JP5142427B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP5142427B2
JP5142427B2 JP2001158415A JP2001158415A JP5142427B2 JP 5142427 B2 JP5142427 B2 JP 5142427B2 JP 2001158415 A JP2001158415 A JP 2001158415A JP 2001158415 A JP2001158415 A JP 2001158415A JP 5142427 B2 JP5142427 B2 JP 5142427B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
formula
represented
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001158415A
Other languages
Japanese (ja)
Other versions
JP2002348356A (en
Inventor
典久 星加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001158415A priority Critical patent/JP5142427B2/en
Publication of JP2002348356A publication Critical patent/JP2002348356A/en
Application granted granted Critical
Publication of JP5142427B2 publication Critical patent/JP5142427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、常温保管性、成形性に優れる半導体封止用エポキシ樹脂組成物及び難燃性、耐半田ストレス性に優れる半導体装置に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、集積回路等の半導体装置は、主にエポキシ樹脂組成物で封止されているが、これらのエポキシ樹脂組成物中には、難燃性を付与するために、通常臭素含有有機化合物及び三酸化アンチモン、四酸化アンチモン等のアンチモン化合物が配合されている。ところが、環境・衛生の点から臭素含有有機化合物及びアンチモン化合物を使用しないで、難燃性に優れたエポキシ樹脂組成物の開発が望まれている。又半導体装置をプリント回路基板への実装時において、鉛を含有する半田(スズ−鉛合金)が使用されており、同様に環境・衛生の点から鉛を含有する半田(スズ−鉛合金)を使用しないことが望まれている。鉛を含有する半田(スズ−鉛合金)の融点は、183℃で、実装時の半田処理の温度は220〜240℃である。これに対し、スズ−銀合金に代表される鉛を含有しない半田では、融点が高く、半田処理時の温度が260℃程度となるため、より耐半田ストレス性に優れたエポキシ樹脂組成物の開発が望まれている。又半田処理時において半導体装置は高温にさらされ、吸湿した水分が爆発的に気化する際の応力により、半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面で剥離が生じ、更にはこの剥離に起因して半導体装置にクラックが発生し信頼性が著しく低下するため、半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との密着性に優れたエポキシ樹脂組成物が求められている。
【0003】
そこで難燃性や耐半田ストレス性を向上させるためには無機充填材を高充填化し、樹脂成分の含有量を減少させる必要があり、この手法の一つとして低粘度の結晶性エポキシ樹脂を用いる方法がある。現在、難燃剤を使用しないで低粘度の結晶性エポキシ樹脂を用い無機充填材を高充填化したエポキシ樹脂組成物或いは難燃性の高い樹脂を用いたエポキシ樹脂組成物や、各種の難燃剤を用いたエポキシ樹脂組成物が提案されているが、エポキシ樹脂組成物として良好な成形性或いは耐半田ストレス性を完全に満足させるものは、未だ提案されていない。更に半導体装置をエポキシ樹脂組成物で封止する工程において、生産効率アップの手段の一つとして成形時間を短くすることが求められている。このためには成形時の速硬化性が要求される。従来から用いられている硬化促進剤では、成形時の速硬化性を達成するのに十分な量を添加すると、エポキシ樹脂組成物の常温での保存性が極端に低下するという問題点がある。
【0004】
【発明が解決しようとする課題】
本発明は、半導体素子やリードフレームとの密着性、常温保管性、成形性に優れたエポキシ樹脂組成物及び耐半田ストレス性と、臭素含有有機化合物、アンチモン化合物を含まなくとも難燃性に優れた半導体装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、
[1](A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)全無機物、(D)式(3)及び/又は式(7)で示される硬化促進剤を必須成分とし、全無機物が全エポキシ樹脂組成物中87〜94重量%であることを特徴とする半導体封止用エポキシ樹脂組成物、
[2](A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)全無機物、(D)式(3)及び/又は式(7)で示される硬化促進剤を必須成分とし、全無機物が全エポキシ樹脂組成物中87〜94重量%であり、臭素含有有機化合物及びアンチモン化合物が、それぞれの難燃剤成分毎に1000ppm以下であることを特徴とする半導体封止用エポキシ樹脂組成物、
【0006】
【化7】

Figure 0005142427
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
【0007】
【化8】
Figure 0005142427
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
【0008】
【化9】
Figure 0005142427
【0009】
【化13】
Figure 0005142427
【0010】
[3]一般式(1)で示されるエポキシ樹脂が、式(5)で示されるエポキシ樹脂である第[1]項又は[2]項記載の半導体封止用エポキシ樹脂組成物、
【0011】
【化11】
Figure 0005142427
(nは平均値で、1〜5の正数)
【0012】
[4]一般式(2)で示されるフェノール樹脂が、式(6)で示されるフェノール樹脂である第[1]項又は[2]項記載の半導体封止用エポキシ樹脂組成物、
【0013】
【化12】
Figure 0005142427
(nは平均値で、1〜5の正数)
【0014】
[5]第[1]〜[4]項のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0015】
【発明の実施の様態】
本発明で用いられる一般式(1)で示されるエポキシ樹脂は、エポキシ基間に疎水性で剛直なジフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は吸湿率が低く、ガラス転移温度(以下、Tgという)を越えた高温域での弾性率が低く、半導体素子やリードフレームとの密着性に優れる。又架橋密度が低い割には耐熱性が高いという特徴を有している。従って、このエポキシ樹脂を用いた樹脂組成物で封止された半導体装置は、実装時の半田処理下でも高い信頼性を得ることができる。
【0016】
一般式(1)中のnは平均値で、好ましくは1〜5の正数、特に好ましくは1〜3である。n=1未満だとエポキシ樹脂の硬化性が低下するので好ましくない。n=5を越えると、樹脂粘度が高くなり樹脂組成物の流動性が低下するので好ましくない。
一般式(1)で示されるエポキシ樹脂の使用量は、これを調節することにより、耐半田ストレス性を最大限に引き出すことができる。耐半田ストレス性の効果を引き出すためには、一般式(1)で示されるエポキシ樹脂を全エポキシ樹脂中30重量%以上、好ましくは50重量%以上含むものが望ましい。30重量%未満であると、耐半田ストレス性が不充分となるおそれがある。
一般式(1)で示されるエポキシ樹脂の本来の特性を損なわない範囲で他のエポキシ樹脂と併用してもよい。併用する場合は、分子中にエポキシ基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられる。しかし、他の低粘度のエポキシ樹脂を併用すると、成形性が劣るおそれがある。そこで後述する本発明の硬化促進剤を用いることにより、成形性を改善することができる。
【0017】
本発明で用いられる一般式(2)で示されるフェノール樹脂は、フェノール基間に疎水性で剛直なジフェニレン骨格を有しており、これを用いた樹脂組成物の硬化物は吸湿率が低く、Tgを越えた高温域での弾性率が低く、半導体素子やリードフレームとの密着性に優れる。又架橋密度が低い割には耐熱性が高いという特徴を有している。従って、このフェノール樹脂を用いた樹脂組成で、封止された半導体装置は、実装時の半田処理下でも高い信頼性を得ることができる。
【0018】
一般式(2)中のnは平均値で、好ましくは1〜5の正数、特に好ましくは1〜3である。n=1未満だとエポキシ樹脂の硬化性が低下するので好ましくない。n=5を越えると、樹脂粘度が高くなり樹脂組成物の流動性が低下するので好ましくない。一般式(2)で示されフェノール樹脂の使用量は、これを調節することにより、耐半田ストレス性を最大限に引き出すことができる。耐半田ストレス性の効果を引き出すためには、一般式(2)で示されるフェノール樹脂を、全フェノール樹脂中30重量%以上、好ましくは50重量%以上含むものが望ましい。30重量%未満であると、耐半田ストレス性が不充分となるおそれがある。
本発明に用いられる一般式(2)で示されるフェノール樹脂の特性を損なわない範囲で他のフェノール樹脂と併用してもよい。併用する場合は、分子中にフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般で、極力低粘度のものを使用することが望ましく、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられる。
本発明に用いられる全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基の当量比は、好ましくは0.5〜2であり、特に0.7〜1.5がより好ましい。0.5〜2の範囲を外れると、耐湿性、硬化性等が低下するので好ましくない。
【0019】
本発明で用いる全無機物とは、一般に封止材料に用いられている無機充填材と必要により添加される難燃剤としてのアンチモン化合物、無機イオン交換体等の無機物とを加算したものである。本発明で用いる無機充填材の種類については特に制限はなく、例えば溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカが好ましい。溶融球状シリカの形状としては、流動性改善のために限りなく真球状であり、かつ粒度分布がブロードであることが好ましい。
全無機物の含有量としては、全エポキシ樹脂組成物中87〜94重量%が好ましい。87重量%未満だと、エポキシ樹脂組成物の硬化物の低吸湿性が得られず耐半田ストレス性が不十分となり、臭素化オルソクレゾールノボラック型エポキシ樹脂、臭素化ビスA型エポキシ樹脂等の臭素含有有機化合物及び三酸化アンチモン、四酸化アンチモン等のアンチモン化合物等の難燃剤を添加しないと難燃性が不足し好ましくない。94重量%を越えると、樹脂組成物の流動性が低下し、成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じるおそれがあるので好ましくない。
【0020】
本発明において、臭素含有有機化合物及びアンチモン化合物の難燃剤はそれぞれの難燃剤成分毎に1000ppm以下とする。これは意図して難燃剤を添加しない場合であっても、原料や製造段階において混入するレベルを0ppmにすることは経済上の理由から困難であるため現実的な指標として定めるもので、当然0ppmであっても0ppbであっても本発明の機能は有効である。
本発明に用いる無機充填材は、予め十分に混合しておくことが好ましい。又必要に応じて無機充填材をカップリング剤やエポキシ樹脂或いはフェノール樹脂で予め処理して用いてもよく、処理の方法としては、溶剤を用いて混合した後に溶媒を除去する方法や直接無機充填材に添加し、混合機を用いて処理する方法等がある。
【0021】
本発明に用いる式(3)で示される硬化促進剤は、常温では触媒活性を示さないのでエポキシ樹脂組成物の硬化反応が進むことがなく、成形時の高温において触媒活性が発現し、かつ一旦発現すると従来の硬化促進剤よりも強い触媒活性を示し、エポキシ樹脂組成物を高度に硬化させる特徴を有している。本発明に用いる式(7)で示される硬化促進剤は、ホスホニウムボレートからなる。特にテトラフェニルホスホニウム基を有するホスホニウムボレートは、エポキシ樹脂、フェノール樹脂との相溶性が良好であり好適に使用することができる。
【0022】
本発明で用いられる式(7)で示され硬化促進剤は、エポキシ樹脂組成物に配合された場合、常温では触媒活性を示さないのでエポキシ樹脂の硬化反応が進むことがなく、成形時の高温において触媒活性が発現し、かつ一旦発現すると従来の硬化促進剤よりも強い触媒活性を示してエポキシ樹脂組成物を高度に硬化させる。式(3)及び/又は式(7)で示される硬化促進剤の配合量は、全エポキシ樹脂組成物中0.1〜0.5重量%が好ましい。
【0023】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他、必要に応じて酸化ビスマス水和物等の無機イオン交換体、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を適宜配合しても差し支えない。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分、及びその他の添加剤等をミキサーを用いて常温混合し、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0024】
【実施例】
以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。配合割合は重量部とする。
実施例1
下記組成物
式(5)で示されるエポキシ樹脂(軟化点60℃、エポキシ当量275g/eq)
4.78重量部
式(6)で示されるフェノール樹脂(軟化点65℃、水酸基当量200g/eq)
3.52重量部
式(7)で示される硬化促進剤 0.30重量部
【0025】
【化13】
Figure 0005142427
【0026】
溶融球状シリカ 90.00重量部
カルナバワックス 0.30重量部
無機イオン交換体 0.50重量部
γ−グリシドキシプロピルトリメトキシシラン 0.30重量部
カーボンブラック 0.30重量部
を常温でミキサーを用いて混合し、70〜120℃で2軸ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0027】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力7.4MPa、硬化時間2分で測定した。単位はcm。
硬化トルク:キュラストメータ((株)オリエンテック・製、JSRキュラストメータIVPS型)を用い、金型温度175℃、加熱開始90秒後のトルクを求めた。キュラストメータにおけるトルクは硬化性のパラメータであり、数値の大きい方が硬化性が良好である。単位はN・m。
25℃保存性:エポキシ樹脂組成物を25℃にて3日間保存した後スパイラルフローを測定し、エポキシ樹脂組成物の調整直後のスパイラルフローに対する百分率として表す。
難燃性:エポキシ樹脂組成物をタブレット化し、低圧トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間2分で長さ127mm、幅12.7mm、厚さ1.6mmの成形品を成形し、UL−94に従って難燃性試験を行った。
耐湿性:エポキシ樹脂組成物をタブレット化し、低圧トランスファー成形機を用いて、金型温度180℃、注入圧力9.8MPa、硬化時間1分で144pLQFP(パッケージサイズ:20×20mm、厚さ1.4mm、シリコンチップサイズ:9.0×9.0mm、シリコンチップのパッシベーション:SiN、リードフレーム:銅フラッシュメッキ付きの銅)を成形した。ポストキュアとして175℃で、8時間処理したパッケージ8個を、85℃、相対湿度60%の環境下で168時間処理した後、IRリフロー処理(260℃)を行った。処理後の内部の剥離の有無を超音波探傷機で観察し、内部素子との剥離があるものを×、ないものを○と判定した。
耐半田ストレス性:エポキシ樹脂組成物をタブレット化し、低圧トランスファー成形機を用いて金型温度180℃、注入圧力9.8MPa、硬化時間1分の条件で144pLQFP(パッケージサイズ:20×20mm、厚さ1.4mm、シリコンチップサイズ:9.0×9.0mm、シリコンチップのパッシベーション:SiN、リードフレーム:銅フラッシュメッキ付きの銅)を成形した。ポストキュアとして175℃で、8時間処理したパッケージ8個を、85℃、相対湿度60%の環境下で168時間処理した後、IRリフロー処理(260℃)を行った。処理後の内部のクラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/8と表示する。
評価結果を表1に示す。
【0028】
実施例2、3、比較例1〜5
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。評価結果を表1に示す。
実施例2、3、比較例2、4、5では式(3)の硬化促進剤を用いた。
比較例3のDBUは、1,8−ジアザビシクロ(5,4,0)ウンデセン−7である。比較例4、5ではフェノールアラルキル樹脂(三井化学(株)・製、XL−225、軟化点75℃、水酸基当量174g/eq)を用いた。
【0029】
【表1】
Figure 0005142427
【0030】
【発明の効果】
本発明に従うと、常温においては硬化が進むことなく長期間にわたって安定に保存することが可能であり、成形時に加熱された際に急激に硬化反応が発現して良好な成形性、密着性を示すエポキシ樹脂組成物が得られ、これを用いた半導体装置は耐半田ストレス性、臭素含有有機化合物、アンチモン化合物を含まなくとも難燃性に優れている。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in room temperature storage and moldability, and a semiconductor device excellent in flame retardancy and solder stress resistance.
[0002]
[Prior art]
Conventionally, semiconductor devices such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition, but these epoxy resin compositions usually contain bromine in order to impart flame retardancy. Organic compounds and antimony compounds such as antimony trioxide and antimony tetraoxide are blended. However, development of an epoxy resin composition excellent in flame retardancy is desired without using bromine-containing organic compounds and antimony compounds from the viewpoint of environment and hygiene. Solder containing lead (tin-lead alloy) is used when mounting semiconductor devices on printed circuit boards. Similarly, solder containing tin (tin-lead alloy) is used from the viewpoint of environment and hygiene. It is desirable not to use it. The melting point of the lead-containing solder (tin-lead alloy) is 183 ° C., and the soldering temperature during mounting is 220-240 ° C. In contrast, solder containing no lead, such as tin-silver alloy, has a high melting point, and the temperature during soldering is about 260 ° C. Therefore, development of an epoxy resin composition with better resistance to solder stress Is desired. Also, during the soldering process, the semiconductor device is exposed to a high temperature, and the stress generated when the absorbed moisture vaporizes explosively causes peeling at the interface between the semiconductor element and the lead frame and the cured product of the epoxy resin composition, and further, Due to this peeling, a crack is generated in the semiconductor device and the reliability is remarkably lowered. Therefore, an epoxy resin composition excellent in adhesion between a semiconductor element or a lead frame and a cured product of the epoxy resin composition is required. .
[0003]
Therefore, in order to improve flame retardancy and solder stress resistance, it is necessary to increase the filling of the inorganic filler and reduce the content of the resin component. One of these methods is to use a low-viscosity crystalline epoxy resin. There is a way. Currently, an epoxy resin composition using a low-viscosity crystalline epoxy resin without using a flame retardant and highly filling an inorganic filler, an epoxy resin composition using a highly flame retardant resin, and various flame retardants The epoxy resin composition used has been proposed, but no epoxy resin composition that satisfies satisfactory moldability or solder stress resistance has been proposed yet. Furthermore, in the process of sealing the semiconductor device with the epoxy resin composition, it is required to shorten the molding time as one of the means for increasing the production efficiency. For this purpose, fast curability during molding is required. Conventionally used curing accelerators have a problem that if an amount sufficient to achieve rapid curability at the time of molding is added, the storability of the epoxy resin composition at room temperature is extremely lowered.
[0004]
[Problems to be solved by the invention]
The present invention has excellent epoxy resin composition and solder stress resistance with excellent adhesion to semiconductor elements and lead frames, room temperature storage and moldability, and excellent flame retardancy even without containing bromine-containing organic compounds and antimony compounds. A semiconductor device is provided.
[0005]
[Means for Solving the Problems]
The present invention
[1] (A) Epoxy resin represented by general formula (1), (B) phenol resin represented by general formula (2), (C) total inorganic substance, (D) formula (3) and / or formula (7) curing accelerator as essential components, an epoxy resin composition for semiconductor encapsulation, wherein the total inorganic material is 87-94 wt% total epoxy resin composition represented by),
[2] (A) Epoxy resin represented by general formula (1), (B) Phenol resin represented by general formula (2), (C) Total inorganic substance, (D) Formula (3) and / or formula (7) ) As an essential component, the total inorganic content is 87 to 94% by weight in the total epoxy resin composition, and the bromine-containing organic compound and the antimony compound are 1000 ppm or less for each flame retardant component. An epoxy resin composition for semiconductor encapsulation, characterized by
[0006]
[Chemical 7]
Figure 0005142427
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
[0007]
[Chemical 8]
Figure 0005142427
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
[0008]
[Chemical 9]
Figure 0005142427
[0009]
Embedded image
Figure 0005142427
[0010]
[3] The epoxy resin composition for semiconductor encapsulation according to item [1] or [2], wherein the epoxy resin represented by the general formula (1) is an epoxy resin represented by the formula (5),
[0011]
Embedded image
Figure 0005142427
(N is an average value, a positive number from 1 to 5)
[0012]
[4] The epoxy resin composition for semiconductor encapsulation according to item [1] or [2], wherein the phenol resin represented by the general formula (2) is a phenol resin represented by the formula (6);
[0013]
Embedded image
Figure 0005142427
(N is an average value, a positive number from 1 to 5)
[0014]
[5] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to any one of [1] to [4].
It is.
[0015]
[Mode for Carrying Out the Invention]
The epoxy resin represented by the general formula (1) used in the present invention has a hydrophobic and rigid diphenylene skeleton between epoxy groups, and a cured product of an epoxy resin composition using the epoxy resin has a low moisture absorption rate. The elastic modulus in a high temperature range exceeding the glass transition temperature (hereinafter referred to as Tg) is low, and the adhesiveness with a semiconductor element or a lead frame is excellent. In addition, the heat resistance is high for a low crosslink density. Therefore, a semiconductor device sealed with a resin composition using this epoxy resin can obtain high reliability even under solder processing during mounting.
[0016]
N in the general formula (1) is an average value, preferably a positive number of 1 to 5, particularly preferably 1 to 3. When n is less than 1, the curability of the epoxy resin is lowered, which is not preferable. When n = 5 is exceeded, the resin viscosity increases and the fluidity of the resin composition decreases, which is not preferable.
By adjusting the amount of the epoxy resin represented by the general formula (1), solder stress resistance can be maximized. In order to bring out the effect of resistance to solder stress, it is desirable that the epoxy resin represented by the general formula (1) is contained in the total epoxy resin by 30% by weight or more, preferably 50% by weight or more. If it is less than 30% by weight, solder stress resistance may be insufficient.
You may use together with another epoxy resin in the range which does not impair the original characteristic of the epoxy resin shown by General formula (1). When using in combination, it is desirable to use monomers, oligomers, and polymers having an epoxy group in the molecule, and those having a low viscosity as much as possible. For example, phenol novolac type epoxy resins, cresol novolac type epoxy resins, biphenyl type epoxy resins, Bisphenol-type epoxy resin, stilbene-type epoxy resin, triphenolmethane-type epoxy resin, naphthol-type epoxy resin, naphthalene-type epoxy resin, alkyl-modified triphenolmethane-type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol-type epoxy resin Etc. However, when other low-viscosity epoxy resins are used in combination, moldability may be deteriorated. Therefore, the moldability can be improved by using the curing accelerator of the present invention described later.
[0017]
The phenol resin represented by the general formula (2) used in the present invention has a hydrophobic and rigid diphenylene skeleton between phenol groups, and a cured product of a resin composition using the phenol resin has a low moisture absorption rate. The elastic modulus in a high temperature range exceeding Tg is low, and the adhesiveness with a semiconductor element or a lead frame is excellent. In addition, the heat resistance is high for a low crosslink density. Thus, a resin composition using the phenolic resin, sealed semiconductor device, it is possible to obtain high reliability in soldering of a mounting.
[0018]
N in General formula (2) is an average value, Preferably it is a positive number of 1-5, Most preferably, it is 1-3. When n is less than 1, the curability of the epoxy resin is lowered, which is not preferable. When n = 5 is exceeded, the resin viscosity increases and the fluidity of the resin composition decreases, which is not preferable. By adjusting the amount of the phenolic resin represented by the general formula (2), solder stress resistance can be maximized. In order to bring out the effect of resistance to soldering stress, it is desirable that the phenol resin represented by the general formula (2) is 30% by weight or more, preferably 50% by weight or more in the total phenol resin. If it is less than 30% by weight, solder stress resistance may be insufficient.
You may use together with another phenol resin in the range which does not impair the characteristic of the phenol resin shown by General formula (2) used for this invention. When used in combination, it is desirable to use monomers, oligomers, and polymers having a phenolic hydroxyl group in the molecule, and those having a low viscosity as much as possible. For example, phenol novolak resin, cresol novolak resin, naphthol aralkyl resin, triphenolmethane resin Terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, and the like.
The equivalent ratio of epoxy groups of all epoxy resins and phenolic hydroxyl groups of all phenol resins used in the present invention is preferably 0.5 to 2, and more preferably 0.7 to 1.5. If it is out of the range of 0.5 to 2, moisture resistance, curability and the like are lowered, which is not preferable.
[0019]
The total inorganic material used in the present invention is obtained by adding an inorganic filler generally used for a sealing material and an inorganic material such as an antimony compound or an inorganic ion exchanger as a flame retardant added as necessary. The type of inorganic filler used in the present invention is not particularly limited, and examples thereof include fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, aluminum hydroxide, and the like, particularly fused spherical silica. Is preferred. The shape of the fused spherical silica is preferably infinitely spherical to improve fluidity and has a broad particle size distribution.
The total inorganic content is preferably 87 to 94% by weight in the total epoxy resin composition. If it is less than 87% by weight, the cured product of the epoxy resin composition cannot have low hygroscopicity, resulting in insufficient solder stress resistance, bromine such as brominated orthocresol novolac type epoxy resin, brominated bis A type epoxy resin, etc. Unless a flame retardant such as an organic compound and antimony compounds such as antimony trioxide and antimony tetroxide is added, the flame retardancy is insufficient, which is not preferable. If it exceeds 94% by weight, the fluidity of the resin composition is lowered, and there is a possibility of inadequate filling at the time of molding or inconvenience such as deformation of the gold wire in the semiconductor device due to high viscosity, which is not preferable.
[0020]
In this invention, the flame retardant of a bromine containing organic compound and an antimony compound shall be 1000 ppm or less for each flame retardant component. Even if no flame retardant is intentionally added, it is determined as a realistic index because it is difficult for economic reasons to set the mixing level in the raw material and the production stage. Even if it is 0 ppb, the function of the present invention is effective.
The inorganic filler used in the present invention is preferably mixed well in advance. If necessary, an inorganic filler may be used after being treated with a coupling agent, an epoxy resin or a phenol resin in advance. As a treatment method, a method of removing the solvent after mixing with a solvent or direct inorganic filling may be used. There is a method of adding to a material and processing using a mixer.
[0021]
Since the curing accelerator represented by the formula (3) used in the present invention does not show catalytic activity at room temperature, the curing reaction of the epoxy resin composition does not proceed, and catalytic activity is manifested at a high temperature during molding. When expressed, it exhibits a stronger catalytic activity than conventional curing accelerators and has a characteristic of highly curing the epoxy resin composition. The curing accelerator represented by the formula (7) used in the present invention is composed of phosphonium borate . In particular , a phosphonium borate having a tetraphenylphosphonium group has good compatibility with an epoxy resin and a phenol resin, and can be suitably used.
[0022]
Curing accelerator Ru represented by formula used in the present invention (7), when incorporated in the epoxy resin composition, without curing reaction of the epoxy resin progresses does not exhibit catalytic activity at ambient temperature, during forming Catalytic activity develops at high temperatures, and once developed, it exhibits a stronger catalytic activity than conventional curing accelerators and highly cures the epoxy resin composition. As for the compounding quantity of the hardening accelerator shown by Formula (3) and / or Formula (7) , 0.1 to 0.5 weight% is preferable in all the epoxy resin compositions.
[0023]
The epoxy resin composition of the present invention includes components (A) to (D), an inorganic ion exchanger such as bismuth oxide hydrate as necessary, and a coupling agent such as γ-glycidoxypropyltrimethoxysilane. , Colorants such as carbon black and bengara, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, mold release agents such as higher fatty acids and their metal salts or paraffin, and various additives such as antioxidants May be blended appropriately.
In the epoxy resin composition of the present invention, the components (A) to (D) and other additives are mixed at room temperature using a mixer, melt-kneaded in a kneader such as a roll, a kneader, or an extruder, and then cooled. It is obtained by grinding.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The blending ratio is parts by weight.
Example 1
The following composition Epoxy resin represented by formula (5) (softening point 60 ° C., epoxy equivalent 275 g / eq)
4.78 parts by weight Phenol resin represented by formula (6) (softening point 65 ° C., hydroxyl group equivalent 200 g / eq)
3.52 parts by weight Curing accelerator represented by formula (7) 0.30 parts by weight
Embedded image
Figure 0005142427
[0026]
Fused spherical silica 90.00 parts by weight Carnauba wax 0.30 parts by weight Inorganic ion exchanger 0.50 parts by weight γ-glycidoxypropyltrimethoxysilane 0.30 parts by weight Carbon black 0.30 parts by weight at room temperature The mixture was kneaded using a biaxial roll at 70 to 120 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0027]
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, and a curing time of 2 minutes. The unit is cm.
Curing torque: Using a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter IVPS type), the mold temperature was 175 ° C., and the torque 90 seconds after the start of heating was determined. The torque in the curast meter is a curability parameter, and the larger the value, the better the curability. The unit is N · m.
Storage at 25 ° C .: After storing the epoxy resin composition at 25 ° C. for 3 days, the spiral flow was measured and expressed as a percentage of the spiral flow immediately after the adjustment of the epoxy resin composition.
Flame retardancy: The epoxy resin composition was tableted and using a low-pressure transfer molding machine, the mold temperature was 175 ° C., the injection pressure was 7.4 MPa, the curing time was 2 minutes, the length was 127 mm, the width was 12.7 mm, and the thickness was 1. A molded product of 6 mm was molded, and a flame retardancy test was performed according to UL-94.
Moisture resistance: The epoxy resin composition is tableted and using a low-pressure transfer molding machine, the mold temperature is 180 ° C., the injection pressure is 9.8 MPa, the curing time is 1 minute, and 144 pLQFP (package size: 20 × 20 mm, thickness 1.4 mm) Silicon chip size: 9.0 × 9.0 mm, silicon chip passivation: SiN, lead frame: copper with copper flash plating). Eight packages treated at 175 ° C. for 8 hours as post-cure were treated for 168 hours in an environment of 85 ° C. and a relative humidity of 60%, followed by IR reflow treatment (260 ° C.). The presence or absence of internal peeling after the treatment was observed with an ultrasonic flaw detector.
Resistance to solder stress: Tableted epoxy resin composition, 144 pLQFP (package size: 20 × 20 mm, thickness) under conditions of mold temperature of 180 ° C., injection pressure of 9.8 MPa, curing time of 1 minute using a low-pressure transfer molding machine 1.4 mm, silicon chip size: 9.0 × 9.0 mm, silicon chip passivation: SiN, lead frame: copper with copper flash plating). Eight packages treated at 175 ° C. for 8 hours as post-cure were treated for 168 hours in an environment of 85 ° C. and a relative humidity of 60%, followed by IR reflow treatment (260 ° C.). The presence or absence of internal cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 8 is displayed.
The evaluation results are shown in Table 1.
[0028]
Examples 2, 3 and Comparative Examples 1-5
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
In Examples 2 and 3, and Comparative Examples 2, 4, and 5, the curing accelerator of formula (3) was used.
The DBU of Comparative Example 3 is 1,8-diazabicyclo (5,4,0) undecene-7. In Comparative Examples 4 and 5, a phenol aralkyl resin (Mitsui Chemicals, Inc., XL-225, softening point 75 ° C., hydroxyl group equivalent 174 g / eq) was used.
[0029]
[Table 1]
Figure 0005142427
[0030]
【Effect of the invention】
According to the present invention, at room temperature, it is possible to stably store for a long time without proceeding with curing, and when it is heated at the time of molding, a curing reaction suddenly develops and exhibits good moldability and adhesion. An epoxy resin composition is obtained, and a semiconductor device using the epoxy resin composition is excellent in flame resistance even without solder stress resistance, bromine-containing organic compound and antimony compound.

Claims (5)

(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)全無機物、(D)式(3)及び/又は式(7)で示される硬化促進剤を必須成分とし、全無機物が全エポキシ樹脂組成物中87〜94重量%であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0005142427
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
Figure 0005142427
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
Figure 0005142427
Figure 0005142427
(A) epoxy resin represented by general formula (1), (B) phenol resin represented by general formula (2), (C) total inorganic substance, (D) represented by formula (3) and / or formula (7) An epoxy resin composition for encapsulating a semiconductor, wherein the curing accelerator is an essential component and the total inorganic content is 87 to 94% by weight in the total epoxy resin composition.
Figure 0005142427
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
Figure 0005142427
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
Figure 0005142427
Figure 0005142427
(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)全無機物、(D)式(3)及び/又は式(7)で示される硬化促進剤を必須成分とし、全無機物が全エポキシ樹脂組成物中87〜94重量%であり、臭素含有有機化合物及びアンチモン化合物が、それぞれの難燃剤成分毎に1000ppm以下であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0005142427
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
Figure 0005142427
(R1、R2は炭素数1〜4のアルキル基で、互いに同一でも異なっていてもよい。aは0〜3の整数、bは0〜4の整数。nは平均値で、1〜5の正数)
Figure 0005142427
Figure 0005142427
(A) epoxy resin represented by general formula (1), (B) phenol resin represented by general formula (2), (C) total inorganic substance, (D) represented by formula (3) and / or formula (7) The curing accelerator is an essential component, the total inorganic content is 87 to 94% by weight in the total epoxy resin composition, and the bromine-containing organic compound and the antimony compound are 1000 ppm or less for each flame retardant component. An epoxy resin composition for semiconductor encapsulation.
Figure 0005142427
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
Figure 0005142427
(R1 and R2 are alkyl groups having 1 to 4 carbon atoms, which may be the same or different. A is an integer of 0 to 3, b is an integer of 0 to 4. n is an average value, 1 to 5 positive number)
Figure 0005142427
Figure 0005142427
一般式(1)で示されるエポキシ樹脂が、式(5)で示されるエポキシ樹脂である請求項1又は2記載の半導体封止用エポキシ樹脂組成物。
Figure 0005142427
(nは平均値で、1〜5の正数)
The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the epoxy resin represented by the general formula (1) is an epoxy resin represented by the formula (5).
Figure 0005142427
(N is an average value, a positive number from 1 to 5)
一般式(2)で示されるフェノール樹脂が、式(6)で示されるフェノール樹脂である請求項1又は2記載の半導体封止用エポキシ樹脂組成物。
Figure 0005142427
(nは平均値で、1〜5の正数)
The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the phenol resin represented by the general formula (2) is a phenol resin represented by the formula (6).
Figure 0005142427
(N is an average value, a positive number from 1 to 5)
請求項1〜4のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition for semiconductor sealing according to claim 1.
JP2001158415A 2001-05-28 2001-05-28 Epoxy resin composition and semiconductor device Expired - Fee Related JP5142427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001158415A JP5142427B2 (en) 2001-05-28 2001-05-28 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001158415A JP5142427B2 (en) 2001-05-28 2001-05-28 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2002348356A JP2002348356A (en) 2002-12-04
JP5142427B2 true JP5142427B2 (en) 2013-02-13

Family

ID=19002146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001158415A Expired - Fee Related JP5142427B2 (en) 2001-05-28 2001-05-28 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5142427B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115098B2 (en) * 2007-08-24 2013-01-09 住友ベークライト株式会社 Resin composition and semiconductor device
JP5320714B2 (en) * 2007-09-27 2013-10-23 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389125B2 (en) * 1997-12-03 2003-03-24 住友ベークライト株式会社 Latent catalyst
JP3388538B2 (en) * 1998-06-29 2003-03-24 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3852540B2 (en) * 1998-07-02 2006-11-29 信越化学工業株式会社 Phosphonium borate compound, method for producing the same, curing catalyst for epoxy resin composition, and epoxy resin composition
JP2000212397A (en) * 1999-01-28 2000-08-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor apparatus
JP2001040180A (en) * 1999-05-26 2001-02-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2002348356A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP2004002574A (en) Epoxy resin composition and semiconductor device
JP4306329B2 (en) Epoxy resin composition and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2003292730A (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP5067994B2 (en) Epoxy resin composition and semiconductor device
JP2658752B2 (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4802421B2 (en) Epoxy resin composition and semiconductor device
JPH0625385A (en) Epoxy resin composition and semiconductor device
JP5191072B2 (en) Epoxy resin composition and semiconductor device
JP4660973B2 (en) Epoxy resin composition and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP2003277476A (en) Epoxy resin composition and semiconductor device
JP2001335621A (en) Epoxy resin composition and semiconductor device
JPH07126490A (en) Epoxy resin composition
JP2003064161A (en) Epoxy resin composition and semiconductor device
JP2004002495A (en) Epoxy resin composition and semiconductor device
JPH10298408A (en) Epoxy resin composition and semiconductor device sealed therewith
JP2003096159A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees