JP4569137B2 - Semiconductor sealing resin composition and semiconductor device - Google Patents

Semiconductor sealing resin composition and semiconductor device Download PDF

Info

Publication number
JP4569137B2
JP4569137B2 JP2004075412A JP2004075412A JP4569137B2 JP 4569137 B2 JP4569137 B2 JP 4569137B2 JP 2004075412 A JP2004075412 A JP 2004075412A JP 2004075412 A JP2004075412 A JP 2004075412A JP 4569137 B2 JP4569137 B2 JP 4569137B2
Authority
JP
Japan
Prior art keywords
resin composition
less
weight
general formula
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004075412A
Other languages
Japanese (ja)
Other versions
JP2004300431A (en
Inventor
洋史 黒田
邦治 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004075412A priority Critical patent/JP4569137B2/en
Publication of JP2004300431A publication Critical patent/JP2004300431A/en
Application granted granted Critical
Publication of JP4569137B2 publication Critical patent/JP4569137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、半導体封止用樹脂組成物およびそれを用いた半導体装置に関するものである。   The present invention relates to a semiconductor sealing resin composition and a semiconductor device using the same.

近年の電子機器の小型化、軽量化、高機能化の市場動向において、半導体の高集積化が年々進み、また、半導体パッケージの表面実装化が促進されるなかで、新規にエリア実装のパッケージが開発され、従来構造のパッケージから移行し始めている。
エリア実装パッケージとしてはボールグリッドアレイ(以下、BGAという)、あるいは更に小型化を追求したチップサイズパッケージ(以下、CSPという)が代表的であるが、これらは従来QFP、SOPに代表される表面実装パッケージでは限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、ビスマレイミド・トリアジン(以下、BTという)樹脂/銅箔回路基板に代表される硬質回路基板、あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その素子搭載面、即ち基板の片面のみが樹脂組成物などで成形・封止されている。また基板の素子搭載面の反対面には半田ボールを2次元的に並列して形成し、パッケージを実装する回路基板との接合を行う特徴を有している。更に、素子を搭載する基板としては、上記有機回路基板以外にもリードフレーム等の金属基板を用いる構造も考案されている。
In recent years, with the trend toward smaller, lighter, and more sophisticated electronic devices, higher integration of semiconductors has been progressing year by year, and surface mounting of semiconductor packages has been promoted. Developed and starting to migrate from traditionally structured packages.
A typical area mounting package is a ball grid array (hereinafter referred to as BGA) or a chip size package (hereinafter referred to as CSP) in pursuit of further miniaturization, but these are conventionally surface mounting such as QFP and SOP. The package was developed to meet the demand for higher pin count and higher speed that are approaching the limit. As a structure, a semiconductor element is formed on one surface of a hard circuit board represented by a bismaleimide-triazine (hereinafter referred to as BT) resin / copper foil circuit board or a flexible circuit board represented by a polyimide resin film / copper foil circuit board. The element mounting surface, that is, only one surface of the substrate is molded and sealed with a resin composition or the like. Also, solder balls are formed two-dimensionally in parallel on the surface opposite to the element mounting surface of the substrate, and are joined to a circuit substrate on which the package is mounted. Furthermore, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been devised as a substrate on which elements are mounted.

これらエリア実装型半導体パッケージの構造は基板の素子搭載面のみを樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。ごく希に、リードフレーム等の金属基板などでは、半田ボール形成面でも数十μm程度の封止樹脂層が存在することもあるが、素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため、有機基板や金属基板と樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合、あるいは樹脂組成物の成形・硬化時の硬化収縮による影響により、これらのパッケージでは成形直後から反りが発生しやすい。また、これらのパッケージを実装する回路基板上に半田接合を行う場合、200℃以上の加熱工程を経るが、この際にパッケージの反りが発生し、多数の半田ボールが平坦とならず、パッケージを実装する回路基板から浮き上がってしまい、電気的接合信頼性が低下する問題も起こる。
基板上の実質的に片面のみを樹脂組成物で封止したパッケージにおいて、反りを低減するには、基板の線膨張係数と樹脂組成物の硬化物の線膨張係数を近づけること、及び樹脂組成物の硬化収縮を小さくする二つの方法が重要である。
基板としては有機基板では、BT樹脂やポリイミド樹脂のような高いガラス転移温度(以下、Tgという)の樹脂が広く用いられており、これらは樹脂組成物の成形温度である170℃近辺よりも高いTgを有する。従って、成形温度から室温までの冷却過程では有機基板のα1の領域のみで収縮する。従って、樹脂組成物もTgが高く、且つα1が回路基板と同じであり、更に硬化収縮がゼロであれば反りはほぼゼロであると考えられる。このため、トリフェノールメタン型エポキシ樹脂とトリフェノールメタン型フェノール樹脂との組合せによりTgを高くし、無機充填材の配合量でα1を合わせる手法が既に提案されている。
These area-mounted semiconductor packages have a single-side sealing form in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface side is not sealed. Very rarely, a metal substrate such as a lead frame may have a sealing resin layer of about several tens of μm on the solder ball forming surface, but a sealing resin of about several hundred μm to several mm on the device mounting surface. Since the layer is formed, it is substantially single-sided sealed. For this reason, these packages are molded by the mismatch of thermal expansion / shrinkage between the organic substrate or metal substrate and the cured resin composition, or by the effect of curing shrinkage during molding / curing of the resin composition. Warping is likely to occur immediately after. In addition, when solder bonding is performed on a circuit board on which these packages are mounted, a heating process of 200 ° C. or higher is performed. At this time, warping of the package occurs, and a large number of solder balls are not flattened. A problem arises that the electrical connection reliability is lowered due to floating from the circuit board to be mounted.
In a package in which only one surface on a substrate is sealed with a resin composition, in order to reduce warpage, the linear expansion coefficient of the substrate is made closer to the linear expansion coefficient of the cured resin composition, and the resin composition Two methods for reducing the cure shrinkage are important.
As an organic substrate, a resin having a high glass transition temperature (hereinafter referred to as Tg) such as a BT resin or a polyimide resin is widely used as the substrate, and these are higher than around 170 ° C. which is a molding temperature of the resin composition. Tg. Therefore, in the cooling process from the molding temperature to room temperature, the shrinkage occurs only in the α1 region of the organic substrate. Therefore, if the resin composition also has a high Tg, α1 is the same as that of the circuit board, and the cure shrinkage is zero, the warpage is considered to be almost zero. For this reason, a method of increasing Tg by combining a triphenolmethane type epoxy resin and a triphenolmethane type phenolic resin and adjusting α1 with the blending amount of the inorganic filler has already been proposed.

また、赤外線リフロー、ベーパーフェイズソルダリング、半田浸漬などの手段での半田処理による半田接合を行う場合、樹脂組成物の硬化物並びに有機基板からの吸湿によりパッケージ内部に存在する水分が高温で急激に気化することによる応力でパッケージにクラックが発生したり、基板の素子搭載面と樹脂組成物の硬化物との界面で剥離が発生することもあり、硬化物の高強度化、低応力化、低吸湿化とともに、基板との高密着も求められる。
従来のBGAやCSPなどのエリア実装パッケージには、反りの低減のためにトリフェノールメタン型エポキシ樹脂とトリフェノールメタン型フェノール樹脂を樹脂成分とする樹脂組成物が用いられてきた。この樹脂組成物は、Tgが高く、硬化性、熱時曲げ強度に優れた特性を有しているが、硬化物の吸水率が高いため、半田処理時にクラックが生じ易かった。
その対策としてよく用いられる手法としてはビフェニル型エポキシ樹脂に代表される低粘度の結晶性エポキシ樹脂を併用して、無機充填剤の高充填化による低吸湿化を図る方法がある。しかしながら、トリフェノールメタン型エポキシ樹脂、トリフェノールメタン型フェノール樹脂は溶融粘度が高く、低粘度の結晶性エポキシ樹脂を併用しても無機充填剤の高充填化には限界があり、この手法による改良には無理があった。
そこで、反りが小さく、硬化性、熱時曲げ強度に優れ、且つ低吸湿、耐半田クラック性に優れる樹脂組成物を得るため、トリフェノールメタン型エポキシ樹脂と結晶性エポキシ樹脂の特徴を生かすべく、樹脂組成物の製造時に両方のエポキシ樹脂を適正量併用したり(例えば、特許文献1参照。)、予め両方のエポキシ樹脂を溶融混合したものを用いる(例えば、特許文献2参照。)手法が開示されているが、トリフェノールメタン型エポキシ樹脂を用いた時の反りが小さく、硬化性、熱時曲げ強度に優れるという特徴と、結晶性エポキシ樹脂を用いた時の低吸湿、耐半田クラック性に優れるという特徴を両立することはできておらず、不十分であった。
In addition, when performing solder joining by soldering by means such as infrared reflow, vapor phase soldering, or solder dipping, the moisture present in the package rapidly increases due to moisture absorption from the cured resin composition and organic substrate. Cracks may occur in the package due to stress due to vaporization, or peeling may occur at the interface between the device mounting surface of the substrate and the cured product of the resin composition, resulting in higher strength, lower stress, and lower strength of the cured product. Along with moisture absorption, high adhesion to the substrate is also required.
In conventional area mounting packages such as BGA and CSP, a resin composition containing a triphenolmethane type epoxy resin and a triphenolmethane type phenol resin as resin components has been used to reduce warpage. This resin composition has a high Tg and excellent curability and thermal bending strength. However, since the water absorption of the cured product is high, cracks are likely to occur during soldering.
As a method often used as a countermeasure, there is a method of reducing moisture absorption by increasing the filling of the inorganic filler using a low-viscosity crystalline epoxy resin typified by a biphenyl type epoxy resin. However, triphenol methane type epoxy resin and triphenol methane type phenol resin have high melt viscosity, and there is a limit to increase the inorganic filler even if low viscosity crystalline epoxy resin is used together. Was impossible.
Therefore, in order to obtain a resin composition with small warpage, excellent curability, bending strength during heat, low moisture absorption, and excellent solder crack resistance, in order to take advantage of the characteristics of triphenolmethane type epoxy resin and crystalline epoxy resin, A technique is disclosed in which an appropriate amount of both epoxy resins is used in combination in the production of the resin composition (for example, see Patent Document 1), or in which both epoxy resins are previously melt-mixed (for example, see Patent Document 2). However, it has low warpage when using a triphenolmethane type epoxy resin, excellent curability and thermal bending strength, and low moisture absorption and solder crack resistance when using a crystalline epoxy resin. It was not possible to achieve both the characteristics of superiority and insufficient.

特開平11−147940号公報(第2〜7頁)JP-A-11-147940 (pages 2-7) 特開2001−2755号公報(第2〜12頁)JP 2001-2755 A (pages 2 to 12)

本発明は、上記事情に鑑みてなされたものであり、その目的は、エリア実装パッケージでの成形後や半田処理時の反りが小さく、耐半田クラック性に優れ、且つ流動性、成形性に優れる半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is small warpage after molding in an area mounting package or during solder processing, excellent solder crack resistance, and excellent fluidity and moldability. An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.

本発明は、
[1]下記一般式(1)で示されるエポキシ樹脂(A)と、下記一般式(2)で示されるフェノール樹脂(B)と、無機充填剤(C)と、硬化促進剤(D)と、シランカップリング剤(E)と、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)と、を含むことを特徴とする半導体封止用樹脂組成物であって、無機充填剤(C)を当該樹脂組成物中に80重量%以上88重量%以下含み、シランカップリング剤(E)を当該樹脂組成物全体の0.01重量%以上1重量%以下含み、化合物(F)を当該樹脂組成物全体の0.01重量%以上1重量%以下含み、化合物(F)は、ナフタレン環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物である半導体封止用樹脂組成物

Figure 0004569137
(ただし、上記一般式(1)において、Rは炭素数1以上5以下の炭化水素、ハロゲンの中から選択される基又は原子であり、それらは互いに同一であっても異なっていてもよい。mは0以上4以下の整数、nは0以上3以下の整数、kは平均値で、1以上10以下の正数である。)
Figure 0004569137
(ただし、上記一般式(2)において、Rは炭素数1以上5以下の炭化水素、ハロゲンの中から選択される基又は原子であり、それらは互いに同一であっても異なっていてもよい。mは0以上4以下の整数、nは0以上3以下の整数、kは平均値で、1以上10以下の正数である。) The present invention
[1] An epoxy resin (A) represented by the following general formula (1), a phenol resin (B) represented by the following general formula (2), an inorganic filler (C), and a curing accelerator (D) , a silane coupling agent (E), a compound in which a hydroxyl group each bonded to a carbon atom of 2 or more adjacent constituting an aromatic ring and (F), a semiconductor encapsulating resin composition which comprises a The inorganic filler (C) is contained in the resin composition in an amount of 80% by weight or more and 88% by weight or less, and the silane coupling agent (E) is contained in an amount of 0.01% by weight or more and 1% by weight or less of the entire resin composition. A compound (F) containing 0.01% by weight or more and 1% by weight or less of the total resin composition, wherein the compound (F) is a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting a naphthalene ring. A semiconductor sealing resin composition ,
Figure 0004569137
(However, in the said General formula (1), R is a group or atom selected from C1-C5 hydrocarbon and halogen, and they may mutually be same or different. m is an integer of 0 or more and 4 or less, n is an integer of 0 or more and 3 or less, k is an average value, and is a positive number of 1 or more and 10 or less.)
Figure 0004569137
(However, in the said General formula (2), R is a group or atom selected from C1-C5 hydrocarbon and halogen, and they may mutually be same or different. m is an integer of 0 or more and 4 or less, n is an integer of 0 or more and 3 or less, k is an average value, and is a positive number of 1 or more and 10 or less.)

]上記第[1]項に記載の半導体封止用樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
[ 2 ] A semiconductor device comprising a semiconductor element sealed using the resin composition for sealing a semiconductor according to [1] above,
It is.

本発明に従うと、従来技術では得られなかった硬化性・反り特性を損なうことなく成形時の流動性・成形性に優れたエポキシ樹脂組成物を得ることができる。   According to the present invention, an epoxy resin composition excellent in fluidity and moldability at the time of molding can be obtained without impairing the curability and warpage characteristics that could not be obtained by the prior art.

本発明は、上記一般式(1)で示されるエポキシ樹脂(A)と、上記一般式(2)で示されるフェノール樹脂(B)と、無機充填剤(C)と、硬化促進剤(D)と、シランカップリング剤(E)と、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)と、を含むことことにより、エリア実装パッケージでの成形後や半田処理時の反りが小さく、耐半田クラック性に優れ、且つ流動性、成形性に優れたエポキシ樹脂組成物が得られるものである。
以下、各成分について詳細に説明する。
The present invention relates to an epoxy resin (A) represented by the general formula (1), a phenol resin (B) represented by the general formula (2), an inorganic filler (C), and a curing accelerator (D). And a silane coupling agent (E) and a compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring. An epoxy resin composition having a small warp during solder processing, excellent resistance to solder cracking, and excellent fluidity and moldability can be obtained.
Hereinafter, each component will be described in detail.

本発明に用いる一般式(1)で示されるエポキシ樹脂を用いた半導体封止用樹脂組成物は、Tgが高く、硬化性、熱時曲げ強度に優れた特性を有しており、特にBGAやCSPなどのエリア実装パッケージ用において、反りを低減させる効果を有するものである。本発明に用いる一般式(1)で示されるエポキシ樹脂(A)の具体例を下記式(3)に示すが、これらに限定されるものではない。

Figure 0004569137
(ただし、上記式(3)において、kは平均値で、1以上10以下の正数である。) The resin composition for semiconductor encapsulation using the epoxy resin represented by the general formula (1) used in the present invention has a high Tg, and has excellent properties such as curability and bending strength during heating. In an area mounting package such as CSP, it has an effect of reducing warpage. Although the specific example of the epoxy resin (A) shown by General formula (1) used for this invention is shown in following formula (3), it is not limited to these.
Figure 0004569137
(In the above formula (3), k is an average value and is a positive number of 1 or more and 10 or less.)

本発明で用いられる一般式(1)で示されるエポキシ樹脂を用いることによる効果が損なわれない範囲で、他のエポキシ樹脂と併用することができる。併用できるエポキシ樹脂としては、エポキシ基を有するモノマー、オリゴマー、ポリマー全般を指し、例えばビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の結晶性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂等が挙げられる。またこれらのエポキシ樹脂は、単独もしくは混合して用いても差し支えない。半導体封止用エポキシ樹脂組成物としての耐湿信頼性を考慮すると、イオン性不純物であるNaイオンやClイオンが極力少ない方が好ましく、硬化性の点からエポキシ当量としては100g/eq以上500g/eq以下が好ましい。   In the range which does not impair the effect by using the epoxy resin shown by General formula (1) used by this invention, it can use together with another epoxy resin. Examples of epoxy resins that can be used in combination include monomers, oligomers, and polymers having an epoxy group. For example, biphenyl type epoxy resins, stilbene type epoxy resins, hydroquinone type epoxy resins, bisphenol F type epoxy resins and other crystalline epoxy resins, bisphenol A Type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, naphthol type epoxy resin and the like. These epoxy resins may be used alone or in combination. Considering moisture resistance reliability as an epoxy resin composition for semiconductor encapsulation, it is preferable that Na ions and Cl ions, which are ionic impurities, be as small as possible. From the viewpoint of curability, the epoxy equivalent is 100 g / eq or more and 500 g / eq. The following is preferred.

本発明に用いる一般式(2)で示されるフェノール樹脂を用いた半導体封止用樹脂組成物は、Tgが高く、硬化性、熱時曲げ強度に優れた特性を有しており、特にBGAやCSPなどのエリア実装パッケージ用において、反りを低減させる効果を有するものである。本発明に用いる一般式(2)で示されるフェノール樹脂(B)の具体例を下記式(4)に示すが、これらに限定されるものではない。

Figure 0004569137
(ただし、上記式(4)において、kは平均値で、1以上10以下の正数である。) The resin composition for semiconductor encapsulation using the phenol resin represented by the general formula (2) used in the present invention has a high Tg, and has excellent properties such as curability and bending strength during heating. In an area mounting package such as CSP, it has an effect of reducing warpage. Although the specific example of the phenol resin (B) shown by General formula (2) used for this invention is shown in following formula (4), it is not limited to these.
Figure 0004569137
(In the above formula (4), k is an average value and is a positive number of 1 or more and 10 or less.)

本発明に用いられる一般式(2)で示されるフェノール樹脂を用いることによる効果が損なわれない範囲で、他のフェノール樹脂と併用することができる。併用できるフェノール樹脂としては、フェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、キシリレン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ビスフェノールA等が挙げられる。これらのフェノール樹脂は、単独もしくは混合して用いても差し支えない。エポキシ樹脂組成物の硬化物の低吸湿性や基材との密着性の向上や硬化性の点から水酸基当量は90g/eq以上250g/eq以下が好ましい。   In the range which does not impair the effect by using the phenol resin shown by General formula (2) used for this invention, it can use together with another phenol resin. Examples of phenol resins that can be used in combination include monomers, oligomers, and polymers having phenolic hydroxyl groups, such as phenol novolac resins, cresol novolac resins, xylylene modified phenol resins, terpene modified phenol resins, dicyclopentadiene modified phenol resins, bisphenol A, and the like. Is mentioned. These phenol resins may be used alone or in combination. The hydroxyl equivalent is preferably 90 g / eq or more and 250 g / eq or less from the viewpoint of the low hygroscopicity of the cured product of the epoxy resin composition, the improvement in adhesion to the substrate and the curability.

本発明に用いる無機充填剤(C)としては、一般に封止材料に用いられている溶融シリカ、球状シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機充填剤の粒径としては、金型への充填性を考慮すると0.01μm以上150μm以下であることが望ましい。また無機充填剤(C)の充填量としてはエポキシ樹脂組成物全体の78重量%以上92重量%以下が好ましく、下限値未満だとエポキシ樹脂組成物の硬化物の反りが増加、且つ吸水量が増加し、強度が低下するため耐半田性が不満足で、上限値を越えると流動性が損なわれるために成形性に不具合を生じ好ましくない。   Examples of the inorganic filler (C) used in the present invention include fused silica, spherical silica, crystalline silica, alumina, silicon nitride, and aluminum nitride that are generally used for sealing materials. The particle size of the inorganic filler is preferably 0.01 μm or more and 150 μm or less in consideration of the filling property to the mold. The amount of the inorganic filler (C) is preferably 78% by weight or more and 92% by weight or less of the entire epoxy resin composition, and if it is less than the lower limit, the warpage of the cured product of the epoxy resin composition is increased and the water absorption is The soldering resistance is unsatisfactory because it increases and the strength decreases, and if it exceeds the upper limit, the fluidity is impaired, which is not preferable because it causes a problem in moldability.

本発明に用いる硬化促進剤(D)は、エポキシ樹脂のエポキシ基とフェノール樹脂の水酸基との反応を促進するものであればよく、一般に半導体素子の封止材であるエポキシ樹脂組成物に使用されているものを利用することができる。具体例として有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物等のリン原子含有化合物、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン、2−メチルイミダゾール等の窒素原子含有化合物が挙げられる。   The curing accelerator (D) used in the present invention is not particularly limited as long as it accelerates the reaction between the epoxy group of the epoxy resin and the hydroxyl group of the phenol resin, and is generally used in an epoxy resin composition that is a sealing material for semiconductor elements. You can use what you have. Specific examples include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds and phosphobetaine compounds, nitrogen atoms such as 1,8-diazabicyclo (5,4,0) undecene-7, benzyldimethylamine, and 2-methylimidazole. Compounds.

有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。   Examples of the organic phosphine include a first phosphine such as ethylphosphine and phenylphosphine, a second phosphine such as dimethylphosphine and diphenylphosphine, and a third phosphine such as trimethylphosphine, triethylphosphine, tributylphosphine, and triphenylphosphine.

テトラ置換ホスホニウム化合物としては、一般式(5)に示す化合物が挙げられる。

Figure 0004569137
(上記一般式(5)において、Pはリン原子を表す。R、R、RおよびRは置換もしくは無置換の芳香族基、またはアルキル基を表す。Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。AHはヒドロキシル基、カルボキシル基、チオール基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。a、bは1以上3以下の整数、cは0以上3以下の整数であり、かつa=bである。) Examples of the tetra-substituted phosphonium compound include compounds represented by the general formula (5).
Figure 0004569137
(In the general formula (5), P represents a phosphorus atom. R 1 , R 2 , R 3 and R 4 represent a substituted or unsubstituted aromatic group or an alkyl group. A represents a hydroxyl group or a carboxyl group. Represents an anion of an aromatic organic acid having at least one functional group selected from thiol groups in the aromatic ring, and AH is an aromatic having at least one of a hydroxyl group, a carboxyl group, and a thiol group in the aromatic ring. A and b are integers of 1 or more and 3 or less, c is an integer of 0 or more and 3 or less, and a = b.

上記一般式(5)に示す化合物は、例えば以下のようにして得られる。まず、テトラ置換ホスホニウムブロマイドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加える。すると、上記一般式(5)に示す化合物を沈殿させることができる。上記一般式(5)に示す化合物において、リン原子に結合するR、R、RおよびRがフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。 The compound represented by the general formula (5) is obtained, for example, as follows. First, a tetra-substituted phosphonium bromide, an aromatic organic acid, and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Then add water. Then, the compound represented by the general formula (5) can be precipitated. In the compound represented by the general formula (5), R 1 , R 2 , R 3 and R 4 bonded to the phosphorus atom are phenyl groups, and AH is a compound having a hydroxyl group in an aromatic ring, that is, a phenol. A is preferably an anion of the phenol.

ホスホベタイン化合物としては、下記一般式(6)に示す化合物が挙げられる。

Figure 0004569137
(上記一般式(6)において、Xは水素または炭素数1以上3以下のアルキル基、Yは水素またはヒドロキシル基を表す。m、nは1以上3以下の整数。) Examples of the phosphobetaine compound include compounds represented by the following general formula (6).
Figure 0004569137
(In the general formula (6), X represents hydrogen or an alkyl group having 1 to 3 carbon atoms, Y represents hydrogen or a hydroxyl group. M and n are integers of 1 to 3)

上記一般式(6)に示す化合物は、例えば以下のようにして得られる。まず、沃化フェノール類とトリ芳香族置換ホスフィンを有機溶媒に均一に混合し、ニッケル触媒によりヨードニウム塩として沈殿させる。このヨードニウム塩と塩基を有機溶剤に均一に混合し、必要により水を加えると、上記一般式(6)に示す化合物を沈殿させることことができる。上記一般式(6)に示す化合物としては、好ましくはXが水素またはメチル基であり、かつYが水素またはヒドロキシル基であるのが好ましい。しかしこれらに限定されるものではなく、単独でも併用してもよい。   The compound represented by the general formula (6) is obtained, for example, as follows. First, iodinated phenols and triaromatic substituted phosphine are uniformly mixed in an organic solvent and precipitated as an iodonium salt with a nickel catalyst. When the iodonium salt and the base are uniformly mixed in an organic solvent and water is added as necessary, the compound represented by the general formula (6) can be precipitated. As the compound represented by the general formula (6), X is preferably hydrogen or a methyl group, and Y is preferably hydrogen or a hydroxyl group. However, it is not limited to these and may be used alone or in combination.

本発明に用いる硬化促進剤(D)の配合量は、全エポキシ樹脂組成物中0.1重量%以上1重量%以下が好ましく、下限値未満だと目的とする硬化性が得られないおそれがあり、上限値を越えると流動性が損なわれるおそれがある。   The blending amount of the curing accelerator (D) used in the present invention is preferably 0.1% by weight or more and 1% by weight or less in the total epoxy resin composition, and if it is less than the lower limit value, the intended curability may not be obtained. If the upper limit is exceeded, the fluidity may be impaired.

本発明に用いるシランカップリング剤(E)は、エポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等特に限定せず、エポキシ樹脂組成物と無機充填剤との間で反応し、エポキシ樹脂組成物と無機充填剤の界面強度を向上させるものであればよい。芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)(以下化合物(F)と称する)はシランカップリング剤(E)との相乗効果により、粘度特性と流動特性を著しく改善させるため、シランカップリング剤(E)は化合物(F)の効果を充分に得るためには必須である。これらのシランカップリング剤(E)は単独でも併用してもよい。本発明に用いるシランカップリング剤(E)の配合量は、全エポキシ樹脂組成物中0.01重量%以上1重量%以下、好ましくは0.05重量%以上0.8以下、特に好ましくは0.1重量%以上0.6重量%以下であり、下限値未満だと化合物(F)の効果が充分に得られず、また半導体パッケージにおける耐半田性が低下する恐れがある。また、上限値を越えるとエポキシ樹脂組成物の吸水性が大きくなり、やはり半導体パッケージにおける耐半田性が低下する恐れがある。   The silane coupling agent (E) used in the present invention is not particularly limited, such as epoxy silane, amino silane, ureido silane, mercapto silane, etc., and reacts between the epoxy resin composition and the inorganic filler, and the epoxy resin composition and inorganic What is necessary is just to improve the interface strength of a filler. A compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring (hereinafter referred to as compound (F)) has a viscosity characteristic and fluidity due to a synergistic effect with the silane coupling agent (E). In order to remarkably improve the characteristics, the silane coupling agent (E) is essential for obtaining the effect of the compound (F) sufficiently. These silane coupling agents (E) may be used alone or in combination. The amount of the silane coupling agent (E) used in the present invention is 0.01% by weight or more and 1% by weight or less, preferably 0.05% by weight or more and 0.8 or less, and particularly preferably 0% in the total epoxy resin composition. When the content is from 1% by weight to 0.6% by weight and less than the lower limit, the effect of the compound (F) cannot be sufficiently obtained, and the solder resistance in the semiconductor package may be lowered. On the other hand, if the upper limit is exceeded, the water absorption of the epoxy resin composition increases, and the solder resistance in the semiconductor package may also be lowered.

本発明に用いる芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)(以下化合物(F)と称する)は、水酸基以外の置換基を有していてもよい。化合物(F)としては、下記一般式(7)で示される単環式化合物または下記一般式(8)で示される多環式化合物を用いることができる。   The compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring used in the present invention (hereinafter referred to as compound (F)) may have a substituent other than a hydroxyl group. . As the compound (F), a monocyclic compound represented by the following general formula (7) or a polycyclic compound represented by the following general formula (8) can be used.

Figure 0004569137
(上記一般式(7)において、R、Rはどちらか一方が水酸基であり、片方が水酸基のとき他方は水素、水酸基または水酸基以外の置換基。R、R、Rは水素、水酸基または水酸基以外の置換基。)
Figure 0004569137
(In the above general formula (7), one of R 1 and R 5 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R 2 , R 3 , and R 4 are hydrogen atoms. , Hydroxyl groups or substituents other than hydroxyl groups.)

Figure 0004569137
(上記一般式(8)において、R、Rはどちらか一方が水酸基であり、片方が水酸基のとき他方は水素、水酸基または水酸基以外の置換基。R、R、R、R、Rは水素、水酸基または水酸基以外の置換基。)
Figure 0004569137
(In the general formula (8), one of R 1 and R 7 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen, a hydroxyl group or a substituent other than a hydroxyl group.)

上記、一般式(7)で示される単環式化合物の具体例として、例えば、カテコール、ピロガロール、没食子酸、没食子酸エステルまたはこれらの誘導体が挙げられる。また、上記一般式(8)で示される多環式化合物の具体例として、例えば、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレンおよびこれらの誘導体が挙げられる。そのうち流動性と硬化性の制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、化合物(F)を、具体的には、例えば、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレンおよびその誘導体等のナフタレン環を有する化合物とすることができる。これらの化合物(F)は2種以上併用してもよい。   Specific examples of the monocyclic compound represented by the general formula (7) include catechol, pyrogallol, gallic acid, gallic acid ester, and derivatives thereof. Specific examples of the polycyclic compound represented by the general formula (8) include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof. Among them, a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring is preferable because of easy control of fluidity and curability. In consideration of volatilization in the kneading step, it is more preferable that the mother nucleus is a compound having a low volatility and a highly stable weighing naphthalene ring. In this case, specifically, the compound (F) can be a compound having a naphthalene ring such as 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. Two or more of these compounds (F) may be used in combination.

かかる化合物(F)の配合量は全エポキシ樹脂組成物中0.01重量%以上1重量%以下、好ましくは0.03重量%以上0.8重量%以下、特に好ましくは0.05重量%以上0.5重量%以下である。下限値未満だとシランカップリング剤(E)との相乗効果による期待するような粘度特性および流動特性が得られない。上限値を越えるとエポキシ樹脂組成物の硬化が阻害され、また硬化物の物性が劣り、半導体封止樹脂としての性能が低下する。   The compounding amount of the compound (F) is 0.01% by weight or more and 1% by weight or less, preferably 0.03% by weight or more and 0.8% by weight or less, particularly preferably 0.05% by weight or more in the total epoxy resin composition. 0.5% by weight or less. If it is less than the lower limit, viscosity properties and flow properties as expected due to a synergistic effect with the silane coupling agent (E) cannot be obtained. When the upper limit is exceeded, the curing of the epoxy resin composition is inhibited, the physical properties of the cured product are inferior, and the performance as a semiconductor encapsulating resin is lowered.

本発明のエポキシ樹脂組成物は、(A)〜(F)成分を必須成分とするが、これ以外に必要に応じて臭素化エポキシ樹脂、三酸化アンチモン等の難燃剤、離型剤、カーボンブラック等の着色剤、シリコーンオイル、シリコーンゴム等の低応力添加剤、無機イオン交換体等の添加剤を適宜配合してもよい。
本発明のエポキシ樹脂組成物は、(A)〜(F)成分およびその他の添加剤等をミキサー等を用いて常温で均一に混合した後、加熱ロールまたはニーダー、押出機等で溶融混練し、冷却後粉砕して製造することができる。
本発明のエポキシ樹脂組成物を用いて、半導体素子を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。
The epoxy resin composition of the present invention has components (A) to (F) as essential components, but in addition to this, flame retardants such as brominated epoxy resins and antimony trioxide, mold release agents, carbon black Such additives as colorants, low stress additives such as silicone oil and silicone rubber, and additives such as inorganic ion exchangers may be appropriately blended.
The epoxy resin composition of the present invention is obtained by uniformly mixing the components (A) to (F) and other additives at room temperature using a mixer or the like, and then melt-kneading with a heating roll or kneader, an extruder, etc. It can be manufactured by grinding after cooling.
In order to seal a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be molded and cured by a molding method such as transfer molding, compression molding, or injection molding.

以下、本発明を実施例にて具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。配合割合は重量部とする。
実施例1
トリフェノールメタン型エポキシ樹脂(ジャパンエポキシレジン(株)製、E−1032H60、エポキシ当量169、融点59℃) 9.3重量部
トリフェノールメタン型フェノール樹脂(明和化成(株)製、MEH−7500、水酸基当量97、軟化点110℃) 5.4重量部
球状溶融シリカ(平均粒径30μm) 84.0重量部
トリフェニルホスフィン 0.2重量部
γ−グリシジルプロピルトリメトキシシラン 0.6重量部
2,3−ジヒドロキシナフタレン 0.05重量部
カルナバワックス 0.2重量部
カーボンブラック 0.3重量部
をミキサーにて常温混合し、80〜100℃の加熱ロールで溶融混練し、冷却後粉砕し、エポキシ樹脂組成物を得た。評価結果を表1に示す。
EXAMPLES Hereinafter, although this invention is demonstrated concretely in an Example, this invention is not limited at all by these Examples. The blending ratio is parts by weight.
Example 1
Triphenolmethane type epoxy resin (Japan Epoxy Resin Co., Ltd., E-1032H60, epoxy equivalent 169, melting point 59 ° C.) 9.3 parts by weight Triphenolmethane type phenolic resin (Maywa Kasei Co., Ltd., MEH-7500) Hydroxyl equivalent 97, softening point 110 ° C.) 5.4 parts by weight Spherical fused silica (average particle size 30 μm) 84.0 parts by weight Triphenylphosphine 0.2 parts by weight γ-glycidylpropyltrimethoxysilane 0.6 parts by weight 2, 3-dihydroxynaphthalene 0.05 parts by weight Carnauba wax 0.2 parts by weight Carbon black 0.3 parts by weight is mixed at room temperature with a mixer, melted and kneaded with a heating roll at 80 to 100 ° C., cooled and pulverized, and epoxy resin A composition was obtained. The evaluation results are shown in Table 1.

・スパイラルフロー:EMMI−1−66に準じた金型を用い、前記エポキシ樹脂組成物を低圧トランスファー成形機にて175℃、成形圧6.9MPa、保圧時間120秒の条件で成形し測定。スパイラルフローは、流動性のパラメータであり、数値が大きい方が流動性が良好である。単位はcm。
・硬化トルク比:キュラストメーター(オリエンテック(株)製、JSRキュラストメーターIVPS型)を用い、金型温度175℃、加熱開始90秒後、300秒後のトルクを求め、硬化トルク比:(90秒後のトルク)/(300秒後のトルク)を計算した。キュラストメーターにおけるトルクは熱剛性のパラメータであり、硬化トルク比の大きい方が硬化性が良好である。単位は%。
・吸水率:トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間120秒で、直径50mm、厚さ3mmの成形品を成形し、175℃、8時間で後硬化し、得られた成形品を85℃、相対湿度85%の環境下で168時間加湿処理し、重量変化を測定して吸水率を求めた。単位は重量%。
・パッケージ反り量:トランスファー成形機を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒で、225pBGA(基板は厚さ0.36mm、ビスマレイミド・トリアジン/ガラスクロス基板、パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を成形した。更にポストキュアとして175℃で8時間加熱処理した。室温に冷却後パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。単位はμm。
・耐半田クラック性:トランスファー成形機を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒で、225pBGA(基板は厚さ0.36mm、ビスマレイミド・トリアジン/ガラスクロス基板、パッケージサイズは24×24mm、厚さ1.17mm、シリコンチップはサイズ9×9mm、厚さ0.35mm、チップと回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を成形した。ポストキュアとして175℃で8時間加熱処理したパッケージ8個を、85℃、相対湿度60%で168時間加湿処理した後、IRリフロー処理(260℃、JEDEC・Level2条件に従う)を行った。処理後の内部の剥離、及びクラックの有無を超音波傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/8と表示する。
Spiral flow: Using a mold according to EMMI-1-66, the epoxy resin composition was molded and measured with a low-pressure transfer molding machine at 175 ° C., a molding pressure of 6.9 MPa, and a holding time of 120 seconds. Spiral flow is a parameter for fluidity, and the larger the value, the better the fluidity. The unit is cm.
Curing torque ratio: Using a curast meter (Orientec Co., Ltd., JSR curast meter IVPS type), a mold temperature of 175 ° C., 90 seconds after the start of heating, and a torque after 300 seconds were determined. (Torque after 90 seconds) / (Torque after 300 seconds) was calculated. The torque in the curast meter is a parameter of thermal rigidity, and the larger the curing torque ratio, the better the curability. Units%.
Water absorption: Using a transfer molding machine, a molded product with a diameter of 50 mm and a thickness of 3 mm was molded at a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, a curing time of 120 seconds, and post-cured at 175 ° C. for 8 hours. The molded product thus obtained was humidified for 168 hours in an environment of 85 ° C. and a relative humidity of 85%, and the weight change was measured to determine the water absorption rate. The unit is% by weight.
Package warpage amount: 225pBGA (substrate thickness is 0.36mm, bismaleimide / triazine / glass cloth substrate, package, mold temperature is 180 ° C, injection pressure is 7.4MPa, curing time is 120 seconds, using transfer molding machine The size is 24 × 24 mm, the thickness is 1.17 mm, the silicon chip is size 9 × 9 mm, the thickness is 0.35 mm, and the bonding pad of the circuit board is bonded with a 25 μm diameter gold wire. . Furthermore, it heat-processed at 175 degreeC for 8 hours as a postcure. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the value with the largest displacement difference was taken as the amount of warpage. The unit is μm.
Solder crack resistance: Using a transfer molding machine, a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, a curing time of 120 seconds, and 225 pBGA (the substrate is 0.36 mm thick, bismaleimide / triazine / glass cloth substrate, The package size is 24 × 24 mm, the thickness is 1.17 mm, the silicon chip is 9 × 9 mm, the thickness is 0.35 mm, and the chip and the bonding pad of the circuit board are bonded with a 25 μm diameter gold wire. did. Eight packages heat treated at 175 ° C. for 8 hours as post-cure were humidified for 168 hours at 85 ° C. and 60% relative humidity, and then IR reflow treatment (260 ° C., according to JEDEC Level 2 conditions) was performed. The internal peeling after the treatment and the presence or absence of cracks were observed with an ultrasonic scratcher, and the number of defective packages was counted. When the number of defective packages is n, n / 8 is displayed.

実施例2〜10、13〜15、参考例11〜12、比較例1〜15
表1および表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を製造し、実施例1と同様にして評価した。評価結果を表1および表2に示す。
実施例1以外で用いた成分について、以下に示す。
ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000H、融点105℃、エポキシ当量191)
フェノールアラルキル樹脂(三井化学(株)製、XLC−4L、軟化点65℃、水酸基当量165)
γ−メルカプトプロピルトリメトキシシラン
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUと略す)
Examples 2 to 10, 13 to 15 , Reference Examples 11 to 12 , Comparative Examples 1 to 15
According to the composition of Table 1 and Table 2, an epoxy resin composition was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2.
The components used in other than Example 1 are shown below.
Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000H, melting point 105 ° C., epoxy equivalent 191)
Phenol aralkyl resin (Mitsui Chemicals, XLC-4L, softening point 65 ° C., hydroxyl equivalent 165)
γ-mercaptopropyltrimethoxysilane 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter abbreviated as DBU)

式(9)で示される硬化促進剤

Figure 0004569137
Curing accelerator represented by formula (9)
Figure 0004569137

式(10)で示される硬化促進剤

Figure 0004569137
Curing accelerator represented by formula (10)
Figure 0004569137

1,2−ジヒドロキシナフタレン
カテコール
ピロガロール
1,6−ジヒドロキシナフタレン
レゾルシノール
1,2-dihydroxynaphthalene catechol pyrogallol 1,6-dihydroxynaphthalene resorcinol

Figure 0004569137
Figure 0004569137

Figure 0004569137
Figure 0004569137

本発明に従うと、成形後や半田処理時の反りが小さく、耐半田クラック性に優れ、且つ流動性、成形性に優れたエポキシ樹脂組成物を得ることができるため、表面実装型の半導体装置、とりわけBGA、CSP等のエリア実装パッケージ用として好適である。   According to the present invention, an epoxy resin composition having small warpage after molding or soldering treatment, excellent resistance to solder cracking, and excellent fluidity and moldability can be obtained. In particular, it is suitable for area mounting packages such as BGA and CSP.

Claims (2)

下記一般式(1)で示されるエポキシ樹脂(A)と、下記一般式(2)で示されるフェノール樹脂(B)と、無機充填剤(C)と、硬化促進剤(D)と、シランカップリング剤(E)と、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)と、を含むことを特徴とする半導体封止用樹脂組成物であって、無機充填剤(C)を当該樹脂組成物中に80重量%以上88重量%以下含み、シランカップリング剤(E)を当該樹脂組成物全体の0.01重量%以上1重量%以下含み、化合物(F)を当該樹脂組成物全体の0.01重量%以上1重量%以下含み、化合物(F)は、ナフタレン環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物である半導体封止用樹脂組成物
Figure 0004569137
(ただし、上記一般式(1)において、Rは炭素数1以上5以下の炭化水素、ハロゲンの中から選択される基又は原子であり、それらは互いに同一であっても異なっていてもよい。mは0以上4以下の整数、nは0以上3以下の整数、kは平均値で、1以上10以下の正数である。)
Figure 0004569137
(ただし、上記一般式(2)において、Rは炭素数1以上5以下の炭化水素、ハロゲンの中から選択される基又は原子であり、それらは互いに同一であっても異なっていてもよい。mは0以上4以下の整数、nは0以上3以下の整数、kは平均値で、1以上10以下の正数である。)
An epoxy resin (A) represented by the following general formula (1), a phenol resin (B) represented by the following general formula (2), an inorganic filler (C), a curing accelerator (D), and a silane cup A resin composition for encapsulating a semiconductor, comprising: a ring agent (E); and a compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring , Inorganic filler (C) is contained in the resin composition in an amount of 80% by weight to 88% by weight, and a silane coupling agent (E) is contained in an amount of 0.01% by weight to 1% by weight of the total resin composition, (F) is a semiconductor that contains 0.01 wt% or more and 1 wt% or less of the total resin composition, and the compound (F) is a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting a naphthalene ring. Resin composition for sealing .
Figure 0004569137
(However, in the said General formula (1), R is a group or atom selected from C1-C5 hydrocarbon and halogen, and they may mutually be same or different. m is an integer of 0 or more and 4 or less, n is an integer of 0 or more and 3 or less, k is an average value, and is a positive number of 1 or more and 10 or less.)
Figure 0004569137
(However, in the said General formula (2), R is a group or atom selected from C1-C5 hydrocarbon and halogen, and they may mutually be same or different. m is an integer of 0 or more and 4 or less, n is an integer of 0 or more and 3 or less, k is an average value, and is a positive number of 1 or more and 10 or less.)
請求項1に記載の半導体封止用樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed with the semiconductor sealing resin composition according to claim 1 .
JP2004075412A 2003-03-17 2004-03-16 Semiconductor sealing resin composition and semiconductor device Expired - Fee Related JP4569137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075412A JP4569137B2 (en) 2003-03-17 2004-03-16 Semiconductor sealing resin composition and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003072862 2003-03-17
JP2003072863 2003-03-17
JP2004075412A JP4569137B2 (en) 2003-03-17 2004-03-16 Semiconductor sealing resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004300431A JP2004300431A (en) 2004-10-28
JP4569137B2 true JP4569137B2 (en) 2010-10-27

Family

ID=33424770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075412A Expired - Fee Related JP4569137B2 (en) 2003-03-17 2004-03-16 Semiconductor sealing resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4569137B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951953B2 (en) * 2005-12-13 2012-06-13 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
MY144047A (en) * 2005-01-20 2011-07-29 Sumitomo Bakelite Co Epoxy resin composition, process for providing latency to the composition and a semiconductor device
JP4951954B2 (en) * 2005-12-13 2012-06-13 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
SG158093A1 (en) * 2005-01-28 2010-01-29 Sumitomo Bakelite Co Epoxy resin composition for encapsulating semiconductor chip and semiconductor device
JP5028756B2 (en) * 2005-06-24 2012-09-19 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
KR101288703B1 (en) * 2005-09-30 2013-07-22 스미토모 베이클리트 컴퍼니 리미티드 Epoxy resin composition and semiconductor device
JP4946030B2 (en) * 2005-12-16 2012-06-06 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP5055778B2 (en) * 2006-02-06 2012-10-24 住友ベークライト株式会社 Epoxy resin composition, epoxy resin molding material and semiconductor device
WO2007125635A1 (en) * 2006-03-31 2007-11-08 Sumitomo Bakelite Co., Ltd. Resin composition for semiconductor encapsulation and semiconductor device
JP5292930B2 (en) * 2008-06-09 2013-09-18 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5187101B2 (en) * 2008-09-26 2013-04-24 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
WO2011052157A1 (en) * 2009-10-26 2011-05-05 住友ベークライト株式会社 Resin composition for semiconductor encapsulation and semiconductor device using the resin composition
EP2762511B1 (en) 2011-09-29 2016-11-16 Hitachi Chemical Co., Ltd. Epoxy resin composition and electronic component device
JP6018967B2 (en) * 2013-04-26 2016-11-02 日東電工株式会社 Method for manufacturing thermosetting sealing resin sheet and electronic component package
KR101768305B1 (en) 2015-04-15 2017-08-16 삼성에스디아이 주식회사 Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131390A (en) * 1999-11-02 2001-05-15 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device
JP2001192436A (en) * 2000-01-11 2001-07-17 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing apparatus
JP2002121356A (en) * 2000-10-11 2002-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002322347A (en) * 2001-04-26 2002-11-08 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600258B2 (en) * 1988-03-25 1997-04-16 東レ株式会社 Resin composition for semiconductor encapsulation
JP3008983B2 (en) * 1990-09-12 2000-02-14 住友ベークライト株式会社 Resin composition
JP2933705B2 (en) * 1990-11-16 1999-08-16 住友ベークライト株式会社 Resin composition
JP3396363B2 (en) * 1995-10-27 2003-04-14 住友ベークライト株式会社 Resin composition for ball grid array
JP3359534B2 (en) * 1997-03-31 2002-12-24 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation
JP3562565B2 (en) * 1998-01-12 2004-09-08 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH11222515A (en) * 1998-02-06 1999-08-17 Sumitomo Bakelite Co Ltd Epoxy resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131390A (en) * 1999-11-02 2001-05-15 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device
JP2001192436A (en) * 2000-01-11 2001-07-17 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing apparatus
JP2002121356A (en) * 2000-10-11 2002-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002322347A (en) * 2001-04-26 2002-11-08 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device

Also Published As

Publication number Publication date
JP2004300431A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4946440B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5028756B2 (en) Semiconductor sealing resin composition and semiconductor device
JP4569137B2 (en) Semiconductor sealing resin composition and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP5332094B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2006152185A (en) Epoxy resin composition and semiconductor device
JP2006274184A (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP5407767B2 (en) Epoxy resin composition and semiconductor device
JP2006225464A (en) Epoxy resin composition and semiconductor device
JP2010031233A (en) Semiconductor sealing epoxy resin composition, and one side sealing type semiconductor device produced by sealing semiconductor device using the same
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP2002212393A (en) Epoxy resin composition and semi-conductor device
JP4370666B2 (en) Semiconductor device
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP2004140186A (en) Method of manufacturing semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP4639427B2 (en) Epoxy resin composition and semiconductor device
JP4543638B2 (en) Epoxy resin composition and semiconductor device
KR20170079115A (en) Epoxy Resin Composition for Sealing Semiconductor
JPH1160901A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees