙げられる。これらのシランカップリング剤(C)は1種類を単独で用いても2種以上を併用してもよい。
シランカップリング剤(C)は、後述する芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)(以下化合物(D)と称する)との相乗効果により、エポキシ樹脂成形材料の粘度を下げ、流動性を向上させる効果を有するため、シランカップリング剤(C)は化合物(D)の効果を充分に得るためにも必須である。これにより、比較的粘度が高い樹脂を多く配合した場合や、無機充填剤を多量に配合した場合においても、エポキシ樹脂成形材料として充分な流動性を得ることが出来る。
本発明で用いられるシランカップリング剤(C)の配合量は、全エポキシ樹脂組成物中0.01重量%以上1重量%以下が好ましく、より好ましくは0.05重量%以上0.8以下である。上記範囲内であると、エポキシ樹脂成形材料の粘度を下げ、流動性を向上させる効果が充分に得ることができる。また、上記範囲内であると、エポキシ樹脂硬化物の吸水性の増加や、半導体装置における耐半田性の低下を引き起こす恐れが少ない。
The silane coupling agent (C) used in the present invention is not particularly limited, such as epoxy silane, amino silane, ureido silane, mercapto silane, etc., and reacts between the epoxy resin and the inorganic filler, and the epoxy resin and the inorganic filler. What is necessary is just to improve the interface strength of a filler. Examples of the epoxy silane include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane. Examples of aminosilane include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, and N-β (aminoethyl) γ. -Aminopropylmethyldimethoxysilane, N-phenylγ-aminopropyltriethoxysilane, N-phenylγ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-6- (amino (Hexyl) 3-aminopropi Rutrimethoxysilane, N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane, and the like. Examples of ureidosilane include γ-ureidopropyltriethoxysilane, hexamethyldisilazane, and the like. Examples of the mercaptosilane include γ-mercaptopropyltrimethoxysilane, and these silane coupling agents (C) may be used alone or in combination of two or more.
The silane coupling agent (C) is an epoxy resin due to a synergistic effect with the compound (D) (hereinafter referred to as the compound (D)) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring described later. Since it has the effect of lowering the viscosity of the resin molding material and improving the fluidity, the silane coupling agent (C) is essential for obtaining the effect of the compound (D) sufficiently. As a result, even when a large amount of a resin having a relatively high viscosity is blended or when a large amount of an inorganic filler is blended, sufficient fluidity as an epoxy resin molding material can be obtained.
The blending amount of the silane coupling agent (C) used in the present invention is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.05% by weight or more and 0.8 or less in the total epoxy resin composition. is there. Within the above range, the effect of lowering the viscosity of the epoxy resin molding material and improving the fluidity can be sufficiently obtained. Moreover, when it is in the above range, there is little possibility of causing an increase in water absorption of the cured epoxy resin and a decrease in solder resistance in the semiconductor device.

本発明で用いられる芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)(以下化合物(D)と称する)は、例えば、下記式(9)で表されるカテコール、ピロガロール、没食子酸、没食子酸エステル又はこれらの誘導体が挙げられる。また、例えば、1,2−ジヒドロキシナフタレン、下記式(10)で表される2,3−ジヒドロキシナフタレンおよびこれらの誘導体が挙げられる。これらの化合物(D)は1種類を単独で用いても2種以上を併用してもよい。これらのうち、流動性と硬化性の制御のしやすさ、低揮発性の点から母核はナフタレン環である化合物(1、2−ジヒドロキシナフタレン、2、3−ジヒドロキシナフタレンおよびその誘導体)がより好ましい。かかる化合物(D)の配合量は全エポキシ樹脂組成物中0.01重量%以上1重量%以下が好ましく、より好ましくは0.02重量%以上0.5重量%以下である。上記範囲内であると、シランカップリング剤(C)との相乗効果による期待するような粘度特性および流動特性を得ることができる。また、上記範囲内であると、エポキシ樹脂成形材料の硬化性や成形性の低下、或いは、エポキシ樹脂硬化物の物性の低下を引き起こす恐れが少ない。
The compound (D) (hereinafter referred to as compound (D)) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring used in the present invention is represented by, for example, the following formula (9). Catechol, pyrogallol, gallic acid, gallic acid ester, or derivatives thereof. Examples thereof include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene represented by the following formula (10), and derivatives thereof. These compounds (D) may be used individually by 1 type, or may use 2 or more types together. Of these, compounds (1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof) whose mother nucleus is a naphthalene ring are more preferable in terms of easy control of fluidity and curability and low volatility. preferable. The compounding amount of the compound (D) is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.02% by weight or more and 0.5% by weight or less in the total epoxy resin composition. Within the above range, it is possible to obtain viscosity characteristics and flow characteristics as expected due to a synergistic effect with the silane coupling agent (C). Moreover, there exists little possibility of causing the fall of the sclerosis | hardenability and moldability of an epoxy resin molding material, or the fall of the physical property of an epoxy resin hardened | cured material as it is in the said range.

Figure 0005055778
Figure 0005055778

Figure 0005055778
Figure 0005055778

本発明に用いることができる硬化促進剤(E)としては、エポキシ樹脂のエポキシ基とフェノール樹脂系硬化剤のフェノール性水酸基との硬化反応を促進させるものであれば良く、一般に半導体封止用材料に用いられているものを使用することができ、特に限定するものではない。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種以上を併用してもよい。   The curing accelerator (E) that can be used in the present invention may be any material that promotes the curing reaction between the epoxy group of the epoxy resin and the phenolic hydroxyl group of the phenol resin-based curing agent. What is used for this can be used, and it does not specifically limit. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, amine compounds such as tributylamine and benzyldimethylamine, imidazole compounds such as 2-methylimidazole, and triphenyl Examples include organic phosphines such as phosphine and methyldiphenylphosphine, and tetrasubstituted phosphonium / tetrasubstituted borates such as tetraphenylphosphonium / tetraphenylborate and tetraphenylphosphonium / tetrabenzoate borate. These are used alone. Also, two or more of them may be used in combination.

本発明で用いることができる無機質充填剤(F)としては、例えば溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機質充填剤の配合量を特に多くする場合は、溶融シリカを用いるのが好ましい。溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、かつエポキシ樹脂成形材料の溶融粘度の上昇を抑えるためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布がより広くなるように調整することが望ましい。無機充填剤(F)の配合割合は、特に限定されないが、全エポキシ樹脂組成物中80重量%以上、92重量%以下が好ましい。上記範囲内であると、低吸湿性、低熱膨張性が得られずに耐半田性が不十分となるのを抑えることができ、また、流動性が低下して成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じたりするのを抑えることができる。   Examples of the inorganic filler (F) that can be used in the present invention include fused silica, crystalline silica, alumina, silicon nitride, and aluminum nitride. When the amount of the inorganic filler is particularly large, it is preferable to use fused silica. Fused silica can be used in either crushed or spherical shape, but in order to increase the blending amount of fused silica and to suppress the increase in melt viscosity of the epoxy resin molding material, it is preferable to mainly use a spherical one. . In order to further increase the blending amount of the spherical silica, it is desirable to adjust so that the particle size distribution of the spherical silica becomes wider. The blending ratio of the inorganic filler (F) is not particularly limited, but is preferably 80% by weight or more and 92% by weight or less in the total epoxy resin composition. Within the above range, low moisture absorption and low thermal expansion can not be obtained and solder resistance can be prevented from becoming insufficient, and fluidity can be reduced, resulting in poor filling during molding. Inconveniences such as deformation of the gold wire in the semiconductor device due to the increase in viscosity can be suppressed.

本発明のエポキシ樹脂組成物は、(A)〜(F)成分を主成分とするが、これら以外に必要に応じて、臭素化エポキシ樹脂、三酸化アンチモン、リン化合物、金属水酸化物等の難燃剤、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム、合成ゴム等の低応力剤、酸化ビスマス水和物等の酸化防止剤等、の各種添加剤を適宜配合してもよい。更に、必要に応じて無機充填剤をカップリング剤やエポキシ樹脂あるいはフェノール樹脂系硬化剤で予め被覆処理して用いてもよく、被覆処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接無機充填剤に添加し、混合機を用いて混合する方法等がある。
本発明のエポキシ樹脂組成物は、(A)〜(F)成分及びその他の添加剤等を、例えば、ミキサー等を用いて混合後、加熱ニーダ、熱ロール、押し出し機等を用いて加熱混練し、続いて冷却、粉砕してエポキシ樹脂成形材料とすることができる。
本発明のエポキシ樹脂成形材料を用いて半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
The epoxy resin composition of the present invention has components (A) to (F) as main components, but in addition to these, brominated epoxy resin, antimony trioxide, phosphorus compound, metal hydroxide, etc. Flame retardants, natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, mold release agents such as higher fatty acids such as stearic acid and zinc stearate and metal salts thereof or paraffin, colorants such as carbon black and bengara, silicone oil Various additives such as a low stress agent such as silicone rubber and synthetic rubber, and an antioxidant such as bismuth oxide hydrate may be appropriately blended. Furthermore, if necessary, an inorganic filler may be used after coating with a coupling agent, an epoxy resin, or a phenol resin-based curing agent. As a coating method, the solvent is removed after mixing with a solvent. And a method of directly adding to an inorganic filler and mixing using a mixer.
The epoxy resin composition of the present invention is obtained by mixing the components (A) to (F) and other additives using, for example, a mixer and then kneading with a heat kneader, a heat roll, an extruder, etc. Then, it can be cooled and pulverized to obtain an epoxy resin molding material.
In order to seal an electronic component such as a semiconductor element using the epoxy resin molding material of the present invention and manufacture a semiconductor device, it may be cured by a conventional molding method such as a transfer mold, a compression mold, or an injection mold. .

以下、本発明を実施例で具体的に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. The blending ratio is parts by weight.
Example 1

下記式(6)のエポキシ樹脂[ジャパンエポキシレジン(株)製、YX4000HK、軟化点105℃、エポキシ当量193] 8.60重量部

Figure 0005055778
Epoxy resin of the following formula (6) [manufactured by Japan Epoxy Resin Co., Ltd., YX4000HK, softening point 105 ° C., epoxy equivalent 193] 8.60 parts by weight
Figure 0005055778

下記式(7)のフェノール樹脂[明和化成(株)製、MEH−7851SS、軟化点65℃、水酸基当量203、下記式(7)においてn=1.6]
3.10重量部

Figure 0005055778
Phenolic resin of the following formula (7) [Maywa Kasei Co., Ltd., MEH-7851SS, softening point 65 ° C., hydroxyl group equivalent 203, n = 1.6 in the following formula (7)]
3.10 parts by weight
Figure 0005055778

下記式(8)のフェノール樹脂[住友ベークライト(株)製、PR−HF−3、軟化点81℃、水酸基当量105、下記式(8)においてn=4.1]
3.10重量部

Figure 0005055778
Phenolic resin of the following formula (8) [manufactured by Sumitomo Bakelite Co., Ltd., PR-HF-3, softening point 81 ° C., hydroxyl group equivalent 105, n = 4.1 in the following formula (8)]
3.10 parts by weight
Figure 0005055778

γ−グリシジルプロピルトリメトキシシラン 0.30重量部
2,3−ジヒドロキシナフタレン(試薬) 0.10重量部
トリフェニルホスフィン 0.20重量部
球状溶融シリカ(平均粒径10.0μm) 84.00重量部
ステアリン酸ワックス(日本油脂(株)製、商品名:SR−サクラ)
0.30重量部
カーボンブラック 0.30重量部
をミキサーを用いて混合した後、表面温度が95℃と25℃の2軸ロールを用いて20回混練し、得られた混練物シートを冷却後粉砕して、エポキシ樹脂成形材料とした。得られたエポキシ樹脂成形材料、並びにこれを用いて得られた樹脂硬化物及び半導体装置の特性を以下の方法で評価した。
γ-Glycidylpropyltrimethoxysilane 0.30 parts by weight 2,3-dihydroxynaphthalene (reagent) 0.10 parts by weight Triphenylphosphine 0.20 parts by weight Spherical fused silica (average particle size 10.0 μm) 84.00 parts by weight Stearic acid wax (manufactured by NOF Corporation, trade name: SR-Sakura)
0.30 parts by weight Carbon black 0.30 parts by weight was mixed using a mixer, then kneaded 20 times using a biaxial roll having surface temperatures of 95 ° C. and 25 ° C., and the obtained kneaded material sheet was cooled. The material was pulverized to obtain an epoxy resin molding material. The properties of the obtained epoxy resin molding material, the cured resin and the semiconductor device obtained using the same were evaluated by the following methods.

評価方法
スパイラルフロー:低圧トランスファー成形機を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件でエポキシ樹脂組成物を注入し、流動長を測定した。単位はcm。
Evaluation method Spiral flow: Using a low-pressure transfer molding machine, a spiral flow measurement mold conforming to EMMI-1-66, epoxy resin under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds The composition was injected and the flow length was measured. The unit is cm.

金線変形率:トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒の条件で、352pBGA(基板は厚さ0.56mmのビスマレイミド・トリアジン樹脂/ガラスクロス基板、半導体装置のサイズは30mm×30mm、厚さ1.17mm、半導体素子のサイズ15mm×15mm、厚さ0.35mm)を成形し、175℃、2時間で後硬化した。室温まで冷却後、軟X線透視装置で観察し、金線の変形率を(流れ量)/(金線長)の比率で評価した。金線変形率の判断基準は、金線変形率が、3%以下:◎、3%超〜4%以下:○、4%超〜:×とした。   Deformation rate of gold wire: 352 pBGA (substrate is 0.56 mm thick bismaleimide-triazine resin / glass cloth under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 90 seconds using a transfer molding machine. The size of the substrate and the semiconductor device was 30 mm × 30 mm, the thickness was 1.17 mm, the size of the semiconductor element was 15 mm × 15 mm, and the thickness was 0.35 mm, and post-cured at 175 ° C. for 2 hours. After cooling to room temperature, it was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was evaluated by the ratio of (flow rate) / (gold wire length). The criteria for determining the gold wire deformation rate were as follows: gold wire deformation rate of 3% or less: ◎ over 3% to 4% or less: ◯ over 4% ~: x.

耐半田性:前記金線変形率の評価と同様にして352pBGAを成形し、175℃、2時間で後硬化してサンプルを得た。各10個のサンプルを85℃、相対湿度60%の環境下で168時間処理し、その後IR(260℃)で10秒間処理した。超音波探傷装置を用いて観察し、内部クラック及び各種界面剥離の有無を調べた。耐半田性判断基準は、クラック発生率が0%で、かつ剥離なし:○、クラックもしくは剥離が発生したものは×とした。   Solder resistance: 352 pBGA was molded in the same manner as in the evaluation of the gold wire deformation rate, and post-cured at 175 ° C. for 2 hours to obtain a sample. Each of the 10 samples was treated in an environment of 85 ° C. and a relative humidity of 60% for 168 hours, and then treated with IR (260 ° C.) for 10 seconds. Observation was carried out using an ultrasonic flaw detector, and the presence or absence of internal cracks and various interface peelings was examined. The criteria for determining solder resistance were a crack occurrence rate of 0% and no peeling: ○, and those where cracks or peeling occurred occurred as x.

実施例2〜10、比較例1〜7
表1、表2に示す割合で各成分を配合し、実施例1と同様にしてエポキシ樹脂成形材料を得、実施例1と同様にして評価した。結果を表1、表2に示す。
実施例1以外で用いた成分について、以下に示す。
Examples 2-10, Comparative Examples 1-7
Each component was mix | blended in the ratio shown in Table 1 and Table 2, the epoxy resin molding material was obtained like Example 1, and it evaluated similarly to Example 1. FIG. The results are shown in Tables 1 and 2.
The components used in other than Example 1 are shown below.

下記式(11)のエポキシ樹脂[住友化学(株)製、ESCN195LB、軟化点65℃、エポキシ当量200、下記式(11)においてn=4.0]

Figure 0005055778
Epoxy resin represented by the following formula (11) [manufactured by Sumitomo Chemical Co., Ltd., ESCN195LB, softening point 65 ° C., epoxy equivalent 200, n = 4.0 in the following formula (11)]
Figure 0005055778

下記式(12)のフェノール樹脂[明和化成(株)製、MEH−7500、軟化点110℃、水酸基当量97、下記式(12)においてn=0.7]

Figure 0005055778
Phenolic resin of the following formula (12) [Maywa Kasei Co., Ltd., MEH-7500, softening point 110 ° C., hydroxyl equivalent 97, n = 0.7 in the following formula (12)]
Figure 0005055778

水酸化アルミニウム[住友化学(株)製、CL−303]
カテコール(試薬)
ピロガロール(試薬)
1,6−ジヒドロキシナフタレン(試薬)
Aluminum hydroxide [manufactured by Sumitomo Chemical Co., Ltd., CL-303]
Catechol (reagent)
Pyrogallol (reagent)
1,6-dihydroxynaphthalene (reagent)

Figure 0005055778
Figure 0005055778

Figure 0005055778
Figure 0005055778

Figure 0005055778
Figure 0005055778

本発明に従う実施例1〜10は、一般式(1)で表されるエポキシ樹脂(a1)、及び一般式(2)で表されるフェノール樹脂(b1)、一般式(3)で表されるフェノール樹脂(b2)の配合割合、シランカップリング剤(C)の配合割合、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)の種類や配合割合、並びに、及び硬化促進剤(E)の種類、或いは、無機充填剤(F)の配合割合等を変えたものを含むものであるが、いずれの場合も、流動性(スパイラルフロー)が高く、金線変形が小さく、かつ耐半田性にも優れるという結果が得られた。   Examples 1 to 10 according to the present invention are represented by the epoxy resin (a1) represented by the general formula (1), the phenol resin (b1) represented by the general formula (2), and the general formula (3). The blending ratio of the phenol resin (b2), the blending ratio of the silane coupling agent (C), the type and blending ratio of the compound (D) each having a hydroxyl group bonded to two or more adjacent carbon atoms constituting the aromatic ring, and , And the types of curing accelerators (E) or those containing different blending ratios of inorganic fillers (F), etc., but in either case, the fluidity (spiral flow) is high and the wire deformation is high. The result was small and excellent in solder resistance.

一方、一般式(3)で表されるフェノール樹脂(b2)の代わりに式(12)のフェノール樹脂を用いた比較例1では、流動性が低く、金線変形が大きく、かつ耐半田性も劣るという結果となった。また、一般式(3)で表されるフェノール樹脂(b2)の配合割合が過剰である比較例2では、流動性は高く、金線変形も小さいものの、耐半田性が劣るという結果となった。また、フェノール樹脂系硬化剤(B)として一般式(3)で表されるフェノール樹脂(b2)を用いず、一般式(2)で表されるフェノール樹脂(b1)のみを用いた比較例3では、耐半田性は良好であるものの、流動性が低く、金線変形が大きいという結果となった。実施例と、比較例1、2、3との対比から、フェノール樹脂系硬化剤(B)として、一般式(2)で表されるフェノール樹脂(b1)と一般式(3)で表されるフェノール樹脂(b2)とを含み、一般式(3)で表されるフェノール樹脂(b2)の配合割合が全フェノール樹脂系硬化剤に対して5重量%以上60重量%以下である場合の優位性が明らかとなった。   On the other hand, in Comparative Example 1 using the phenol resin of the formula (12) instead of the phenol resin (b2) represented by the general formula (3), the fluidity is low, the gold wire deformation is large, and the solder resistance is also high. The result was inferior. Moreover, in Comparative Example 2 in which the blending ratio of the phenol resin (b2) represented by the general formula (3) is excessive, the fluidity is high and the deformation of the gold wire is small, but the solder resistance is inferior. . Further, Comparative Example 3 using only the phenol resin (b1) represented by the general formula (2) without using the phenol resin (b2) represented by the general formula (3) as the phenol resin-based curing agent (B). However, although the solder resistance was good, the fluidity was low and the gold wire deformation was large. From the comparison between the Examples and Comparative Examples 1, 2, and 3, the phenol resin curing agent (B) is represented by the phenol resin (b1) represented by the general formula (2) and the general formula (3). Advantageous when the blending ratio of the phenol resin (b2) represented by the general formula (3) is 5 wt% or more and 60 wt% or less with respect to the total phenol resin curing agent. Became clear.

また、一般式(1)で表されるエポキシ樹脂(a1)の代わりに式(11)のエポキシ樹脂を用いた比較例4では、流動性が低く、金線変形が大きく、かつ耐半田性も劣るという結果となった。さらに、シランカップリング剤(C)を用いていない比較例5では、流動性が低く、金線変形が大きく、かつ耐半田性も劣るという結果となった。また、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)を用いていない比較例6では、流動性が低く、金線変形が大きく、かつ耐半田性も劣るという結果となった。また、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)の代わりに、芳香環を構成する2個の隣接していない炭素原子にそれぞれ水酸基が結合した化合物である1,6−ジヒドロキシナフタレンを用いた比較例7でも、流動性が低く、金線変形が大きく、かつ耐半田性も劣るという結果となった。   Further, in Comparative Example 4 using the epoxy resin of the formula (11) instead of the epoxy resin (a1) represented by the general formula (1), the fluidity is low, the gold wire deformation is large, and the solder resistance is also high. The result was inferior. Further, Comparative Example 5 in which no silane coupling agent (C) was used resulted in low fluidity, large deformation of the gold wire, and poor solder resistance. In Comparative Example 6 in which a compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring is not used, fluidity is low, gold wire deformation is large, and solder resistance is also high. The result was inferior. Further, instead of the compound (D) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring, a compound in which a hydroxyl group is bonded to two non-adjacent carbon atoms constituting an aromatic ring. In Comparative Example 7 using 1,6-dihydroxynaphthalene, the fluidity was low, the gold wire deformation was large, and the solder resistance was poor.

本発明のエポキシ樹脂組成物は、流動性に優れ、且つ耐半田性に優れた特性を有し、無鉛半田対応の表面実装型半導体装置、とりわけエリア実装型半導体装置用に好適に用いることができるものである。   The epoxy resin composition of the present invention has excellent fluidity and excellent solder resistance, and can be suitably used for a surface-mounted semiconductor device compatible with lead-free solder, especially an area-mounted semiconductor device. Is.

Claims (6)

エポキシ樹脂(A)、フェノール樹脂系硬化剤(B)、シランカップリング剤(C)、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)、硬化促進剤(E)、及び無機充填剤(F)を含むエポキシ樹脂組成物であって、前記エポキシ樹脂(A)が下記一般式(1)で表されるエポキシ樹脂(a1)を含み、前記フェノール樹脂系硬化剤(B)が下記一般式(2)で表されるフェノール樹脂(b1)及び下記一般式(3)で表されるフェノール樹脂(b2)を含み、前記一般式(3)で表されるフェノール樹脂(b2)が全フェノール樹脂系硬化剤に対し5重量%以上60重量%以下の割合で含まれ、前記芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)がカテコール、ピロガロール、又は2,3−ジヒドロキシナフタレンであり、無機充填剤(F)として溶融シリカをエポキシ樹脂組成物中に対し81重量%以上、90重量%以下の割合で含むことを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0005055778
(ただし、上記一般式(1)において、R1〜R8は、水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても異なっていてもよい。)
Figure 0005055778
(ただし、上記一般式(2)において、R、Rは水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。nは平均値で、5以下の正数。)
Figure 0005055778
(ただし、上記一般式(3)において、Rは水素原子又は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。nは平均値で、1〜5の正数。)
Epoxy resin (A), phenol resin-based curing agent (B), silane coupling agent (C), compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring, and a curing accelerator (E) and an epoxy resin composition containing an inorganic filler (F), wherein the epoxy resin (A) includes an epoxy resin (a1) represented by the following general formula (1), and the phenol resin system The curing agent (B) includes a phenol resin (b1) represented by the following general formula (2) and a phenol resin (b2) represented by the following general formula (3), and is represented by the general formula (3). A compound in which the phenol resin (b2) is contained in a proportion of 5% by weight or more and 60% by weight or less based on the total phenol resin-based curing agent, and a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring ( D) Cateco The semiconductor is characterized in that it is ru, pyrogallol, or 2,3-dihydroxynaphthalene, and contains fused silica as an inorganic filler (F) in a proportion of 81% by weight or more and 90% by weight or less based on the epoxy resin composition. An epoxy resin composition for sealing.
Figure 0005055778
(However, in the said General formula (1), R1-R8 is group selected from a hydrogen atom or a C1-C4 alkyl group, and may mutually be same or different.)
Figure 0005055778
(However, in the above general formula (2), R 1, R 2 is a group selected from an alkyl group having 1 to 4 carbon hydrogen atom or a C, be the same as each other, it may be different .n Is an average value and is a positive number of 5 or less .)
Figure 0005055778
(However, in the above general formula (3), R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and may be the same or different. N is an average value. , A positive number from 1 to 5.)
前記シランカップリング剤(C)が全エポキシ樹脂組成物に対し0.01以上1重量%以下の割合で含まれる請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the silane coupling agent (C) is contained in a proportion of 0.01 to 1% by weight based on the total epoxy resin composition. 前記芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)が全エポキシ樹脂組成物に対し0.01以上1重量%以下の割合で含まれる請求項1又は請求項2に記載のエポキシ樹脂組成物。 The compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring is contained in a proportion of 0.01 to 1% by weight based on the total epoxy resin composition. Item 3. The epoxy resin composition according to Item 2. 請求項1ないし請求項のいずれかに記載のエポキシ樹脂組成物を混合及び/又は溶融混練してなる半導体封止用エポキシ樹脂成形材料。 The epoxy resin molding material for semiconductor sealing formed by mixing and / or melt-kneading the epoxy resin composition in any one of Claims 1 thru | or 3 . 請求項に記載のエポキシ樹脂成形材料を用いて、半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed using the epoxy resin molding material according to claim 4 . 請求項に記載のエポキシ樹脂成形材料を用いて、基板の片面に半導体素子が搭載された基板面側の片面を封止してなることを特徴とする半導体装置。 A semiconductor device comprising: a substrate surface on one side on which a semiconductor element is mounted on one side of the substrate, using the epoxy resin molding material according to claim 4 .
JP2006029062A 2006-02-06 2006-02-06 Epoxy resin composition, epoxy resin molding material and semiconductor device Active JP5055778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029062A JP5055778B2 (en) 2006-02-06 2006-02-06 Epoxy resin composition, epoxy resin molding material and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029062A JP5055778B2 (en) 2006-02-06 2006-02-06 Epoxy resin composition, epoxy resin molding material and semiconductor device

Publications (2)

Publication Number Publication Date
JP2007204722A JP2007204722A (en) 2007-08-16
JP5055778B2 true JP5055778B2 (en) 2012-10-24

Family

ID=38484454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029062A Active JP5055778B2 (en) 2006-02-06 2006-02-06 Epoxy resin composition, epoxy resin molding material and semiconductor device

Country Status (1)

Country Link
JP (1) JP5055778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522436B1 (en) 2007-03-23 2015-05-21 스미토모 베이클리트 컴퍼니 리미티드 Semiconductor-encapsulating resin composition and semiconductor device using thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098125B2 (en) * 2001-07-30 2012-12-12 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP5364963B2 (en) * 2001-09-28 2013-12-11 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2003261746A (en) * 2002-03-11 2003-09-19 Kyocera Chemical Corp Resin composition for sealing and sealed electronic device
JP4569137B2 (en) * 2003-03-17 2010-10-27 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP4496786B2 (en) * 2004-01-23 2010-07-07 住友ベークライト株式会社 Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2007204722A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5564793B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP2008163138A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP4736432B2 (en) Epoxy resin composition and semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JP2006152185A (en) Epoxy resin composition and semiconductor device
JP2013067694A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4973146B2 (en) Epoxy resin composition, sealing epoxy resin composition, and electronic component device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2012251048A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP2006176555A (en) Epoxy resin composition and semiconductor device
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP2009127012A (en) Method for producing epoxy resin composition for sealing and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP5093977B2 (en) Area mounted semiconductor device
JP4543638B2 (en) Epoxy resin composition and semiconductor device
JP4645147B2 (en) Epoxy resin composition and semiconductor device
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5055778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150