JP4306329B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4306329B2
JP4306329B2 JP2003153463A JP2003153463A JP4306329B2 JP 4306329 B2 JP4306329 B2 JP 4306329B2 JP 2003153463 A JP2003153463 A JP 2003153463A JP 2003153463 A JP2003153463 A JP 2003153463A JP 4306329 B2 JP4306329 B2 JP 4306329B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
represented
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003153463A
Other languages
Japanese (ja)
Other versions
JP2004352894A (en
Inventor
誠 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003153463A priority Critical patent/JP4306329B2/en
Publication of JP2004352894A publication Critical patent/JP2004352894A/en
Application granted granted Critical
Publication of JP4306329B2 publication Critical patent/JP4306329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用エポキシ樹脂組成物及び半導体装置に関するものである。
【0002】
【従来の技術】
従来からダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物を用いて封止されている。特に集積回路では、エポキシ樹脂、フェノール樹脂、及び溶融シリカ、結晶シリカ等の無機充填材を配合した耐熱性、耐湿性に優れたエポキシ樹脂組成物が用いられている。
ところが近年、電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、半導体素子の封止に用いられているエポキシ樹脂組成物への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田リフロー処理時に高温にさらされ、半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生し、ひいては半導体装置にクラックを生じる等、半導体装置の信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田性の向上が大きな課題となっている。
【0003】
更に、環境負荷物質の撤廃の一環として、鉛を含まない半田への代替が進められている。鉛を含まない半田では、従来の半田に比べ融点が高いため表面実装時のリフロー温度は、従来より20℃程度高く、260℃が必要とされる。鉛を含まない半田対応のための半田リフロー温度の変更によりエポキシ樹脂組成物の硬化物とパッド界面での剥離、半導体素子と半導体樹脂ペースト界面での剥離に起因する半導体装置のクラックの問題が生じてきた。これら半田クラックや剥離は、半田リフロー処理前の半導体装置自身が吸湿し、半田リフロー処理時の高温下でその水分が水蒸気爆発を起こすことによって生じると考えられており、それを防ぐためにエポキシ樹脂組成物に低吸湿性を付与する等の手法がよく用いられ、その低吸湿化の手法の一つとして、例えば低吸湿性の一般式(1)で示されるエポキシ樹脂を用いて、エポキシ樹脂組成物の硬化物の低吸湿化を図ることがある(例えば、特許文献1参照。)。しかしながら、低吸湿性のエポキシ樹脂を使用したエポキシ樹脂組成物といえども、鉛を含まない耐半田性対応のエポキシ樹脂組成物としては不十分であった。このため260℃表面実装時の耐半田性向上を目的として様々な改良が進められてきたが、そのいずれにおいても、完全なる解決策とはならず、更なる改良が望まれている。
【0004】
最近の半導体装置では、Ni、Ni−Pd、Ni−Pd−Au等のプリプレーティングフレームを用いた半導体装置が増加している。従来のエポキシ樹脂組成物によって封止されたNi、Ni−Pd、Ni−Pd−Au等のプレプレーティングフレームを用いた半導体装置は、前記プレプレーティングフレームとエポキシ樹脂組成物の硬化物との密着性が著しく悪いという欠点があり、そのため表面実装時に半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生し、ひいては半導体装置にクラックを生じる等の問題が生じており、これらの不良の防止、即ち耐半田性の向上が望まれている。
【0005】
また、エポキシ樹脂組成物中には、難燃性を付与するために臭素含有化合物等のハロゲン系難燃剤、及びアンチモン化合物が配合されている。近年、地球環境に配慮した企業活動の重視によって有害性のおそれのある物質の削減・撤廃の動きがあり、ハロゲン系難燃剤、アンチモン化合物を使用しないで、難燃性に優れたエポキシ樹脂組成物の開発が要求されている。これらに代わる環境対応の難燃剤としては、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物やリン系難燃剤等がある(例えば、特許文献2参照。)が、前者を多量に含むエポキシ樹脂組成物は成形性、硬化性共、十分に満足できるものでないという問題があり、また後者を少量でも含むエポキシ樹脂組成物を用いた半導体装置は高温多湿下での電気特性の安定性の低下、即ち、半導体装置の抵抗値が時間と共に増大して半導体素子の導通不良が発生するという問題があり、全ての要求に対応することができなかった。
【0006】
【特許文献1】
特開平11−140166号公報(第2〜12頁)
【特許文献2】
特開平10−279782号公報(第2〜6頁)
【発明が解決しようとする課題】
本発明は、成形性に優れた半導体封止用エポキシ樹脂組成物及び難燃剤を含まなくとも難燃性に優れ、かつ耐半田性に優れた環境対応の半導体装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、
[1](A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるエポキシ樹脂、(C)一般式(3)で示されるフェノール樹脂、(D)硬化促進剤及び(E)無機充填材を必須成分とし、(A)と(B)との重量比[(A)/(B)]が1〜10であることを特徴とする半導体封止用エポキシ樹脂組成物、
【0008】
【化4】

Figure 0004306329
(式中のR1は、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で、1〜5の正数)
【0009】
【化5】
Figure 0004306329
(式中のR2は、水素原子、炭素数1〜4のアルキル基の中から選択される基又は原子であり、互いに同一であっても異なっていてもよい。aは1〜4の整数、bは1〜3の整数である。nは平均値であり、1以上の正数。)
【0010】
【化6】
Figure 0004306329
(式中のR3は、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で、1〜5の正数)
【0011】
[2] 一般式(2)で示されるエポキシ樹脂(B)が、軟化点40〜100℃である第[1]項記載のエポキシ樹脂組成物、
【0012】
[3]第[1]項又は第[2]項記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0013】
【発明の実施の形態】
本発明は、特定構造の2種のエポキシ樹脂、特定構造のフェノール樹脂、硬化促進剤及び無機充填材を必須成分とし、特定構造の2種のエポキシ樹脂の配合比率を特定の範囲とすることにより、成形性に優れた半導体封止用エポキシ樹脂組成物及び従来の難燃剤を含まなくとも難燃性に優れ、かつ耐半田性に優れた環境対応の半導体装置が得られるものである。
以下、本発明を詳細に説明する。
【0014】
本発明で用いられる一般式(1)で示されるエポキシ樹脂は、1分子中にエポキシ基を2個以上有し、各エポキシ基間に疎水性構造を有することを特徴とする。一般式(1)で示されるエポキシ樹脂を用いたエポキシ樹脂組成物の硬化物は、疎水性の構造を多く含むことから吸湿率が低く、また架橋密度が低いため、ガラス転移温度を越えた高温域での弾性率が低いという特徴があり、表面実装の半田付け時における熱応力を低減し、耐半田性、半田処理後のリードフレーム等の基材との密着性に優れるという特徴を有している。一方エポキシ基間の疎水性構造は、剛直なビフェニレン骨格であることから、架橋密度は低いが、耐熱性の低下が少ないという特徴を有する。一般式(1)で示されるエポキシ樹脂の具体例を以下に示すが、これらに限定されるものでない。
【0015】
【化7】
Figure 0004306329
(式中のnは平均値で、1〜5の正数)
【0016】
本発明で用いられる一般式(2)で示されるエポキシ樹脂は、ジシクロペンタジエンとフェノール類を付加反応により重合させたフェノール樹脂を、グリシジルエーテル化することによって得られるエポキシ樹脂であり、ガラス転移温度を越えた高温域での弾性率が低く、リードフレーム等の金属類や、半導体素子との密着性に優れる。従って、表面実装の半田付け時における熱応力を低減し、耐半田性に優れるエポキシ樹脂組成物を得ることができる。
また、全エポキシ樹脂組成物中に無機充填材を高充填させるために、式(2)で示されるエポキシ樹脂としては、軟化点の低いものを使用することが好ましく、特に軟化点が40〜100℃であるものが好ましい。下限値を下回ると、取り扱い性に劣るので好ましくない。上限値を越えると、混練時に溶融しない可能性があるので好ましくない。
更に、一般式(2)中のR2は、水素原子が特に好ましい。
【0017】
近年の鉛を含まない半田対応材では、一般式(1)のエポキシ樹脂を用いただけでは十分に対応することが困難であることが多く、本発明では、一般式(2)で示されるエポキシ樹脂を併用する。一般式(2)で示されるエポキシ樹脂を一般式(1)で示されるエポキシ樹脂と併用することにより、一般式(1)のみを使用したエポキシ樹脂組成物よりガラス転移温度を越えた高温域での弾性率が低くなり、リードフレーム等の基材との密着性に優れるという特徴を有している。半田リフロー処理時に生じる半導体装置のクラックは、エポキシ樹脂組成物の硬化物とリードフレーム間の界面での剥離又はエポキシ樹脂組成物の硬化物と半導体素子間の界面での剥離に起因としており、ガラス転移温度を越えた高温域で低弾性、高密着の特性を有するエポキシ樹脂組成物を得ることにより、これらの剥離が低減し、半導体装置の耐半田性を著しく向上させることができる。
【0018】
一般式(1)で示されるエポキシ樹脂(A)と一般式(2)で示されるエポキシ樹脂(B)との配合の重量比[(A)/(B)]は、1〜10である。[(A)/(B)]が下限値を下回るとエポキシ樹脂組成物の硬化物の難燃性が低下し、重量比[(A)/(B)]が上限値を越えるとエポキシ樹脂組成物のガラス転移温度を越えた高温域での低弾性化、高密着化が図れない。
【0019】
また本発明では、一般式(1)で示されるエポキシ樹脂と一般式(2)で示されるエポキシ樹脂とを併用した特徴を損なわない範囲で、更に他のエポキシ樹脂を併用してもよい。併用できるエポキシ樹脂としては、1分子内に2個以上のエポキシ基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられ、これらは単独で用いても2種類以上を併用してもよい。他のエポキシ樹脂を併用する場合の配合量としては、全エポキシ樹脂に対して、一般式(1)で示されるエポキシ樹脂と一般式(2)で示されるエポキシ樹脂との合計量が、70〜100重量%であることが好ましい。一般式(1)で示されるエポキシ樹脂と一般式(2)で示されるエポキシ樹脂との合計量が下限値を下回ると、吸湿率の増大、半田処理後の基材との密着性や耐半田性の低下が起こる可能性がある。
【0020】
本発明で用いられる一般式(3)で示されるフェノール樹脂は、1分子中にフェノール性水酸基2個以上有し、各フェノール性水酸基間に疎水性構造を有することを特徴とする。一般式(3)で示されるフェノール樹脂を用いたエポキシ樹脂組成物の硬化物は、疎水性の構造を多く含むことから吸湿率が低く、また架橋密度が低いため、ガラス転移温度を越えた高温域での弾性率が低いという特徴があり、表面実装の半田付け時における熱応力を低減し、耐半田性、半田処理後の基材との密着性に優れるという特徴を有している。一方フェノール間の疎水性構造は剛直なビフェニレン骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有する。一般式(3)で示されるフェノール樹脂の具体例を以下に示すが、これに限定されるものでない。
【0021】
【化8】
Figure 0004306329
(式中のnは平均値で、1〜5の正数)
【0022】
また本発明では、一般式(3)で示されるフェノール樹脂の特徴を損なわない範囲で、他のフェノール樹脂を併用してもよい。併用できるフェノール樹脂としては、1分子内に2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェニレン骨格を有するフェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールメタン型フェノール樹脂等が挙げられ、これらは単独で用いても2種類以上を併用してもよい。他のフェノール樹脂を併用する場合の配合量としては、全フェノール樹脂に対して、一般式(3)で示されるフェノール樹脂の配合量が、70〜100重量%であることが好ましい。一般式(3)で示されるフェノール樹脂の配合量が下限値を下回ると、吸湿率の増大、半田処理後の基材との密着性や耐半田性の低下が起こる可能性がある。
また、全エポキシ樹脂のエポキシ基とフェノール樹脂のフェノール性水酸基の当量比については、エポキシ基数/フェノール性水酸基数=0.7〜1.5の範囲が好ましく、この範囲を外れると、樹脂組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じるので好ましくない。
一般式(1)で示されるエポキシ樹脂及び一般式(2)で示されるエポキシ樹脂、一般式(3)で示されるフェノール樹脂とを組合せて用いた場合には、吸湿後の半田処理での耐半田性、難燃性等の点で最も高い効果が得られる。
【0023】
本発明に用いる硬化促進剤は、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用されているものを使用することができる。例えばトリブチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、トリフェニルホスフィン等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられ、単独でも混合して用いても差し支えない。
【0024】
本発明で用いられる無機充填材は、例えば溶融シリカ、球状シリカ、結晶シリカ、2次凝集シリカ、多孔質シリカ、2次凝集シリカ又は多孔質シリカを粉砕したシリカ、アルミナ、窒化珪素等が挙げられるが、溶融シリカ粉末、結晶シリカ粉末が好ましい。また無機充填材の形状としては、破砕状でも球状でもかまわないが、耐半田性を向上させるために高充填し、その他、流動特性、機械強度及び熱的特性のバランスの点から球状溶融シリカ粉末が好ましい。最大粒径としては75μm以下が好ましく、平均粒径としては5〜35μmが好ましい。この範囲を外れると、樹脂組成物の流動性が低下し、成形時の未充填やチップシフト等の半導体装置内部の素子の変形が起こり易くなり好ましくない。粒度分布としては広いものが、成形時の樹脂組成物の溶融粘度を低減するために有効である。これらの無機充填材は単独でも混合して用いてもよい。更にシランカップリング剤等で予め表面処理をしたものを用いてもよい。無機充填材の配合量としては、全エポキシ樹脂組成物中に83〜91重量%が好ましく、85〜90重量%がより好ましい。下限値を下回ると、樹脂組成物の硬化物の吸湿量が増大し、しかも半田処理温度での強度が低下してしまうため、半田処理時に半導体装置にクラックが生じやすくなり、上限値を越えると、樹脂組成物の成形時の流動性が低下し、未充填や半導体素子のパッドシフトが発生し易くなり好ましくない。しかし無機充填材はなるべく多く配合した方が、エポキシ樹脂組成物の硬化物の吸湿率が減少し、耐半田性が向上するので、成形時の流動性が許容される範囲内でなるべく多く配合した方が好ましい。
【0025】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、環境負荷物質であるハロゲン含有難燃剤、アンチモン化合物、及び、少量添加でも電気的耐湿信頼性に問題のあるリン系難燃剤以外の難燃剤を添加することは差し支えないが、完全に含まれない方が好ましい。
例えば、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物等の難燃剤であれば、硬化性の低下が激しく成形性で十分満足を得ることができなくならないよう、全エポキシ樹脂組成物中に5重量%以下の使用に留めることが好ましい。
【0026】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じて酸化ビスマス水和物等の無機イオン交換体、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂組成物を製造するには、(A)〜(E)成分、及びその他の添加剤等をミキサー等を用いて充分に均一に常温混合した後、更に熱ロール又はニーダー等で溶融混練し、冷却後粉砕して封止材料とすることができる。これらの成形材料は、電気部品或いは電子部品であるトランジスタ、集積回路等の被覆、絶縁、封止等に適用することができる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。
【0027】
【実施例】
以下に、本発明の実施例を挙げて詳細に説明するが、本発明はこれらに限定されるものではない。各成分の配合割合は重量部とする。
実施例1
式(10)で示されるエポキシ樹脂A(軟化点58℃、エポキシ当量276)6.19重量部
【0028】
【化9】
Figure 0004306329
【0029】
式(11)で示されるエポキシ樹脂B(大日本インキ化学工業(株)製HP−7200L、軟化点53℃、エポキシ当量244)1.55重量部
【化10】
Figure 0004306329
【0030】
式(12)で示されるフェノール樹脂A(軟化点65℃、水酸基当量203)5.31重量部
【化11】
Figure 0004306329
【0031】
球状溶融シリカ粉末(平均粒径22μm) 86.00重量部
トリフェニルホスフィン 0.15重量部
γ−グリシドキシプロピルトリメトキシシラン 0.20重量部
カルナバワックス 0.30重量部
カーボンブラック 0.30重量部
をミキサーを用いて常温で混合し、70〜110℃でロールを用いて混練し、冷却後粉砕し、タブレット化して樹脂組成物を得た。この樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0032】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
熱時曲げ弾性率:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で試験片(長さ80mm、幅10mm、厚さ4mm)を成形し、ポストキュアとして175℃で8時間加熱処理した後、熱時曲げ弾性率をJIS K 6911に準じて(260℃で)測定した。単位はいずれもN/mm2
密着性:銅フレーム(以下Cuと略記)、銅フレーム上に銀めっきしたもの(以下Agと略記)、銅フレーム上にニッケル、パラジウム、金めっきを順に施したもの(以下Ni−Pd−Auと略記)の上に、2mm×2mm×2mmのテストピースをトランスファー成形機にて成形した。成形条件は、金型温度175℃、注入圧力7.4MPa、硬化時間90秒とした。さらに、175℃、4時間のポストキュア、30℃、相対湿度60%、96時間の条件で加湿処理後、IRリフロー処理(260℃)を行った。このサンプルについて、自動剪断強度測定装置(DAGE社製、PC2400)を用いて、エポキシ樹脂組成物の硬化物とフレーム間の剪断強度を測定した。単位はN/mm2
耐半田性 Cu:トランスファー成形機を用いて金型温度175℃、注入圧力9.3MPa、硬化時間90秒で80pQFP(パッケージサイズは14×20mm、厚み2mm、シリコンチップサイズは7.0×7.0mm、リードフレームはCu製)を成形した。ポストキュアとして175℃で4時間加熱処理したパッケージ10個を、85℃、相対湿度60%の環境下で168時間加湿処理した後、IRリフロー処理(260℃)を行った。IRリフロー処理後の内部の剥離又はクラックの有無を超音波探傷装置で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/10と表示する。
耐半田性 Ni−Pd−Au:トランスファー成形機を用いて金型温度175℃、注入圧力9.3MPa、硬化時間90秒で80pQFP(パッケージサイズは14×20mm、厚み2mm、シリコンチップサイズは7.0×7.0mm、リードフレームはNi−Pd−Au製)を成形した。ポストキュアとして175℃で4時間加熱処理したパッケージ10個を、60℃、相対湿度60%の環境下で168時間加湿処理した後、IRリフロー処理(260℃)を行った。IRリフロー処理後の内部の剥離又はクラックの有無を超音波探傷装置で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/10と表示する。
難燃性:トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で試験片(長さ5inch×幅1/2inch×厚さ1/8inch)を成形し、ポストキュアとして175℃で8時間加熱処理した後、UL−94垂直試験を行い、難燃性を判定した。
【0033】
実施例2〜12、比較例1〜5
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を作製し、実施例1と同様にして評価した。結果を表1、表2に示す。
なお、実施例2〜12、比較例1〜5で用いたエポキシ樹脂、フェノール樹脂の詳細を以下に示す。
【0034】
式(13)で示されるエポキシ樹脂C(軟化点55℃、エポキシ当量315)
【化12】
Figure 0004306329
【0035】
エポキシ樹脂D:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000K、融点105℃、エポキシ当量185)
【0036】
式(14)で示されるフェノール樹脂B(軟化点62℃、水酸基当量235)
【化13】
Figure 0004306329
【0037】
フェノール樹脂C(三井化学(株)製、XLC−4L、軟化点62℃、水酸基当量168)
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという)
【0038】
【表1】
Figure 0004306329
【0039】
【表2】
Figure 0004306329
【0040】
【発明の効果】
本発明は、成形性に優れた半導体封止用エポキシ樹脂組成物で、従来の難燃剤を用いなくとも難燃性に優れ、かつ耐半田性にも優れた半導体装置を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device.
[0002]
[Prior art]
Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed using an epoxy resin composition. In particular, an integrated circuit uses an epoxy resin composition excellent in heat resistance and moisture resistance in which an epoxy resin, a phenol resin, and an inorganic filler such as fused silica or crystalline silica are blended.
However, in recent years, with the trend toward smaller, lighter, and higher performance electronic devices, higher integration of semiconductor elements has progressed year by year, and semiconductor devices have been encapsulated as surface mounting has been promoted. The demands on the epoxy resin compositions used are becoming increasingly severe. In particular, the surface mounting of semiconductor devices is becoming common, and moisture-absorbing semiconductor devices are exposed to high temperatures during solder reflow processing, and peeled off at the interface between the semiconductor element and lead frame and the cured epoxy resin composition. As a result, defects that greatly impair the reliability of the semiconductor device, such as cracks in the semiconductor device, occur, and prevention of these defects, that is, improvement in solder resistance, is a major issue.
[0003]
Furthermore, as part of the elimination of environmentally hazardous substances, replacement with lead-free solder is being promoted. Since solder containing no lead has a higher melting point than conventional solder, the reflow temperature at the time of surface mounting is about 20 ° C. higher than before and requires 260 ° C. Changing the solder reflow temperature for soldering that does not contain lead causes the problem of cracks in the semiconductor device due to peeling at the interface between the cured epoxy resin composition and the pad, and peeling at the semiconductor element and semiconductor resin paste interface. I came. These solder cracks and delamination are thought to be caused by the moisture absorption of the semiconductor device itself before the solder reflow process and the water vapor explosion at a high temperature during the solder reflow process. To prevent this, the epoxy resin composition Techniques such as imparting low hygroscopicity to materials are often used. As one of the techniques for reducing hygroscopicity, for example, an epoxy resin composition represented by the general formula (1) having low hygroscopicity is used. The cured product may be reduced in moisture absorption (see, for example, Patent Document 1). However, even an epoxy resin composition using a low hygroscopic epoxy resin is insufficient as an epoxy resin composition that does not contain lead and is solder resistant. For this reason, various improvements have been made for the purpose of improving the solder resistance at the time of 260 ° C. surface mounting, but none of them is a complete solution, and further improvements are desired.
[0004]
In recent semiconductor devices, the number of semiconductor devices using a pre-plating frame of Ni, Ni—Pd, Ni—Pd—Au or the like is increasing. A semiconductor device using a pre-plating frame such as Ni, Ni-Pd, Ni-Pd-Au, etc. sealed with a conventional epoxy resin composition is composed of the pre-plating frame and a cured product of the epoxy resin composition. There is a defect that the adhesion is remarkably bad, which causes problems such as peeling at the interface between the semiconductor element and the lead frame and the cured epoxy resin composition during surface mounting, and cracks in the semiconductor device. Therefore, prevention of these defects, that is, improvement of solder resistance is desired.
[0005]
Moreover, in the epoxy resin composition, a halogen-based flame retardant such as a bromine-containing compound and an antimony compound are blended in order to impart flame retardancy. In recent years, there has been a movement to reduce or eliminate substances that may be harmful due to the importance of corporate activities in consideration of the global environment. Epoxy resin compositions with excellent flame resistance without using halogenated flame retardants and antimony compounds Development is required. Examples of environmentally friendly flame retardants that can be substituted for these include metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and phosphorus flame retardants (see, for example, Patent Document 2). There is a problem that the composition is not sufficiently satisfactory for both moldability and curability, and the semiconductor device using the epoxy resin composition containing the latter even in a small amount is deteriorated in stability of electrical characteristics under high temperature and high humidity. That is, there is a problem in that the resistance value of the semiconductor device increases with time, causing a continuity failure of the semiconductor element, and it has not been possible to meet all the requirements.
[0006]
[Patent Document 1]
JP 11-14166 A (pages 2 to 12)
[Patent Document 2]
Japanese Patent Laid-Open No. 10-297882 (pages 2-6)
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in moldability and an environmentally friendly semiconductor device excellent in flame retardancy and excellent in solder resistance without containing a flame retardant.
[0007]
[Means for Solving the Problems]
The present invention
[1] (A) Epoxy resin represented by general formula (1), (B) Epoxy resin represented by general formula (2), (C) Phenol resin represented by general formula (3), (D) Curing acceleration And (E) an inorganic filler as essential components, and the weight ratio [(A) / (B)] of (A) to (B) is 1 to 10 for epoxy resin for semiconductor encapsulation Composition,
[0008]
[Formula 4]
Figure 0004306329
(In the formula, R 1 is a group selected from an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. M is an integer of 0 to 4, and n is an average value. , 1-5 positive numbers)
[0009]
[Chemical formula 5]
Figure 0004306329
(In the formula, R 2 is a hydrogen atom or a group or atom selected from alkyl groups having 1 to 4 carbon atoms, and may be the same or different. A is an integer of 1 to 4) , B is an integer of 1 to 3. n is an average value and is a positive number of 1 or more.)
[0010]
[Chemical 6]
Figure 0004306329
(In the formula, R 3 is a group selected from alkyl groups having 1 to 4 carbon atoms, and may be the same or different from each other. M is an integer of 0 to 4, and n is an average value. , 1-5 positive numbers)
[0011]
[2] The epoxy resin composition according to item [1], wherein the epoxy resin (B) represented by the general formula (2) has a softening point of 40 to 100 ° C.
[0012]
[3] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition according to the item [1] or [2].
It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, two types of epoxy resins having a specific structure, a phenol resin having a specific structure, a curing accelerator and an inorganic filler are essential components, and the blending ratio of the two types of epoxy resins having a specific structure is within a specific range. Thus, an epoxy resin composition for semiconductor encapsulation having excellent moldability and an environment-friendly semiconductor device having excellent flame retardancy and excellent solder resistance can be obtained without including a conventional flame retardant.
Hereinafter, the present invention will be described in detail.
[0014]
The epoxy resin represented by the general formula (1) used in the present invention has two or more epoxy groups in one molecule, and has a hydrophobic structure between the epoxy groups. The cured product of the epoxy resin composition using the epoxy resin represented by the general formula (1) has a low hygroscopicity because it contains a lot of hydrophobic structures, and has a low crosslink density. It has the feature of low elastic modulus in the area, reduces the thermal stress during surface mounting soldering, and has the characteristics of excellent solder resistance and adhesion to the substrate such as lead frame after soldering ing. On the other hand, the hydrophobic structure between the epoxy groups is characterized by a rigid biphenylene skeleton, so that the crosslinking density is low but the heat resistance is hardly lowered. Although the specific example of the epoxy resin shown by General formula (1) is shown below, it is not limited to these.
[0015]
[Chemical 7]
Figure 0004306329
(Where n is an average value and is a positive number from 1 to 5)
[0016]
The epoxy resin represented by the general formula (2) used in the present invention is an epoxy resin obtained by glycidyl etherification of a phenol resin obtained by polymerizing dicyclopentadiene and phenols by an addition reaction, and has a glass transition temperature. The elastic modulus is low at a high temperature range exceeding 1, and excellent adhesion to metals such as lead frames and semiconductor elements. Therefore, it is possible to obtain an epoxy resin composition that reduces thermal stress during surface mounting soldering and has excellent solder resistance.
Moreover, in order to make the whole epoxy resin composition highly filled with an inorganic filler, it is preferable to use an epoxy resin represented by the formula (2) having a low softening point, particularly a softening point of 40 to 100. Those having a temperature of ° C are preferred. If the value is below the lower limit value, the handleability is poor, which is not preferable. Exceeding the upper limit is not preferable because it may not melt during kneading.
Further, R 2 in the general formula (2) is particularly preferably a hydrogen atom.
[0017]
In recent years, solder compatible materials not containing lead are often difficult to cope with by using only the epoxy resin of the general formula (1). In the present invention, the epoxy resin represented by the general formula (2) is used. Use together. By using the epoxy resin represented by the general formula (2) together with the epoxy resin represented by the general formula (1), the epoxy resin composition using only the general formula (1) can be used in a high temperature range exceeding the glass transition temperature. The elastic modulus is low, and the adhesiveness with a base material such as a lead frame is excellent. Cracks in the semiconductor device that occur during the solder reflow process are caused by peeling at the interface between the cured product of the epoxy resin composition and the lead frame or peeling at the interface between the cured product of the epoxy resin composition and the semiconductor element. By obtaining an epoxy resin composition having low elasticity and high adhesion characteristics in a high temperature range exceeding the transition temperature, these peelings can be reduced and the solder resistance of the semiconductor device can be remarkably improved.
[0018]
The weight ratio [(A) / (B)] of the blend of the epoxy resin (A) represented by the general formula (1) and the epoxy resin (B) represented by the general formula (2) is 1 to 10. When [(A) / (B)] is below the lower limit, the flame retardancy of the cured product of the epoxy resin composition is lowered, and when the weight ratio [(A) / (B)] exceeds the upper limit, the epoxy resin composition Low elasticity and high adhesion cannot be achieved at high temperatures exceeding the glass transition temperature of the object.
[0019]
Moreover, in this invention, you may use together another epoxy resin in the range which does not impair the characteristic which used together the epoxy resin shown by General formula (1), and the epoxy resin shown by General formula (2). Examples of epoxy resins that can be used in combination include monomers, oligomers, and polymers that have two or more epoxy groups in one molecule, such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, and orthocresols. Novolac epoxy resin, naphthol novolac epoxy resin, phenol aralkyl epoxy resin having phenylene skeleton, naphthol aralkyl epoxy resin (having phenylene skeleton, biphenylene skeleton, etc.), biphenyl epoxy resin, stilbene epoxy resin, triphenolmethane Type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, and the like. These may be used alone or in combination of two or more. As a compounding quantity in the case of using together another epoxy resin, the total amount of the epoxy resin shown by General formula (1) and the epoxy resin shown by General formula (2) with respect to all the epoxy resins is 70- It is preferably 100% by weight. When the total amount of the epoxy resin represented by the general formula (1) and the epoxy resin represented by the general formula (2) is below the lower limit value, the moisture absorption increases, the adhesion to the substrate after soldering, and the solder resistance Sexual decline may occur.
[0020]
The phenol resin represented by the general formula (3) used in the present invention has two or more phenolic hydroxyl groups in one molecule, and has a hydrophobic structure between the phenolic hydroxyl groups. The cured product of the epoxy resin composition using the phenol resin represented by the general formula (3) contains a large amount of a hydrophobic structure and thus has a low moisture absorption rate and a low crosslinking density. It has a feature that the elastic modulus in the region is low, a thermal stress during soldering of the surface mounting is reduced, and it has a feature that it is excellent in solder resistance and adhesion to the substrate after the soldering process. On the other hand, since the hydrophobic structure between phenols is a rigid biphenylene skeleton, it has a feature that there is little decrease in heat resistance for a low crosslinking density. Although the specific example of the phenol resin shown by General formula (3) is shown below, it is not limited to this.
[0021]
[Chemical 8]
Figure 0004306329
(Where n is an average value and is a positive number from 1 to 5)
[0022]
Moreover, in this invention, you may use together another phenol resin in the range which does not impair the characteristic of the phenol resin shown by General formula (3). Examples of phenol resins that can be used in combination include monomers, oligomers, and polymers generally having two or more phenolic hydroxyl groups in one molecule. For example, phenol novolak resins, cresol novolak resins, phenol aralkyl type phenol resins having a phenylene skeleton, and naphthol. Examples include aralkyl-type phenol resins (having a phenylene skeleton, biphenylene skeleton, etc.), terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, triphenol methane-type phenol resins, and these may be used alone or in combination of two or more. May be. When the other phenol resin is used in combination, the amount of the phenol resin represented by the general formula (3) is preferably 70 to 100% by weight with respect to the total phenol resin. When the blending amount of the phenol resin represented by the general formula (3) is less than the lower limit, there is a possibility that the moisture absorption rate increases, the adhesion with the base material after the soldering treatment and the solder resistance decrease.
Moreover, about the equivalent ratio of the epoxy group of all epoxy resins, and the phenolic hydroxyl group of a phenol resin, the range of epoxy group number / phenolic hydroxyl group number = 0.7-1.5 is preferable, and if it remove | deviates from this range, a resin composition This is not preferable because it causes a decrease in curability, a decrease in glass transition temperature of the cured product, a decrease in moisture resistance reliability, and the like.
When the epoxy resin represented by the general formula (1), the epoxy resin represented by the general formula (2), and the phenol resin represented by the general formula (3) are used in combination, the resistance to soldering after moisture absorption is improved. The highest effect is obtained in terms of solderability and flame retardancy.
[0023]
The hardening accelerator used for this invention should just accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for the sealing material can be used. For example, amine compounds such as tributylamine, 1,8-diazabicyclo (5,4,0) undecene-7, organophosphorus compounds such as tetraphenylphosphonium / tetranaphthoic acid borate, triphenylphosphine, 2-methylimidazole, etc. These may be used alone or as a mixture.
[0024]
Examples of the inorganic filler used in the present invention include fused silica, spherical silica, crystalline silica, secondary agglomerated silica, porous silica, silica obtained by pulverizing secondary agglomerated silica or porous silica, alumina, silicon nitride, and the like. However, fused silica powder and crystalline silica powder are preferred. The shape of the inorganic filler may be crushed or spherical, but it is highly filled to improve solder resistance, and in addition, spherical fused silica powder from the viewpoint of balance of flow characteristics, mechanical strength and thermal characteristics. Is preferred. The maximum particle size is preferably 75 μm or less, and the average particle size is preferably 5 to 35 μm. Outside this range, the fluidity of the resin composition decreases, and deformation of elements inside the semiconductor device such as unfilling at the time of molding and chip shift tends to occur, which is not preferable. A wide particle size distribution is effective for reducing the melt viscosity of the resin composition during molding. These inorganic fillers may be used alone or in combination. Further, a surface treated beforehand with a silane coupling agent or the like may be used. As a compounding quantity of an inorganic filler, 83 to 91 weight% is preferable in all the epoxy resin compositions, and 85 to 90 weight% is more preferable. If the lower limit is not reached, the moisture absorption of the cured product of the resin composition increases, and the strength at the soldering process temperature decreases, so that the semiconductor device is likely to crack during the soldering process, and if the upper limit is exceeded. The fluidity at the time of molding of the resin composition is lowered, and unfilling and pad shift of the semiconductor element are easily generated, which is not preferable. However, blending as much inorganic filler as possible reduces the moisture absorption rate of the cured epoxy resin composition and improves solder resistance, so it blended as much as possible within the allowable range of fluidity during molding. Is preferred.
[0025]
In addition to the components (A) to (E), the epoxy resin composition of the present invention has a halogen-containing flame retardant, an antimony compound, and a phosphorus-based difficulty that has a problem in electrical moisture resistance reliability even when added in a small amount. It is possible to add a flame retardant other than the flame retardant, but it is preferable that the flame retardant is not completely contained.
For example, in the case of flame retardants such as metal hydroxides such as aluminum hydroxide and magnesium hydroxide, the entire epoxy resin composition is used so that the curability is drastically deteriorated and sufficient moldability cannot be obtained. It is preferable to limit the use to 5% by weight or less.
[0026]
In addition to the components (A) to (E), the epoxy resin composition of the present invention includes an inorganic ion exchanger such as bismuth oxide hydrate as required, and a coupling agent such as γ-glycidoxypropyltrimethoxysilane. , Colorants such as carbon black and bengara, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, mold release agents such as higher fatty acids and their metal salts or paraffin, and various additives such as antioxidants Can be blended.
In order to produce the epoxy resin composition of the present invention, the components (A) to (E) and other additives are sufficiently uniformly mixed at room temperature using a mixer or the like, and then further heated by a roll or kneader. It can be melt-kneaded, pulverized after cooling, and used as a sealing material. These molding materials can be applied to covering, insulating, sealing, etc. of transistors and integrated circuits that are electrical or electronic components.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be molded and cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0027]
【Example】
Examples of the present invention will be described in detail below, but the present invention is not limited thereto. The blending ratio of each component is parts by weight.
Example 1
6.19 parts by weight of epoxy resin A represented by formula (10) (softening point: 58 ° C., epoxy equivalent: 276)
[Chemical 9]
Figure 0004306329
[0029]
Epoxy resin B represented by formula (11) (HP-7200L, Dainippon Ink & Chemicals, Inc., softening point 53 ° C., epoxy equivalent 244) 1.55 parts by weight
Figure 0004306329
[0030]
Phenolic resin A represented by formula (12) (softening point 65 ° C., hydroxyl group equivalent 203) 5.31 parts by weight
Figure 0004306329
[0031]
Spherical fused silica powder (average particle size 22 μm) 86.00 parts by weight Triphenylphosphine 0.15 parts by weight γ-glycidoxypropyltrimethoxysilane 0.20 parts by weight Carnauba wax 0.30 parts by weight Carbon black 0.30 parts by weight The parts were mixed at room temperature using a mixer, kneaded using a roll at 70 to 110 ° C., crushed after cooling, and tableted to obtain a resin composition. This resin composition was evaluated by the following method. The results are shown in Table 1.
[0032]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Bending elastic modulus during heating: Using a transfer molding machine, a test piece (length 80 mm, width 10 mm, thickness 4 mm) was molded with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds, and post-cure As above, after heat treatment at 175 ° C. for 8 hours, the flexural modulus during heating was measured according to JIS K 6911 (at 260 ° C.). All units are N / mm 2 .
Adhesiveness: copper frame (hereinafter abbreviated as Cu), silver-plated copper frame (hereinafter abbreviated as Ag), nickel frame, palladium, and gold plated on the copper frame (hereinafter referred to as Ni-Pd-Au) A test piece of 2 mm × 2 mm × 2 mm was molded on a transfer molding machine. The molding conditions were a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, and a curing time of 90 seconds. Furthermore, IR reflow treatment (260 ° C.) was performed after humidification treatment under conditions of 175 ° C., 4 hours post-cure, 30 ° C., relative humidity 60%, 96 hours. About this sample, the shear strength between the hardened | cured material of an epoxy resin composition and a flame | frame was measured using the automatic shear strength measuring apparatus (the product made by DAGE, PC2400). The unit is N / mm 2 .
Solder resistance Cu: 80 pQFP using a transfer molding machine with a mold temperature of 175 ° C., an injection pressure of 9.3 MPa, and a curing time of 90 seconds (package size is 14 × 20 mm, thickness is 2 mm, silicon chip size is 7.0 × 7. 0 mm, lead frame made of Cu) was molded. Ten packages heat treated at 175 ° C. for 4 hours as post-cure were humidified for 168 hours in an environment of 85 ° C. and a relative humidity of 60%, followed by IR reflow treatment (260 ° C.). The presence or absence of internal peeling or cracks after IR reflow treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.
Solder resistance Ni-Pd-Au: Using a transfer molding machine, mold temperature is 175 ° C., injection pressure is 9.3 MPa, curing time is 90 seconds, and 80 pQFP (package size is 14 × 20 mm, thickness is 2 mm, silicon chip size is 7. The lead frame was made of Ni—Pd—Au (0 × 7.0 mm). Ten packages heat treated at 175 ° C. for 4 hours as post cure were humidified for 168 hours in an environment of 60 ° C. and 60% relative humidity, and then IR reflow treatment (260 ° C.) was performed. The presence or absence of internal peeling or cracks after IR reflow treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.
Flame retardancy: Using a transfer molding machine, mold a test piece (length 5 inch x width 1/2 inch x thickness 1/8 inch) with a mold temperature of 175 ° C, an injection pressure of 9.8 MPa, and a curing time of 120 seconds. After curing at 175 ° C. for 8 hours as a cure, a UL-94 vertical test was conducted to determine flame retardancy.
[0033]
Examples 2-12, Comparative Examples 1-5
According to the composition of Table 1 and Table 2, an epoxy resin composition was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
In addition, the detail of the epoxy resin and phenol resin used in Examples 2-12 and Comparative Examples 1-5 is shown below.
[0034]
Epoxy resin C represented by formula (13) (softening point 55 ° C., epoxy equivalent 315)
Embedded image
Figure 0004306329
[0035]
Epoxy resin D: Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000K, melting point 105 ° C., epoxy equivalent 185)
[0036]
Phenol resin B represented by formula (14) (softening point 62 ° C., hydroxyl group equivalent 235)
Embedded image
Figure 0004306329
[0037]
Phenol resin C (Mitsui Chemicals, XLC-4L, softening point 62 ° C., hydroxyl equivalent 168)
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU)
[0038]
[Table 1]
Figure 0004306329
[0039]
[Table 2]
Figure 0004306329
[0040]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention is an epoxy resin composition for semiconductor encapsulation excellent in moldability, and can obtain a semiconductor device excellent in flame retardancy and excellent solder resistance without using a conventional flame retardant.

Claims (3)

(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるエポキシ樹脂、(C)一般式(3)で示されるフェノール樹脂、(D)硬化促進剤、及び(E)無機充填材を必須成分とし、(A)と(B)との重量比[(A)/(B)]が1〜10であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0004306329
(式中のR1は、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で、1〜5の正数)
Figure 0004306329
(式中のR2は、水素原子、炭素数1〜4のアルキル基の中から選択される基又は原子であり、互いに同一であっても異なっていてもよい。aは1〜4の整数、bは1〜3の整数である。nは平均値で、1以上の正数。)
Figure 0004306329
(式中のR3は、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で、1〜5の正数)
(A) an epoxy resin represented by general formula (1), (B) an epoxy resin represented by general formula (2), (C) a phenol resin represented by general formula (3), (D) a curing accelerator, and (E) An epoxy resin composition for encapsulating a semiconductor, wherein an inorganic filler is an essential component, and the weight ratio [(A) / (B)] of (A) and (B) is 1 to 10 .
Figure 0004306329
(In the formula, R 1 is a group selected from an alkyl group having 1 to 4 carbon atoms, and may be the same or different from each other. M is an integer of 0 to 4, and n is an average value. , 1-5 positive numbers)
Figure 0004306329
(In the formula, R 2 is a hydrogen atom or a group or atom selected from alkyl groups having 1 to 4 carbon atoms, and may be the same or different. A is an integer of 1 to 4) , B is an integer of 1 to 3. n is an average value and is a positive number of 1 or more.)
Figure 0004306329
(In the formula, R 3 is a group selected from alkyl groups having 1 to 4 carbon atoms, and may be the same or different from each other. M is an integer of 0 to 4, and n is an average value. , 1-5 positive numbers)
一般式(2)で示されるエポキシ樹脂(B)が、軟化点40〜100℃である請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein the epoxy resin (B) represented by the general formula (2) has a softening point of 40 to 100 ° C. 請求項1又は2記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1.
JP2003153463A 2003-05-29 2003-05-29 Epoxy resin composition and semiconductor device Expired - Fee Related JP4306329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153463A JP4306329B2 (en) 2003-05-29 2003-05-29 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153463A JP4306329B2 (en) 2003-05-29 2003-05-29 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004352894A JP2004352894A (en) 2004-12-16
JP4306329B2 true JP4306329B2 (en) 2009-07-29

Family

ID=34048410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153463A Expired - Fee Related JP4306329B2 (en) 2003-05-29 2003-05-29 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4306329B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8943717B2 (en) 2011-10-08 2015-02-03 Caterpillar Inc. Implement tooth assembly with tip and adapter
US8943716B2 (en) 2011-10-10 2015-02-03 Caterpillar Inc. Implement tooth assembly with tip and adapter
US9057177B2 (en) 2011-10-08 2015-06-16 Caterpillar Inc. Implement tooth assembly with tip and adapter
US9062436B2 (en) 2011-10-07 2015-06-23 Caterpillar Inc. Implement tooth assembly with tip and adapter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206696A (en) * 2005-01-26 2006-08-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JPWO2009011335A1 (en) * 2007-07-18 2010-09-24 日本化薬株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6999335B2 (en) * 2017-09-01 2022-01-18 Eneos株式会社 A curable composition, a cured product of the composition, the composition and a method for producing the cured product.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062436B2 (en) 2011-10-07 2015-06-23 Caterpillar Inc. Implement tooth assembly with tip and adapter
US9428886B2 (en) 2011-10-07 2016-08-30 Caterpillar Inc. Implement tooth assembly with tip and adapter
US8943717B2 (en) 2011-10-08 2015-02-03 Caterpillar Inc. Implement tooth assembly with tip and adapter
US9057177B2 (en) 2011-10-08 2015-06-16 Caterpillar Inc. Implement tooth assembly with tip and adapter
US9528248B2 (en) 2011-10-08 2016-12-27 Caterpillar Inc. Implement tooth assembly with tip and adapter
US9624651B2 (en) 2011-10-08 2017-04-18 Caterpillar Inc. Implement tooth assembly with tip and adapter
US10041230B2 (en) 2011-10-08 2018-08-07 Caterpillar Inc. Implement tooth assembly with tip and adapter
US8943716B2 (en) 2011-10-10 2015-02-03 Caterpillar Inc. Implement tooth assembly with tip and adapter
US9546471B2 (en) 2011-10-10 2017-01-17 Caterpillar Inc. Implement tooth assembly with tip and adapter
US10060100B2 (en) 2011-10-10 2018-08-28 Caterpillar Inc. Implement tooth assembly with tip and adapter

Also Published As

Publication number Publication date
JP2004352894A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP5487540B2 (en) Epoxy resin composition and semiconductor device
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP5034500B2 (en) Epoxy resin composition and semiconductor device
JP4306329B2 (en) Epoxy resin composition and semiconductor device
JP4687074B2 (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP2004002574A (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4984596B2 (en) Epoxy resin composition and semiconductor device
JP4400124B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP4682617B2 (en) Epoxy resin composition and semiconductor device
JP2004018721A (en) Epoxy resin composition and semiconductor device
JP2006206696A (en) Epoxy resin composition and semiconductor device
JP2006225464A (en) Epoxy resin composition and semiconductor device
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4306329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees