JP4250987B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4250987B2
JP4250987B2 JP2003083939A JP2003083939A JP4250987B2 JP 4250987 B2 JP4250987 B2 JP 4250987B2 JP 2003083939 A JP2003083939 A JP 2003083939A JP 2003083939 A JP2003083939 A JP 2003083939A JP 4250987 B2 JP4250987 B2 JP 4250987B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
represented
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003083939A
Other languages
Japanese (ja)
Other versions
JP2004292514A (en
Inventor
敦准 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003083939A priority Critical patent/JP4250987B2/en
Publication of JP2004292514A publication Critical patent/JP2004292514A/en
Application granted granted Critical
Publication of JP4250987B2 publication Critical patent/JP4250987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子の封止方法として、エポキシ樹脂組成物のトランスファー成形が低コスト、大量生産に適しており、採用されて久しく、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により特性の向上が図られてきた。しかし、近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体の高集積化も年々進み、また半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。このため、従来からのエポキシ樹脂組成物では解決出来ない問題点も出てきている。
【0003】
通常、エポキシ樹脂組成物中には、難燃性を付与するために、臭素含有有機化合物及び三酸化アンチモン、四酸化アンチモン等のアンチモン化合物が配合されているが、環境・衛生の点から好ましくない。そこで臭素含有有機化合物及びアンチモン化合物を使用しなくても難燃性に優れたエポキシ樹脂組成物として、構造中に多数の芳香環を持つ樹脂を使用する手法がある(例えば、特許文献1参照)。しかし多数の芳香環を持つために、粘度が上昇してしまうという欠点があった。
【0004】
また、半導体装置をプリント回路基板への実装する際、鉛を含有する半田(スズ−鉛合金)が使用されてきたが、同様に環境・衛生の点から鉛を含有する半田(スズ−鉛合金)を使用しないことが望まれている。鉛を含有する半田(スズ−鉛合金)の融点は183℃で、実装時の半田処理の温度は220〜240℃であるのに対し、スズ−銀合金に代表される鉛を含有しない半田では融点が高く、半田処理時の温度が260℃程度となる。そのため、半導体装置が半田浸漬或いは半田リフロー工程でかかる応力が増大し、半導体装置内の各種部材、特にICチップ表面やICチップコート(ポリイミド)表面との剥離が生じたりして、信頼性が著しく低下してしまう。
【0005】
半田処理による信頼性低下を改善するために、エポキシ樹脂組成物中の無機質充填材の充填量を増加させることで低吸湿化、高強度化、低熱膨張化を達成し耐半田クラック性を向上させ、低溶融粘度の樹脂を使用して、成形時に低粘度で高流動性を維持させる手法がある(例えば、特許文献2参照。)。この手法を用いることにより耐半田クラック性がかなり改良されるが、無機充填材の充填割合の増加と共に、流動性が犠牲になりパッケージ内に空隙が生じやすくなる欠点があった。そこでアミノシラン等の各種カップリング剤を添加して流動性と耐半田クラック性の両立を図る手法も提案されている(例えば、特許文献3参照。)が、特にICチップ表面やICチップコート(ポリイミド)表面との剥離は抑えられず、十分に良好な耐半田クラック性を備えた半導体封止用エポキシ樹脂組成物は得られるには至らなかった。
【0006】
【特許文献1】
特開平11−140277(2〜11頁)
【特許文献2】
特開昭64−65116号公報(2〜7頁)
【特許文献3】
特開平2−218735号公報(1〜9頁)
【0007】
【発明が解決しようとする課題】
本発明は、流動性、耐半田クラック性に優れた半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、
[1] (A)一般式(1)で表されるエポキシ樹脂、(B)一般式(2)で表されるフェノール樹脂、(C)硬化促進剤、(D)無機充填材、(E)一般式(3)で表されるシランカップリング剤、及び(F)一般式(4)で表されるシランカップリング剤を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物、
【0009】
【化5】

Figure 0004250987
(R1、R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数。)
【0010】
【化6】
Figure 0004250987
(R1、R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数。)
【0011】
【化7】
Figure 0004250987
(R下記式
【化71】
Figure 0004250987
から選ばれた有機基。R、R、Rは炭素数1〜12の炭化水素基。nは1〜3の整数。)
【0012】
【化8】
Figure 0004250987
(Epは下記式
【化81】
Figure 0004250987
から選ばれたエポキシ基を含有する有機基。R、R、Rは炭素数1〜12の炭化水素基。)
[2] 第[1]に記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0013】
【発明の実施の形態】
本発明で用いられる一般式(1)で表されるエポキシ樹脂は、エポキシ基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、ガラス転移温度(以下、Tgという)を越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また架橋密度が低い割には耐熱性が高いという特徴を有している。
一般式(1)中のnは平均値で、1〜5の正数、好ましくは1〜3の正数である。nが下限値を下回るとエポキシ樹脂組成物の硬化性が低下する可能性がある。nが上限値を越えると粘度が高くなりエポキシ樹脂組成物の流動性が低下する可能性がある。一般式(1)で表されるエポキシ樹脂は、1種類を単独で用いても2種類以上を併用してもよい。
一般式(1)で表されるエポキシ樹脂の内では、式(5)で表されるエポキシ樹脂が特に好ましい。
【化9】
Figure 0004250987
【化10】
Figure 0004250987
【0014】
一般式(1)で表されるエポキシ樹脂による効果を損なわない範囲で、他のエポキシ樹脂を併用してもよい。併用する場合は、分子中にエポキシ基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格を有する)、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
一般式(1)で表されるエポキシ樹脂の使用量は、全エポキシ樹脂中に30重量%以上含むことが好ましく、50重量%以上が特に好ましい。下限値を下回ると、難燃性が不十分となる可能性がある。
【0015】
本発明で用いられる一般式(2)で表されるフェノール樹脂は、フェノール性水酸基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、Tgを越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また架橋密度が低い割には耐熱性が高いという特徴を有している。
一般式(2)中のnは平均値で、1〜5の正数、好ましくは1〜3の正数である。nが下限値を下回るとエポキシ樹脂組成物の硬化性が低下する可能性がある。nが上限値を越えると、粘度が高くなりエポキシ樹脂組成物の流動性が低下する可能性がある。一般式(2)で表されるフェノール樹脂は、1種類を単独で用いても2種類以上を併用してもよい。
一般式(2)で表されるフェノール樹脂の内では、式(6)で表されるフェノール樹脂が特に好ましい。
【化11】
Figure 0004250987
【化12】
Figure 0004250987
【0016】
本発明で用いられる一般式(2)で表されるフェノール樹脂による効果を損なわない範囲で他のフェノール樹脂を併用してもよい。併用する場合は、分子中にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂(フェニレン骨格を有する)、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
一般式(2)で表されるフェノール樹脂の使用量は、全フェノール樹脂中に30重量%以上含むことが好ましく、50重量%以上が特に好ましい。下限値を下回ると、難燃性が不十分となる可能性がある。
全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基の当量比としては、好ましくは0.5〜2であり、特に0.7〜1.5がより好ましい。上記範囲を外れると、耐湿性、硬化性等が低下する可能性がある。
【0017】
本発明で用いる無機充填材の種類については特に限定しないが、例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛、モリブデン酸亜鉛等が挙げられ、特に溶融球状シリカが好ましい。溶融球状シリカの形状としては、流動性改善のために限りなく真球状であり、かつ粒度分布がブロードであることが好ましい。
【0018】
無機充填材及び必要に応じて添加する金属水酸化物、無機イオン交換等を含めた全無機物の含有量としては、特に規定されないが、全エポキシ樹脂組成物中に84重量%以上、94重量%以下が好ましい。下限値を下回ると、エポキシ樹脂組成物の硬化物の低吸湿性が得られず耐半田クラック性が不十分となる可能性がある。また、上限値を越えると、
エポキシ樹脂組成物の流動性が低下し、成形時に充填不良等が生じたり、高粘度化により半導体装置内の金線変形等の不都合が生じる可能性がある。
【0019】
本発明は、臭素含有有機化合物及びアンチモン化合物を使用せずに難燃性を達成するものである。本発明における全エポキシ樹脂組成物中の臭素原子及びアンチモン原子は、それぞれ0.05重量%以下となっている。これは経済上の理由から原料や製造段階において混入する微量の成分以外には、臭素原子及びアンチモン原子を添加しないことを意味している。
本発明に用いる無機充填材は、予め十分に混合しておくことが好ましい。また必要に応じて無機充填材をカップリング剤やエポキシ樹脂あるいはフェノール樹脂で予め被覆処理して用いてもよく、被覆処理の方法としては、溶剤を用いて混合した後に溶媒を除去する方法や直接無機充填材に添加し、混合機を用いて混合する方法等が挙げられる。
【0020】
本発明で用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基の反応を促進するものであれば特に限定しないが、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
【0021】
本発明において一般式(3)で表されるシランカップリング剤は必須である。一般式(3)で表されるシランカップリング剤は1種類を単独で使用しても2種類以上を併用してもよい。また配合量は、特に限定されないが、全エポキシ樹脂組成物中0.01〜3重量%が望ましく、より好ましくは0.05〜1重量%である。下限値を下回ると十分な流動性が得られない可能性があり、上限値を超えると硬化性が低下する可能性がある。
【化13】
Figure 0004250987
【0022】
本発明において一般式(4)で表されるシランカップリング剤は必須である。一般式(4)で表されるシランカップリング剤は1種類を単独で使用しても2種類以上を併用してもよい。また配合量は、特に限定されないが、全エポキシ樹脂組成物中0.01〜3重量%が望ましく、より好ましくは0.05〜1重量%である。下限値を下回ると十分な密着性が得られない可能性があり、上限値を超えると硬化性が低下する可能性がある。
【化14】
Figure 0004250987
【0023】
本発明において一般式(3)で表されるシランカップリング剤と、一般式(4)で表されるシランカップリング剤は併用することが必須であり、どちらか一方だけ配合していても、流動性及び耐半田クラック性が十分でない。
【0024】
本発明のエポキシ樹脂組成物は、必要に応じて、一般式(3)で表される以外のアミノシラン、一般式(4)で表される以外のエポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等のカップリング剤、カーボンブラック等の着色剤、天然ワックス、合成ワックス等の離型剤及び、ゴム等の低応力添加剤を適宜配合しても差し支えない。
【0025】
また、本発明のエポキシ樹脂組成物は、ミキサー等を用いて原料を充分に均一に混合した後、更に熱ロール又はニーダー等で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
【0026】
【実施例】
以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
なお、実施例、及び比較例で用いたカップリング剤及び化合物について、以下に示す。
カップリング剤1:式(7)で示されるカップリング剤(信越化学(株)製、KBM−573)
【化15】
Figure 0004250987
【0027】
カップリング剤2:式(8)で示されるカップリング剤(信越化学(株)製、X12−806)
【化16】
Figure 0004250987
【0028】
カップリング剤3:式(9)で示されるカップリング剤(日本ユニカー(株)製、AZ−6137)
【化17】
Figure 0004250987
【0029】
カップリング剤4:式(10)で示されるカップリング剤(日本ユニカー(株)製、試作品)
【化18】
Figure 0004250987
【0030】
カップリング剤5:式(11)で示されるカップリング剤(日本ユニカー(株)製、A−187)
【化19】
Figure 0004250987
【0031】
カップリング剤6:式(12)で示されるカップリング剤(日本ユニカー(株)製、A−186)
【化20】
Figure 0004250987
【0032】
実施例1
エポキシ樹脂1:式(5)で示されるエポキシ樹脂(日本化薬(株)製、NC3000P、軟化点58℃、エポキシ当量273、以下、E−1という)
65重量部
【化21】
Figure 0004250987
【0033】
フェノール樹脂2:式(6)で示されるフェノール樹脂(明和化成(株)製、MEH−7851SS、軟化点107℃、水酸基当量204、以下、H−1という) 47重量部
【化22】
Figure 0004250987
【0034】
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという) 5重量部
溶融球状シリカ(平均粒径21μm) 870重量部
カップリング剤1 3重量部
カップリング剤3 2重量部
カーボンブラック 3重量部
カルナバワックス 5重量部
をミキサーにて混合し、熱ロールを用いて、95℃で8分間混練して冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、以下の方法で評価した。結果を表1に示す。
【0035】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用金型を用いて、金型温度175℃、圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
密着性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で、ポリイミドで表面コートしたチップ上に2mm×2mm×2mmの密着強度試験片を成形した。その後、自動せん断強度測定装置(DAGE社製、PC2400)を用いて、エポキシ樹脂組成物の硬化物とフレームとのせん断強度を測定した。単位はN/mm2
耐半田クラック性:低圧トランスファー成形機を用いて、成形温度175℃、圧力8.3MPa、硬化時間120秒で、80pQFP(銅フレーム、ポリイミドで表面コートした6.0mm×6.0mmのチップ)を成形し、アフターベークとして175℃、8時間加熱処理した後、85℃、相対湿度85%で120時間の加湿処理を行った後、260℃のIRリフロー処理をした。パッケージ内部の剥離とクラックを超音波探傷機で確認した。10個のパッケージ中の不良パッケージ数を示す。
難燃性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で長さ127mm、幅12.7mm、厚さ1.6mmの成形品を成形し、ポストキュアとして175℃で8時間加熱処理した後、得られた成形品を23℃、相対湿度50%の環境下で48時間加湿処理し、UL−94に準じて難燃性試験を行った。
【0036】
実施例2〜6、比較例1〜7
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1に示す。
実施例1以外で用いた原材料を以下に示す。
エポキシ樹脂2:式(13)を主成分とするエポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000、エポキシ当量190g/eq、融点105℃、以下、E−2という)
【化23】
Figure 0004250987
【0037】
フェノール樹脂2:式(14)で示されるフェノール樹脂(三井化学(株)製、XLC−LL、水酸基当量165g/eq、軟化点79℃、以下H−2という)
【化24】
Figure 0004250987
【0038】
【表1】
Figure 0004250987
実施例1と比較例1,2を比べると、カップリング剤1,3をそれぞれ単独で用いるより併用して用いた方が、流動性、密着性ともに大きくなっている。その効果は、比較例3のようにカップリング剤3,5を併用した時には現れず、また、比較例5のように他の樹脂を使用した場合にも現れない、特有のものである。
【0039】
【発明の効果】
本発明に従うと、臭素含有有機化合物、アンチモン化合物を使用せずとも良好な難燃性が得られ、かつ良好な流動性、基板との良好な密着性を有するエポキシ樹脂組成物が得られ、これを用いた半導体装置は耐半田クラック性に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.
[0002]
[Prior art]
As a sealing method for semiconductor elements such as IC and LSI, transfer molding of an epoxy resin composition is suitable for mass production at low cost and has been adopted for a long time, and a phenol resin that is an epoxy resin or a curing agent in terms of reliability. Improvements have been made to improve the characteristics. However, due to the recent trend toward smaller, lighter, and higher performance electronic devices, semiconductors have been increasingly integrated and the surface mounting of semiconductor devices has been promoted. The demand for compositions has become increasingly severe. For this reason, the problem which cannot be solved with the conventional epoxy resin composition has also come out.
[0003]
Usually, an epoxy resin composition contains a bromine-containing organic compound and an antimony compound such as antimony trioxide and antimony tetroxide in order to impart flame retardancy, which is not preferable from the viewpoint of environment and hygiene. . Therefore, there is a technique of using a resin having a large number of aromatic rings in the structure as an epoxy resin composition excellent in flame retardancy without using a bromine-containing organic compound and an antimony compound (see, for example, Patent Document 1). . However, since it has a large number of aromatic rings, there is a drawback that the viscosity increases.
[0004]
In addition, when mounting a semiconductor device on a printed circuit board, lead-containing solder (tin-lead alloy) has been used. Similarly, solder containing lead (tin-lead alloy) from the viewpoint of environment and hygiene. ) Is not desired. The melting point of lead-containing solder (tin-lead alloy) is 183 ° C., and the soldering temperature during mounting is 220-240 ° C., whereas in the case of solder not containing lead typified by tin-silver alloy The melting point is high, and the temperature during soldering is about 260 ° C. As a result, the stress applied to the semiconductor device by the solder dipping or solder reflow process increases, and peeling from various members in the semiconductor device, particularly the IC chip surface or the IC chip coat (polyimide) surface, is extremely reliable. It will decline.
[0005]
In order to improve reliability degradation due to solder processing, increase the amount of inorganic filler in the epoxy resin composition to achieve low moisture absorption, high strength, low thermal expansion, and improve solder crack resistance. There is a method of maintaining low fluidity and high fluidity at the time of molding using a resin having a low melt viscosity (see, for example, Patent Document 2). By using this method, the solder crack resistance is considerably improved. However, as the filling rate of the inorganic filler is increased, the fluidity is sacrificed and voids are easily generated in the package. In view of this, there has also been proposed a technique for adding both a coupling agent such as aminosilane to achieve both fluidity and solder crack resistance (see, for example, Patent Document 3). ) Separation from the surface was not suppressed, and an epoxy resin composition for semiconductor encapsulation having sufficiently good solder crack resistance was not obtained.
[0006]
[Patent Document 1]
JP-A-11-140277 (pages 2 to 11)
[Patent Document 2]
JP-A 64-65116 (pages 2 to 7)
[Patent Document 3]
JP-A-2-218735 (pages 1-9)
[0007]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in fluidity and solder crack resistance, and a semiconductor device using the same.
[0008]
[Means for Solving the Problems]
The present invention
[1] (A) Epoxy resin represented by general formula (1), (B) phenol resin represented by general formula (2), (C) curing accelerator, (D) inorganic filler, (E) An epoxy resin composition for encapsulating a semiconductor, characterized in that the silane coupling agent represented by the general formula (3) and the silane coupling agent represented by (F) the general formula (4) are essential components;
[0009]
[Chemical formula 5]
Figure 0004250987
(R1 and R2 are hydrogen or an alkyl group having 1 to 4 carbon atoms and may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, A positive number of 5.
[0010]
[Chemical 6]
Figure 0004250987
(R1 and R2 are hydrogen or an alkyl group having 1 to 4 carbon atoms and may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, A positive number of 5.
[0011]
[Chemical 7]
Figure 0004250987
(R 1 is the following formula :
Figure 0004250987
Organic group selected from R 2 , R 3 and R 4 are hydrocarbon groups having 1 to 12 carbon atoms. n is an integer of 1 to 3. )
[0012]
[Chemical 8]
Figure 0004250987
(Ep is the following formula :
Figure 0004250987
Organic group containing an epoxy group selected from R 5 , R 6 and R 7 are hydrocarbon groups having 1 to 12 carbon atoms. )
[2] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor encapsulation according to [1],
It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin represented by the general formula (1) used in the present invention has a hydrophobic and rigid biphenylene skeleton between epoxy groups, and a cured product of an epoxy resin composition using the epoxy resin has a moisture absorption rate. It has a low elastic modulus in a high temperature range exceeding the glass transition temperature (hereinafter referred to as Tg), and is excellent in adhesion to a semiconductor element, an organic substrate, and a metal substrate. Moreover, it has the characteristic that heat resistance is high although a crosslinking density is low.
In the general formula (1), n is an average value and is a positive number of 1 to 5, preferably a positive number of 1 to 3. When n is less than the lower limit, the curability of the epoxy resin composition may be lowered. When n exceeds the upper limit, the viscosity increases and the fluidity of the epoxy resin composition may be reduced. The epoxy resin represented by General formula (1) may be used individually by 1 type, or may use 2 or more types together.
Among the epoxy resins represented by the general formula (1), the epoxy resin represented by the formula (5) is particularly preferable.
[Chemical 9]
Figure 0004250987
[Chemical Formula 10]
Figure 0004250987
[0014]
Other epoxy resins may be used in combination as long as the effects of the epoxy resin represented by the general formula (1) are not impaired. When used in combination, it is desirable to use monomers, oligomers, and polymers having an epoxy group in the molecule as low as possible in general. For example, phenol novolac type epoxy resins, cresol novolac type epoxy resins, biphenyl type epoxy resins Bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin (having phenylene skeleton), naphthol type epoxy resin, naphthalene type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine Examples thereof include a nucleus-containing epoxy resin and a dicyclopentadiene-modified phenol type epoxy resin, and these may be used alone or in combination of two or more.
The use amount of the epoxy resin represented by the general formula (1) is preferably 30% by weight or more, and particularly preferably 50% by weight or more in the total epoxy resin. Below the lower limit, the flame retardancy may be insufficient.
[0015]
The phenol resin represented by the general formula (2) used in the present invention has a hydrophobic and rigid biphenylene skeleton between phenolic hydroxyl groups, and a cured product of an epoxy resin composition using the phenol resin has a moisture absorption rate. The elastic modulus is low in a high temperature range exceeding Tg, and the adhesiveness with a semiconductor element, an organic substrate, and a metal substrate is excellent. Moreover, it has the characteristic that heat resistance is high although a crosslinking density is low.
N in General formula (2) is an average value, and is a positive number of 1 to 5, preferably a positive number of 1 to 3. When n is less than the lower limit, the curability of the epoxy resin composition may be lowered. When n exceeds the upper limit, the viscosity becomes high and the fluidity of the epoxy resin composition may be lowered. The phenol resin represented by General formula (2) may be used individually by 1 type, or may use 2 or more types together.
Among the phenol resins represented by the general formula (2), the phenol resin represented by the formula (6) is particularly preferable.
Embedded image
Figure 0004250987
Embedded image
Figure 0004250987
[0016]
You may use together other phenol resin in the range which does not impair the effect by the phenol resin represented by General formula (2) used by this invention. When used in combination, it is desirable to use monomers, oligomers, and polymers having a phenolic hydroxyl group in the molecule, and those having a low viscosity as much as possible. For example, phenol novolak resins, cresol novolak resins, phenol aralkyl resins (phenylene skeletons) Naphthol aralkyl resin, triphenol methane resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, and the like. These may be used alone or in combination of two or more.
The use amount of the phenol resin represented by the general formula (2) is preferably 30% by weight or more, particularly preferably 50% by weight or more in the total phenol resin. Below the lower limit, the flame retardancy may be insufficient.
The equivalent ratio of the epoxy groups of all epoxy resins to the phenolic hydroxyl groups of all phenol resins is preferably 0.5 to 2, and more preferably 0.7 to 1.5. If it is out of the above range, moisture resistance, curability and the like may be lowered.
[0017]
Although it does not specifically limit about the kind of inorganic filler used by this invention, For example, fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, aluminum hydroxide, magnesium hydroxide, zinc borate, Examples thereof include zinc molybdate, and fused spherical silica is particularly preferable. The shape of the fused spherical silica is preferably infinitely spherical to improve fluidity and has a broad particle size distribution.
[0018]
Metal hydroxide be added according to the inorganic filler and optionally, the content of total inorganic substances including inorganic ion exchangers, etc., is not particularly specified, 84% by weight or more total epoxy resin composition, 94 wt % Or less is preferable. If the lower limit is not reached, the low hygroscopicity of the cured product of the epoxy resin composition may not be obtained, and the solder crack resistance may be insufficient. If the upper limit is exceeded,
The fluidity of the epoxy resin composition may be reduced, resulting in defective filling during molding, or inconveniences such as deformation of the gold wire in the semiconductor device due to increased viscosity.
[0019]
The present invention achieves flame retardancy without using bromine-containing organic compounds and antimony compounds. The bromine atom and antimony atom in the total epoxy resin composition in the present invention are each 0.05% by weight or less. This means that for economic reasons, bromine atoms and antimony atoms are not added in addition to the trace amounts of components mixed in the raw materials and the manufacturing stage.
The inorganic filler used in the present invention is preferably mixed well in advance. In addition, if necessary, the inorganic filler may be pre-coated with a coupling agent, an epoxy resin or a phenol resin, and the coating method may be a method of removing the solvent after mixing with a solvent or directly. Examples of the method include adding to an inorganic filler and mixing using a mixer.
[0020]
The curing accelerator used in the present invention is not particularly limited as long as it accelerates the reaction between an epoxy group and a phenolic hydroxyl group. For example, 1,8-diazabicyclo (5,4,0) undecene-7 is used. Diazabicycloalkene and its derivatives, amine compounds such as tributylamine and benzyldimethylamine, imidazole compounds such as 2-methylimidazole, organic phosphines such as triphenylphosphine and methyldiphenylphosphine, tetraphenylphosphonium tetraphenylborate, Tetraphenylphosphonium ・ tetrabenzoic acid borate, tetraphenylphosphonium ・ tetranaphthoic acid borate, tetraphenylphosphonium ・ tetranaphthoyloxyborate, tetraphenylphosphonium ・ tetranaphthyloxy Tetra-substituted phosphonium tetra-substituted borate borate, and the like. These may be used in combination of two or more be used one kind alone.
[0021]
In the present invention, the silane coupling agent represented by the general formula (3) is essential. The silane coupling agent represented by the general formula (3) may be used alone or in combination of two or more. Moreover, although a compounding quantity is not specifically limited, 0.01 to 3 weight% is desirable in all the epoxy resin compositions, More preferably, it is 0.05 to 1 weight%. If the lower limit is not reached, sufficient fluidity may not be obtained, and if it exceeds the upper limit, curability may be lowered.
Embedded image
Figure 0004250987
[0022]
In the present invention, the silane coupling agent represented by the general formula (4) is essential. The silane coupling agent represented by General formula (4) may be used individually by 1 type, or may use 2 or more types together. Moreover, although a compounding quantity is not specifically limited, 0.01 to 3 weight% is desirable in all the epoxy resin compositions, More preferably, it is 0.05 to 1 weight%. If the lower limit is not reached, sufficient adhesion may not be obtained, and if it exceeds the upper limit, curability may be lowered.
Embedded image
Figure 0004250987
[0023]
In the present invention, it is essential to use the silane coupling agent represented by the general formula (3) and the silane coupling agent represented by the general formula (4) in combination, The fluidity and solder crack resistance are not sufficient.
[0024]
If necessary, the epoxy resin composition of the present invention may be an aminosilane other than that represented by the general formula (3), an epoxysilane other than that represented by the general formula (4), a mercaptosilane, an alkylsilane, a ureidosilane, Silane coupling agents such as vinyl silane, titanate coupling agents, aluminum coupling agents, coupling agents such as aluminum / zirconium coupling agents, colorants such as carbon black, mold release agents such as natural wax and synthetic wax, and A low stress additive such as rubber may be appropriately blended.
[0025]
The epoxy resin composition of the present invention can be obtained by mixing the raw materials sufficiently uniformly using a mixer or the like, then melt-kneading with a hot roll or a kneader, cooling and pulverizing.
The epoxy resin composition of the present invention is used to encapsulate various electronic components such as semiconductor elements, and to manufacture semiconductor devices by conventional molding methods such as transfer molding, compression molding, and injection molding. do it.
[0026]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.
In addition, it shows below about the coupling agent and compound which were used by the Example and the comparative example.
Coupling agent 1: coupling agent represented by formula (7) (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)
Embedded image
Figure 0004250987
[0027]
Coupling agent 2: Coupling agent represented by formula (8) (X12-806, manufactured by Shin-Etsu Chemical Co., Ltd.)
Embedded image
Figure 0004250987
[0028]
Coupling agent 3: Coupling agent represented by formula (9) (manufactured by Nippon Unicar Co., Ltd., AZ-6137)
Embedded image
Figure 0004250987
[0029]
Coupling agent 4: Coupling agent represented by the formula (10) (Nippon Unicar Co., Ltd., prototype)
Embedded image
Figure 0004250987
[0030]
Coupling agent 5: Coupling agent represented by formula (11) (manufactured by Nippon Unicar Co., Ltd., A-187)
Embedded image
Figure 0004250987
[0031]
Coupling agent 6: Coupling agent represented by formula (12) (manufactured by Nippon Unicar Co., Ltd., A-186)
Embedded image
Figure 0004250987
[0032]
Example 1
Epoxy resin 1: epoxy resin represented by formula (5) (Nippon Kayaku Co., Ltd., NC3000P, softening point 58 ° C., epoxy equivalent 273, hereinafter referred to as E-1)
65 parts by weight
Figure 0004250987
[0033]
Phenol resin 2: phenol resin represented by formula (6) (Maywa Kasei Co., Ltd., MEH-7851SS, softening point 107 ° C., hydroxyl equivalent 204, hereinafter referred to as H-1) 47 parts by weight
Figure 0004250987
[0034]
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 5 parts by weight fused spherical silica (average particle size 21 μm) 870 parts by weight coupling agent 1 3 parts by weight coupling agent 3 2 parts by weight Carbon black 3 parts by weight Carnauba wax 5 parts by weight were mixed with a mixer, kneaded at 95 ° C. for 8 minutes using a hot roll, cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0035]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Adhesion: Using a transfer molding machine, a 2 mm x 2 mm x 2 mm adhesion strength test piece was molded on a chip surface-coated with polyimide under conditions of a mold temperature of 175 ° C, an injection pressure of 9.8 MPa, and a curing time of 120 seconds. did. Thereafter, the shear strength between the cured product of the epoxy resin composition and the frame was measured using an automatic shear strength measuring apparatus (manufactured by DAGE, PC2400). The unit is N / mm 2 .
Solder crack resistance: 80 pQFP (copper frame, 6.0 mm × 6.0 mm chip surface-coated with polyimide) at a molding temperature of 175 ° C., a pressure of 8.3 MPa, and a curing time of 120 seconds using a low-pressure transfer molding machine. After forming and heat-treating at 175 ° C. for 8 hours as an afterbake, a humidification treatment was performed at 85 ° C. and a relative humidity of 85% for 120 hours, followed by an IR reflow treatment at 260 ° C. Peeling and cracks inside the package were confirmed with an ultrasonic flaw detector. The number of defective packages among the 10 packages is shown.
Flame retardancy: Using a transfer molding machine, a molded product having a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 120 seconds, a length of 127 mm, a width of 12.7 mm, and a thickness of 1.6 mm is molded. After curing as a cure at 175 ° C. for 8 hours, the obtained molded product was humidified for 48 hours in an environment of 23 ° C. and a relative humidity of 50%, and a flame retardancy test was performed according to UL-94.
[0036]
Examples 2-6, Comparative Examples 1-7
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
The raw materials used other than Example 1 are shown below.
Epoxy resin 2: Epoxy resin mainly composed of formula (13) (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000, epoxy equivalent 190 g / eq, melting point 105 ° C., hereinafter referred to as E-2)
Embedded image
Figure 0004250987
[0037]
Phenol resin 2: Phenol resin represented by formula (14) (Mitsui Chemicals, XLC-LL, hydroxyl group equivalent 165 g / eq, softening point 79 ° C., hereinafter referred to as H-2)
Embedded image
Figure 0004250987
[0038]
[Table 1]
Figure 0004250987
When Example 1 is compared with Comparative Examples 1 and 2, both the fluidity and the adhesion are greater when the coupling agents 1 and 3 are used in combination than when used alone. The effect is peculiar that it does not appear when the coupling agents 3 and 5 are used together as in the comparative example 3 and does not appear when other resins are used as in the comparative example 5.
[0039]
【The invention's effect】
According to the present invention, an epoxy resin composition having good flame retardancy without using a bromine-containing organic compound or antimony compound and having good fluidity and good adhesion to a substrate is obtained. The semiconductor device using is excellent in solder crack resistance.

Claims (2)

(A)一般式(1)で表されるエポキシ樹脂、(B)一般式(2)で表されるフェノール樹脂、(C)硬化促進剤、(D)無機充填材、(E)一般式(3)で表されるシランカップリング剤、及び(F)一般式(4)で表されるシランカップリング剤を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0004250987
(R1、R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数。)
Figure 0004250987
(R1、R2は水素又は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数。)
Figure 0004250987
(R下記式
Figure 0004250987
から選ばれた有機基。R、R、Rは炭素数1〜12の炭化水素基。nは1〜3の整数。)
Figure 0004250987
(Epは下記式
Figure 0004250987
から選ばれたエポキシ基を含有する有機基。R、R、Rは炭素数1〜12の炭化水素基。)
(A) epoxy resin represented by general formula (1), (B) phenol resin represented by general formula (2), (C) curing accelerator, (D) inorganic filler, (E) general formula ( 3. An epoxy resin composition for encapsulating a semiconductor, comprising as essential components a silane coupling agent represented by 3) and a silane coupling agent represented by (F) general formula (4).
Figure 0004250987
(R1 and R2 are hydrogen or an alkyl group having 1 to 4 carbon atoms and may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, A positive number of 5.
Figure 0004250987
(R1 and R2 are hydrogen or an alkyl group having 1 to 4 carbon atoms and may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, A positive number of 5.
Figure 0004250987
(R 1 is represented by the following formula
Figure 0004250987
Organic group selected from R 2 , R 3 and R 4 are hydrocarbon groups having 1 to 12 carbon atoms. n is an integer of 1 to 3. )
Figure 0004250987
(Ep is the following formula
Figure 0004250987
Organic group containing an epoxy group selected from R 5 , R 6 and R 7 are hydrocarbon groups having 1 to 12 carbon atoms. )
請求項1に記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition for semiconductor sealing according to claim 1.
JP2003083939A 2003-03-25 2003-03-25 Epoxy resin composition and semiconductor device Expired - Fee Related JP4250987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083939A JP4250987B2 (en) 2003-03-25 2003-03-25 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083939A JP4250987B2 (en) 2003-03-25 2003-03-25 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004292514A JP2004292514A (en) 2004-10-21
JP4250987B2 true JP4250987B2 (en) 2009-04-08

Family

ID=33399230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083939A Expired - Fee Related JP4250987B2 (en) 2003-03-25 2003-03-25 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4250987B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225464A (en) * 2005-02-16 2006-08-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4736432B2 (en) * 2005-01-07 2011-07-27 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
CN102627832B (en) 2004-11-30 2017-04-26 住友电木株式会社 Epoxy resin composition and semiconductor device
KR101090608B1 (en) * 2005-01-28 2011-12-08 스미토모 베이클라이트 가부시키가이샤 Epoxy resin composition for encapsulating semiconductor chip and semiconductor device
JP2006241411A (en) * 2005-03-07 2006-09-14 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and its manufacturing method, and semiconductor using the same
CN102612743B (en) * 2009-11-19 2016-08-10 住友电木株式会社 Semiconductor device
CN103517948A (en) * 2011-05-13 2014-01-15 日立化成株式会社 Epoxy resin molding material for encapsulation and electronic component device
JP6741988B2 (en) * 2016-07-04 2020-08-19 パナソニックIpマネジメント株式会社 Encapsulating epoxy resin composition, method for producing encapsulating epoxy resin composition, cured product of encapsulating epoxy resin composition, and semiconductor device

Also Published As

Publication number Publication date
JP2004292514A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP5119798B2 (en) Epoxy resin composition and semiconductor device
JP4736432B2 (en) Epoxy resin composition and semiconductor device
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JPH06102715B2 (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4561227B2 (en) Semiconductor sealing resin composition and semiconductor device
JP4691886B2 (en) Epoxy resin composition and semiconductor device
JP5153050B2 (en) Epoxy resin composition and semiconductor device
JP4539118B2 (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP4765294B2 (en) Semiconductor device
US20060154079A1 (en) Epoxy resin composition and semiconductor device
JP2006143784A (en) Epoxy resin composition and semiconductor device
JP2005314566A (en) Epoxy resin composition and semiconductor device
JP2862777B2 (en) Epoxy resin composition
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP4254265B2 (en) Epoxy resin composition and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JPH0625385A (en) Epoxy resin composition and semiconductor device
JP2005132887A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Ref document number: 4250987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees