JP5098125B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP5098125B2
JP5098125B2 JP2001229255A JP2001229255A JP5098125B2 JP 5098125 B2 JP5098125 B2 JP 5098125B2 JP 2001229255 A JP2001229255 A JP 2001229255A JP 2001229255 A JP2001229255 A JP 2001229255A JP 5098125 B2 JP5098125 B2 JP 5098125B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
phenol resin
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001229255A
Other languages
Japanese (ja)
Other versions
JP2003040981A (en
Inventor
文広 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001229255A priority Critical patent/JP5098125B2/en
Publication of JP2003040981A publication Critical patent/JP2003040981A/en
Application granted granted Critical
Publication of JP5098125B2 publication Critical patent/JP5098125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐半田クラック性に優れた半導体封止用エポキシ樹脂組成物、及び半導体装置に関するものである。
【0002】
【従来の技術】
従来からダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物を用いて封止されている。特に集積回路では、エポキシ樹脂、フェノール樹脂、及び溶融シリカ、結晶シリカ等の無機充填材を配合した耐熱性、耐湿性に優れたエポキシ樹脂組成物が用いられている。
ところが近年、電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、又半導体装置の表面実装化が促進されるなかで、半導体素子の封止に用いられているエポキシ樹脂組成物への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田リフロー処理時に高温にさらされ、半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生し、ひいては半導体装置にクラックを生じる等、半導体装置の信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田クラック性の向上が大きな課題となっている。
【0003】
更に、環境負荷物質の撤廃の一環として、鉛を含まない半田への代替が進められている。鉛を含まない半田では、従来の半田に比べ融点が高いため表面実装時のリフロー温度は、従来より20℃程度高く、260℃が必要とされる。鉛を含まない半田対応のための半田リフロー温度の変更によって、エポキシ樹脂組成物の硬化物とパッドとの界面での剥離、半導体素子と半導体樹脂ペーストとの界面での剥離に起因する半導体装置のクラックの問題が生じてきた。これら、半田クラックや剥離は、半田リフロー処理前の半導体装置自身が吸湿し、半田リフロー処理時の高温下でその水分が水蒸気爆発を起こすことによって生じると考えられており、それを防ぐためにエポキシ樹脂組成物に低吸湿性を付与する等の手法がよく用いられ、その低吸湿化の手法の一つとして、例えば低吸湿性の一般式(1)で示されるエポキシ樹脂及び低吸湿性の一般式(2)で示されるフェノール樹脂を用いて、エポキシ樹脂組成物の硬化物の低吸湿化を図る方法がある。しかしながら、低吸湿性の樹脂成分を使用したエポキシ樹脂組成物といえども、鉛を含まない半田に対応のエポキシ樹脂組成物としては不十分であった。このため260℃表面実装時の耐半田クラック性向上を目的として様々な改良が進められてきたが、そのいずれにおいても、完全な解決策とはならず、更なる改良が望まれている。
【0004】
又、エポキシ樹脂組成物中には、難燃性を付与するために臭素含有化合物等のハロゲン系難燃剤、及びアンチモン化合物が配合されている。近年、地球環境に配慮した企業活動の重視によって有害性のおそれのある物質の削減・撤廃の動きがあり、ハロゲン系難燃剤、アンチモン化合物を使用しないで、難燃性に優れたエポキシ樹脂組成物の開発が要求されている。これらに代わる環境対応の難燃剤としては、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物や赤燐を含むエポキシ樹脂組成物が提案されているが、これらの難燃剤を含むエポキシ樹脂組成物を用いた半導体装置の耐湿信頼性、高温保管性を低下させ、更には成形性、硬化性共、十分に満足させるエポキシ樹脂組成物が得られないという問題があり、全ての要求に対応することができなかった。
【0005】
【発明が解決しようとする課題】
本発明は、成形性に優れた半導体封止用エポキシ樹脂組成物、及び従来の難燃剤を含まなくとも難燃性に優れ、かつ耐半田クラック性に優れた環境対応の半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
[1] (A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)一般式(5)で示されるフェノール樹脂、(D)硬化促進剤、及び(E)無機充填材を必須成分とし、(B)と(C)との重量比[(B)/(C)]が1〜10であることを特徴とする半導体封止用エポキシ樹脂組成物、
【化6】

Figure 0005098125
(式中のRは、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で1〜5の正数)
【0007】
【化7】
Figure 0005098125
(式中のR2は、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で1〜5の正数)
【0010】
【化10】
Figure 0005098125
(式中のR5は、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で1〜5の正数)
[2] 第[1]項記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0011】
【発明の実施の形態】
本発明で用いられる一般式(1)で示されるエポキシ樹脂は、1分子中にエポキシ基を2個以上有し、各エポキシ基間に疎水性構造を有することを特徴とする。一般式(1)で示されるエポキシ樹脂を用いたエポキシ樹脂組成物の硬化物は、疎水性の構造を多く含むことから吸湿率が低く、又架橋密度が低いためガラス転移温度を越えた高温域での弾性率が低いという特徴があり、表面実装の半田付け時における熱応力を低減し、耐半田クラック性、半田処理後のリードフレーム等の基材との密着性に優れるという特徴を有している。一方、エポキシ基間の疎水性構造が剛直なビフェニル骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有する。
一般式(1)で示されるエポキシ樹脂は、1種類を単独で用いても2種類以上を併用してもよい。一般式(1)で示されるエポキシ樹脂の具体例を以下に示すが、これらに限定されるものでない。
【化11】
Figure 0005098125
(式中のnは平均値で、1〜5の正数)
【0012】
一般式(1)で示されるエポキシ樹脂の特徴を損なわない範囲で、他のエポキシ樹脂を併用してもよい。併用できるエポキシ樹脂としては、分子内にエポキシ基を有するモノマー、オリゴマー、及びポリマー全般を言う。例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニル骨格等を有する)、ジシクロペンタジエン変性フェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。一般式(1)で示されるエポキシ樹脂の配合量としては、全エポキシ樹脂中に70重量%以上が好ましい。70重量%未満だと、燃焼しやすくなったり、吸湿率が高くなったり、弾性率が高くなったりして、耐半田クラック性が低下する可能性がある。
【0013】
本発明で用いられる一般式(2)で示されるフェノール樹脂は、1分子中にフェノール性水酸基を2個以上有し、各フェノール性水酸基間に疎水性構造を有することを特徴とする。一般式(2)で示されるフェノール樹脂を用いたエポキシ樹脂組成物の硬化物は、疎水性の構造を多く含むことから吸湿率が低く、又架橋密度が低いためガラス転移温度を越えた高温域での弾性率が低いという特徴があり、表面実装の半田付け時における熱応力を低減し、耐半田クラック性、半田処理後の基材との密着性に優れるという特徴を有している。一方、フェノール性水酸基間の疎水性構造が剛直なビフェニル骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有する。
一般式(2)で示されるフェノール樹脂は、1種類を単独で用いても2種類以上を併用してもよい。一般式(2)で示されるフェノール樹脂の具体例を以下に示すが、これらに限定されるものでない。
【化12】
Figure 0005098125
(式中のnは平均値で、1〜5の正数)
【0014】
近年の鉛を含まない半田への対応材では、一般式(2)のフェノール樹脂を用いただけでは十分に対応することが困難であることが多く、更に本発明で用いられる一般式(3)で示されるフェノール樹脂、一般式(4)で示されるフェノール樹脂、一般式(5)で示されるフェノール樹脂の群から選択される1種以上を併用することが好ましい。
一般式(3)〜一般式(5)で示される低粘度・低分子量・高強度型のフェノール樹脂を、一般式(2)で示されるフェノール樹脂と併用することにより、一般式(2)で示されるフェノール樹脂のみを使用したエポキシ樹脂組成物よりも更に加熱時の溶融粘度が低いエポキシ樹脂組成物となるため、エポキシ樹脂組成物の流動性が良くなり、無機充填材を更に高充填化することができ、エポキシ樹脂組成物の硬化物の更なる低吸湿化が可能となり、ひいては更に高い強度を得ることができる。半田リフロー処理時に生じる半導体装置のクラックは、エポキシ樹脂組成物の硬化物とリードフレームとの界面での剥離又はエポキシ樹脂組成物の硬化物と半導体素子との界面での剥離に起因しており、低吸湿、高強度のエポキシ樹脂組成物を得ることにより、これらの剥離が低減し、半導体装置の耐半田クラック性を著しく向上させることができる。
更に本発明の様に、一般式(1)で示されるエポキシ樹脂、一般式(2)で示されるフェノール樹脂、及び一般式(3)〜一般式(5)で示されるフェノール樹脂を組み合わせて用いると、吸湿後の半田処理での耐半田クラック性、難燃性等の点で最も高い効果が得られる。
一般式(2)で示されるフェノール樹脂(B)と、一般式(3)で示されるフェノール樹脂、一般式(4)で示されるフェノール樹脂、一般式(5)で示されるフェノール樹脂の群から選択される1種以上(C)との重量比[(B)/(C)]としては、1〜10が好ましい。1未満だとエポキシ樹脂組成物の硬化物の低吸湿化ができず、又硬化物の難燃性が低下し、一方、10を越えると無機充填材の高充填化ができず低吸湿化及び高強度化が図れないため好ましくない。
一般式(3)〜一般式(5)で示されるフェノール樹脂を2種類以上併用する場合は、予め混合或いは溶融混合して用いてもよい。
【0015】
又本発明では、一般式(2)で示されるフェノール樹脂、及び一般式(3)〜一般式(5)で示されるフェノール樹脂の特徴を損なわない範囲で、他のフェノール樹脂を併用してもよい。併用できるフェノール樹脂としては、分子内にフェノール性水酸基を有するモノマー、オリゴマー、及びポリマー全般を言う。例えば、ナフトールアラルキル樹脂(ビフェニル骨格等を有する)、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ビスフェノールA、トリフェノールメタン型樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
一般式(3)で示されるフェノール樹脂、一般式(4)で示されるフェノール樹脂、一般式(5)で示されるフェノール樹脂の群から選択される1種以上と、一般式(2)で示されるフェノール樹脂との合計量としては、全フェノール樹脂中に70重量%以上が好ましい。70重量%未満だと、燃焼しやすくなったり、吸湿率が高くなったり、弾性率が高くなったりして、耐半田クラック性が低下する可能性がある。
全エポキシ樹脂中のエポキシ基数と全フェノール樹脂中のフェノール性水酸基数の比(当量比)としては、(エポキシ基数)/(フェノール性水酸基数)=0.7〜1.5が好ましく、この範囲を外れると、エポキシ樹脂組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じる可能性がある。
【0016】
本発明で用いられる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用されているものを広く使用することができる。例えば、トリブチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、トリフェニルホスフィン等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は1種類を単独で用いても2種類以上を併用してもよい。これらの内では、特に1,8−ジアザビシクロ(5,4,0)ウンデセン−7が、各種基材に対する密着性の向上のために有効であり、更にテトラフェニルホスホニウム・テトラナフトイックアシッドボレートは、エポキシ樹脂組成物の常温保管特性を大幅に向上させる効果がある。
【0017】
本発明で用いられる無機充填材としては、一般に封止材料に使用されているものを広く使用することができ、例えば、溶融シリカ、球状シリカ、結晶シリカ、2次凝集シリカ、多孔質シリカ、2次凝集シリカ又は多孔質シリカを粉砕したシリカ、アルミナ、窒化珪素等が挙げられるが、これらに限定されるものではない。これらは1種類を単独で用いても2種類以上を併用してもよい。特に、溶融シリカ、結晶シリカが好ましい。
又無機充填材の形状としては、破砕状でも球状でもかまわないが、耐半田クラック性を向上させるために高充填する点や、流動性、機械強度及び熱的特性のバランスの点から球状溶融シリカが好ましい。
最大粒径としては75μm以下が好ましく、平均粒径としては5〜25μmが好ましい。粒度分布としては広いものが、成形時のエポキシ樹脂組成物の溶融粘度を低減するために有効である。
更にシランカップリング剤等で予め表面処理をしたものを用いてもよい。
無機充填材の配合量としては、全エポキシ樹脂組成物中に65〜95重量%が好ましい。65重量%未満だと、エポキシ樹脂組成物の硬化物の吸湿量が増大し、しかも半田処理温度での強度が低下してしまうため、半田処理時に半導体装置にクラックが生じやすくなり、一方、95重量%を越えると、エポキシ樹脂組成物の成形時の流動性が低下し、未充填や半導体素子のパッドシフトが発生し易くなる可能性がある。無機充填材はなるべく多く配合した方が、エポキシ樹脂組成物の硬化物の吸湿率が減少し、耐半田クラック性が向上するので、成形時の流動性が許容される範囲内でなるべく多く配合した方が好ましい。
【0018】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じて臭素化エポキシ樹脂等のハロゲン含有難燃剤、酸化アンチモン等のアンチモン化合物を含有することは差し支えないが、半導体装置の150〜260℃の高温下での電気特性の安定性が要求される用途ではハロゲン原子、アンチモン原子の含有量がそれぞれ全エポキシ樹脂組成物中に0.1重量%以下であることが好ましく、完全に含まれない方がより好ましい。ハロゲン原子、アンチモン原子のいずれかが0.1重量%を越えると、高温下に放置したときに半導体装置の抵抗値が時間と共に増大し、最終的には半導体素子の金線が断線する不良が発生する可能性がある。又、環境保護の観点からも、ハロゲン原子、アンチモン原子のそれぞれの含有量が0.1重量%以下で、極力含有されていないことが望ましい。
【0019】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分の他、必要に応じて酸化ビスマス水和物等の無機イオン交換体、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等をミキサー等を用いて常温混合し、ロール、ニーダー、押出機等の混練機で加熱混練し、冷却後粉砕して得られる。本発明のエポキシ樹脂組成物は、電気部品或いは電子部品であるトランジスタ、集積回路等の被覆・絶縁・封止等に適用することができる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。
【0020】
【実施例】
以下に、本発明の実施例を挙げて詳細に説明するが、本発明はこれらに限定されるものではない。各成分の配合割合は重量%とする。
参考例1
式(12)で示されるエポキシ樹脂a(軟化点60℃、150℃でのICI溶融粘度0.8×102mPa・s、エポキシ当量270) 5.80重量%
【化13】
Figure 0005098125
【0021】
式(13)で示されるフェノール樹脂c(軟化点65℃、150℃でのICI溶融粘度1.0×102mPa・s、水酸基当量203) 4.20重量%
【化14】
Figure 0005098125
【0022】
式(14)で示されるフェノール樹脂d(軟化点60℃、150℃でのICI溶融粘度0.7×102mPa・s、水酸基当量162) 0.50重量%
【化15】
Figure 0005098125
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという
) 0.20重量%
球状溶融シリカ(平均粒径22μm) 88.00重量%
カーボンブラック 0.30重量%
カルナバワックス 0.30重量%
その他の添加剤 0.70重量%
をミキサーを用いて常温で混合し、70〜110℃でロールを用いて混練し、冷却後粉砕し、タブレット化してエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0023】
評価方法
・スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120sで測定した。単位はcm。
・熱時曲げ強度・熱時曲げ弾性率:低圧トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120sで試験片を成形し、ポストキュアとして175℃で8時間処理した後、熱時曲げ強度、又は熱時曲げ弾性率をJIS K 6911に準じて(260℃で)測定した。単位はいずれもN/mm2
・吸湿率:低圧トランスファー成形機を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120sで直径50mm、厚さ3mmの円盤状試験片を成形し、ポストキュアとして175℃で8時間処理した。試験片の吸湿処理前と、85℃、相対湿度85%の環境下で168時間吸湿処理した後の重量変化を測定し、試験片の吸湿率を百分率で示した。単位は%。
・耐半田クラック性:低圧トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120sで160pLQFP(厚さ1.4mm、チップサイズ7mm×7mm)を成形した。ポストキュアとして175℃で8時間処理したパッケージ5個を、85℃、相対湿度60%の環境下で168時間処理した後、IRリフロー処理(260℃)を行った。処理後の内部の剥離又はクラックの有無を超音波探傷装置で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/5と表示する。
・難燃性:低圧トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120sで試験片を成形し、ポストキュアとして175℃で8時間処理した後、UL−94垂直試験(試験片厚さ1/8inch)を行い、難燃性を判定した。
【0024】
参考例2〜6、実施例7、8、比較例1〜13>
参考例1以外で用いた材料を以下に示す。
フェノール樹脂e(式(14)で示されるフェノール樹脂と式(15)で示されるフェノール樹脂とを溶融したもの。軟化点65℃、150℃でのICI溶融粘度0.7×102mPa・s、水酸基当量140)、
【化16】
Figure 0005098125
【0025】
式(15)で示されるフェノール樹脂f(軟化点75℃、150℃でのICI溶融粘度0.6×102mPa・s、水酸基当量112)、
式(16)で示されるフェノール樹脂g(軟化点70℃、150℃でのICI溶融粘度0.7×102mPa・s、水酸基当量170)、
【化17】
Figure 0005098125
【0026】
式(17)で示される化合物を主成分とするエポキシ樹脂b(融点105℃、150℃でのICI溶融粘度0.2×102mPa・s、エポキシ当量185)。
【化18】
Figure 0005098125
【0027】
表1、表2の処方に従い参考例1と同様にしてエポキシ樹脂組成物を得て、参考例1と同様にして評価した。結果を表1、表2に示す。
【表1】
Figure 0005098125
【0028】
【表2】
Figure 0005098125
【0029】
【発明の効果】
本発明に従うと、従来の難燃剤を用いなくとも難燃性に優れ、かつ成形性に優れた半導体封止用エポキシ樹脂組成物が得られ、これを用いると耐半田クラック性に優れた半導体装置を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in solder crack resistance, and a semiconductor device.
[0002]
[Prior art]
Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed using an epoxy resin composition. In particular, an integrated circuit uses an epoxy resin composition excellent in heat resistance and moisture resistance in which an epoxy resin, a phenol resin, and an inorganic filler such as fused silica or crystalline silica are blended.
However, in recent years, with the trend toward smaller, lighter, and higher performance electronic devices, higher integration of semiconductor elements has been progressing year by year, and surface mounting of semiconductor devices has been promoted. The demands on the epoxy resin compositions used are becoming increasingly severe. In particular, the surface mounting of semiconductor devices is becoming common, and moisture-absorbing semiconductor devices are exposed to high temperatures during solder reflow processing, and peeled off at the interface between the semiconductor element and lead frame and the cured epoxy resin composition. As a result, defects that greatly impair the reliability of the semiconductor device, such as cracks in the semiconductor device, occur, and prevention of these defects, that is, improvement in resistance to solder cracks is a major issue.
[0003]
Furthermore, as part of the elimination of environmentally hazardous substances, replacement with lead-free solder is being promoted. Since solder containing no lead has a higher melting point than conventional solder, the reflow temperature at the time of surface mounting is about 20 ° C. higher than before and requires 260 ° C. By changing the solder reflow temperature for soldering that does not contain lead, the peeling of the epoxy resin composition at the interface between the cured product and the pad, and the peeling at the interface between the semiconductor element and the semiconductor resin paste, The problem of cracks has arisen. These solder cracks and delamination are thought to be caused by the moisture absorption of the semiconductor device itself before the solder reflow treatment and the water vapor explosion at a high temperature during the solder reflow treatment. Techniques such as imparting low hygroscopicity to the composition are often used. As one of the techniques for reducing hygroscopicity, for example, the epoxy resin represented by the general formula (1) having low hygroscopicity and the general formula of low hygroscopicity There is a method of reducing the moisture absorption of the cured product of the epoxy resin composition by using the phenol resin represented by (2). However, even an epoxy resin composition using a low hygroscopic resin component is insufficient as an epoxy resin composition corresponding to solder containing no lead. For this reason, various improvements have been made for the purpose of improving solder crack resistance at the time of 260 ° C. surface mounting, but none of them is a complete solution, and further improvements are desired.
[0004]
In addition, a halogen-based flame retardant such as a bromine-containing compound and an antimony compound are blended in the epoxy resin composition in order to impart flame retardancy. In recent years, there has been a movement to reduce or eliminate substances that may be harmful due to the importance of corporate activities in consideration of the global environment. Epoxy resin compositions with excellent flame resistance without using halogenated flame retardants and antimony compounds Development is required. As an environment-friendly flame retardant instead of these, epoxy resin compositions containing metal hydroxides such as aluminum hydroxide and magnesium hydroxide and red phosphorus have been proposed. Epoxy resin compositions containing these flame retardants Reduces moisture resistance reliability and high-temperature storage properties of semiconductor devices using, and further, there is a problem that an epoxy resin composition that satisfies both moldability and curability can not be obtained sufficiently, so that all requirements can be met. I could not.
[0005]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in moldability, and an environmentally friendly semiconductor device excellent in flame retardancy and solder crack resistance without including a conventional flame retardant. It is.
[0006]
[Means for Solving the Problems]
The present invention
[1] (A) Epoxy resin represented by general formula (1), (B) Phenol resin represented by general formula (2), (C) Phenol resin represented by general formula (5) , (D) Curing acceleration And (E) an inorganic filler as an essential component, and the weight ratio [(B) / (C)] of (B) and (C) is 1 to 10 for epoxy for semiconductor encapsulation Resin composition,
[Chemical 6]
Figure 0005098125
(In the formula, R 1 is a group selected from an alkyl group having 1 to 4 carbon atoms, and may be the same or different. M is an integer of 0 to 4, and n is an average value. 1-5 positive numbers)
[0007]
[Chemical 7]
Figure 0005098125
(R 2 in the formula is a group selected from alkyl groups having 1 to 4 carbon atoms, and may be the same or different. M is an integer of 0 to 4, and n is an average value. 1-5 positive numbers)
[0010]
[Chemical Formula 10]
Figure 0005098125
(In the formula, R 5 is a group selected from an alkyl group having 1 to 4 carbon atoms, and may be the same or different. M is an integer of 0 to 4, and n is an average value. 1-5 positive numbers)
[2] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition according to item [1],
It is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin represented by the general formula (1) used in the present invention has two or more epoxy groups in one molecule, and has a hydrophobic structure between the epoxy groups. The cured product of the epoxy resin composition using the epoxy resin represented by the general formula (1) has a high hygroscopicity because it contains a lot of hydrophobic structures and has a low moisture absorption rate and a low crosslink density. It has a low elastic modulus, reduces thermal stress during surface mounting soldering, and has excellent solder crack resistance and excellent adhesion to substrates such as lead frames after soldering. ing. On the other hand, since the hydrophobic structure between epoxy groups is a rigid biphenyl skeleton, it has a feature that there is little decrease in heat resistance for a low crosslinking density.
The epoxy resin represented by the general formula (1) may be used alone or in combination of two or more. Although the specific example of the epoxy resin shown by General formula (1) is shown below, it is not limited to these.
Embedded image
Figure 0005098125
(Where n is an average value and is a positive number from 1 to 5)
[0012]
Other epoxy resins may be used in combination as long as the characteristics of the epoxy resin represented by the general formula (1) are not impaired. Examples of the epoxy resin that can be used in combination include monomers, oligomers, and polymers that have an epoxy group in the molecule. For example, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, naphthol novolak type epoxy resin, phenol aralkyl type epoxy resin having phenylene skeleton, naphthol aralkyl type epoxy resin (having phenylene skeleton, biphenyl skeleton, etc.), dicyclopentadiene Examples include modified phenol type epoxy resins, stilbene type epoxy resins, triphenol methane type epoxy resins, alkyl modified triphenol methane type epoxy resins, triazine nucleus-containing epoxy resins, etc. These may be used alone or in combination of two or more. May be used in combination. As a compounding quantity of the epoxy resin shown by General formula (1), 70 weight% or more is preferable in all the epoxy resins. If it is less than 70% by weight, it becomes easy to burn, the moisture absorption rate is increased, the elastic modulus is increased, and the solder crack resistance may be lowered.
[0013]
The phenol resin represented by the general formula (2) used in the present invention has two or more phenolic hydroxyl groups in one molecule, and has a hydrophobic structure between the phenolic hydroxyl groups. The cured product of the epoxy resin composition using the phenol resin represented by the general formula (2) has a high hygroscopicity because it contains a lot of hydrophobic structures and has a low moisture absorption rate and a low crosslinking density. It has a characteristic that the elastic modulus is low, and it has a characteristic that it reduces thermal stress at the time of surface mounting soldering, and is excellent in solder crack resistance and adhesion to a substrate after soldering. On the other hand, since the hydrophobic structure between the phenolic hydroxyl groups is a rigid biphenyl skeleton, it has a feature that there is little decrease in heat resistance for a low crosslinking density.
The phenol resin represented by the general formula (2) may be used alone or in combination of two or more. Although the specific example of the phenol resin shown by General formula (2) is shown below, it is not limited to these.
Embedded image
Figure 0005098125
(Where n is an average value and is a positive number from 1 to 5)
[0014]
In recent years, it is often difficult to use a phenolic resin of the general formula (2) with a material corresponding to solder that does not contain lead, and the general formula (3) used in the present invention is difficult. It is preferable to use one or more selected from the group consisting of the phenol resin shown, the phenol resin shown by the general formula (4), and the phenol resin shown by the general formula (5).
By combining the low viscosity / low molecular weight / high strength phenol resin represented by the general formula (3) to the general formula (5) with the phenol resin represented by the general formula (2), the general formula (2) Since the epoxy resin composition has a lower melt viscosity when heated than the epoxy resin composition using only the phenol resin shown, the fluidity of the epoxy resin composition is improved and the inorganic filler is further highly filled. Therefore, it is possible to further reduce the moisture absorption of the cured product of the epoxy resin composition, and as a result, higher strength can be obtained. The crack of the semiconductor device that occurs during the solder reflow process is caused by peeling at the interface between the cured product of the epoxy resin composition and the lead frame or peeling at the interface between the cured product of the epoxy resin composition and the semiconductor element, By obtaining a low moisture absorption and high strength epoxy resin composition, these peelings can be reduced, and the solder crack resistance of the semiconductor device can be remarkably improved.
Further, as in the present invention, the epoxy resin represented by the general formula (1), the phenol resin represented by the general formula (2), and the phenol resin represented by the general formula (3) to the general formula (5) are used in combination. And the highest effect is obtained in terms of solder crack resistance, flame retardancy, etc. in the solder treatment after moisture absorption.
From the group of the phenol resin (B) represented by the general formula (2), the phenol resin represented by the general formula (3), the phenol resin represented by the general formula (4), and the phenol resin represented by the general formula (5) The weight ratio [(B) / (C)] with one or more selected (C) is preferably 1 to 10. If it is less than 1, the moisture absorption of the cured product of the epoxy resin composition cannot be reduced, and the flame retardancy of the cured product is reduced. On the other hand, if it exceeds 10, the inorganic filler cannot be highly filled and the moisture absorption is reduced. This is not preferable because high strength cannot be achieved.
When two or more types of phenol resins represented by the general formulas (3) to (5) are used in combination, they may be mixed or melt-mixed in advance.
[0015]
Moreover, in this invention, even if it uses together with another phenol resin in the range which does not impair the characteristic of the phenol resin shown by General formula (2), and the phenol resin shown by General formula (3)-General formula (5). Good. Examples of the phenol resin that can be used in combination include monomers, oligomers, and polymers that have a phenolic hydroxyl group in the molecule. Examples include naphthol aralkyl resins (having a biphenyl skeleton), terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, bisphenol A, triphenolmethane type resins, and the like. You may use the above together.
One or more selected from the group consisting of a phenol resin represented by the general formula (3), a phenol resin represented by the general formula (4), and a phenol resin represented by the general formula (5), and represented by the general formula (2) The total amount of the phenolic resin is preferably 70% by weight or more in the total phenolic resin. If it is less than 70% by weight, it becomes easy to burn, the moisture absorption rate is increased, the elastic modulus is increased, and the solder crack resistance may be lowered.
The ratio (equivalent ratio) of the number of epoxy groups in the total epoxy resin to the number of phenolic hydroxyl groups in the total phenol resin is preferably (number of epoxy groups) / (number of phenolic hydroxyl groups) = 0.7 to 1.5. If the value is removed, the curability of the epoxy resin composition may be lowered, the glass transition temperature of the cured product may be lowered, or the moisture resistance reliability may be lowered.
[0016]
As a hardening accelerator used by this invention, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for the sealing material can be used widely. For example, tributylamine, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, amine compounds such as tributylamine and benzyldimethylamine, tetraphenylphosphonium tetranaphthoic acid Examples include, but are not limited to, organic phosphorus compounds such as borate and triphenylphosphine, and imidazole compounds such as 2-methylimidazole. These curing accelerators may be used alone or in combination of two or more. Among these, 1,8-diazabicyclo (5,4,0) undecene-7 is particularly effective for improving adhesion to various substrates, and tetraphenylphosphonium tetranaphthoic acid borate is This has the effect of greatly improving the room temperature storage characteristics of the epoxy resin composition.
[0017]
As the inorganic filler used in the present invention, those generally used for sealing materials can be widely used. For example, fused silica, spherical silica, crystalline silica, secondary agglomerated silica, porous silica, 2 Examples thereof include, but are not limited to, silica, alumina, silicon nitride and the like obtained by pulverizing secondary agglomerated silica or porous silica. These may be used alone or in combination of two or more. In particular, fused silica and crystalline silica are preferable.
The shape of the inorganic filler may be either crushed or spherical, but spherical fused silica from the viewpoint of high filling to improve solder crack resistance and the balance of fluidity, mechanical strength and thermal characteristics. Is preferred.
The maximum particle size is preferably 75 μm or less, and the average particle size is preferably 5 to 25 μm. A wide particle size distribution is effective for reducing the melt viscosity of the epoxy resin composition during molding.
Further, a surface treated beforehand with a silane coupling agent or the like may be used.
As a compounding quantity of an inorganic filler, 65 to 95 weight% is preferable in all the epoxy resin compositions. If it is less than 65% by weight, the moisture absorption amount of the cured product of the epoxy resin composition increases and the strength at the soldering process temperature decreases, so that the semiconductor device is likely to crack during the soldering process. If it exceeds wt%, the fluidity at the time of molding the epoxy resin composition is lowered, and there is a possibility that unfilling or pad shift of the semiconductor element is likely to occur. Adding as much inorganic filler as possible reduces the moisture absorption rate of the cured product of the epoxy resin composition and improves the resistance to solder cracks. Therefore, it was added as much as possible within the allowable range of fluidity during molding. Is preferred.
[0018]
The epoxy resin composition of the present invention may contain, in addition to the components (A) to (E), a halogen-containing flame retardant such as brominated epoxy resin and an antimony compound such as antimony oxide, if necessary. In applications where stability of electrical characteristics of semiconductor devices at high temperatures of 150 to 260 ° C. is required, the content of halogen atoms and antimony atoms may be 0.1% by weight or less in the total epoxy resin composition. Preferably, it is more preferably not completely contained. If either the halogen atom or the antimony atom exceeds 0.1% by weight, the resistance value of the semiconductor device increases with time when left at high temperature, and eventually the gold wire of the semiconductor element is broken. May occur. Also, from the viewpoint of environmental protection, it is desirable that each content of halogen atom and antimony atom is 0.1% by weight or less and is not contained as much as possible.
[0019]
In addition to the components (A) to (E), the epoxy resin composition of the present invention includes an inorganic ion exchanger such as bismuth oxide hydrate as required, and a coupling agent such as γ-glycidoxypropyltrimethoxysilane. , Colorants such as carbon black and bengara, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, mold release agents such as higher fatty acids and their metal salts or paraffin, and various additives such as antioxidants Can be blended.
In the epoxy resin composition of the present invention, the components (A) to (E) and other additives are mixed at room temperature using a mixer or the like, heated and kneaded in a kneader such as a roll, kneader, or extruder, and cooled. Obtained by post-grinding. The epoxy resin composition of the present invention can be applied to covering, insulating, sealing, and the like of transistors and integrated circuits that are electrical or electronic components.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be molded and cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0020]
【Example】
Examples of the present invention will be described in detail below, but the present invention is not limited thereto. The blending ratio of each component is weight%.
< Reference Example 1 >
Epoxy resin a represented by formula (12) (ICI melt viscosity at softening point 60 ° C., 150 ° C. 0.8 × 10 2 mPa · s, epoxy equivalent 270) 5.80% by weight
Embedded image
Figure 0005098125
[0021]
Phenol resin c represented by formula (13) (ICI melt viscosity at softening point 65 ° C., 150 ° C. 1.0 × 10 2 mPa · s, hydroxyl group equivalent 203) 4.20% by weight
Embedded image
Figure 0005098125
[0022]
Phenol resin d represented by the formula (14) (ICI melt viscosity at softening point 60 ° C., 150 ° C. 0.7 × 10 2 mPa · s, hydroxyl group equivalent 162) 0.50% by weight
Embedded image
Figure 0005098125
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.20% by weight
Spherical fused silica (average particle size 22 μm) 88.00% by weight
Carbon black 0.30% by weight
Carnauba wax 0.30% by weight
Other additives 0.70% by weight
Were mixed at room temperature using a mixer, kneaded using a roll at 70 to 110 ° C., crushed after cooling, and tableted to obtain an epoxy resin composition. This epoxy resin composition was evaluated by the following method. The results are shown in Table 1.
[0023]
Evaluation method: Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 s. The unit is cm.
・ Bending strength during heating ・ Bending elastic modulus during heating: Using a low-pressure transfer molding machine, a test piece was molded at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 120 s, and post-cured at 175 ° C. for 8 hours. After the treatment, the hot bending strength or the hot bending elastic modulus was measured according to JIS K 6911 (at 260 ° C.). All units are N / mm 2 .
・ Hygroscopic rate: A disk-shaped test piece having a diameter of 50 mm and a thickness of 3 mm was molded using a low-pressure transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 120 s, and post-cured at 175 ° C. for 8 hours. Processed. The weight change before the moisture absorption treatment of the test piece and after the moisture absorption treatment for 168 hours in an environment of 85 ° C. and 85% relative humidity was measured, and the moisture absorption rate of the test piece was shown as a percentage. Units%.
Solder crack resistance: 160 pLQFP (thickness 1.4 mm, chip size 7 mm × 7 mm) was molded using a low-pressure transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 s. Five packages treated as post-cure at 175 ° C. for 8 hours were treated in an environment of 85 ° C. and a relative humidity of 60% for 168 hours, followed by IR reflow treatment (260 ° C.). The presence or absence of internal peeling or cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 5 is displayed.
Flame retardancy: Using a low-pressure transfer molding machine, a test piece was molded at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 120 s, and treated as a post cure at 175 ° C. for 8 hours, and then UL-94. A vertical test (test piece thickness 1/8 inch) was conducted to determine flame retardancy.
[0024]
< Reference Examples 2 to 6, Examples 7 and 8 , Comparative Examples 1 to 13>
Materials used in other than Reference Example 1 are shown below.
Phenol resin e (melted phenol resin represented by formula (14) and phenol resin represented by formula (15). ICI melt viscosity at a softening point of 65 ° C. and 150 ° C. 0.7 × 10 2 mPa · s , Hydroxyl group equivalent 140),
Embedded image
Figure 0005098125
[0025]
Phenol resin f represented by formula (15) (softening point 75 ° C., ICI melt viscosity at 150 ° C. 0.6 × 10 2 mPa · s, hydroxyl group equivalent 112),
Phenol resin g represented by formula (16) (softening point 70 ° C., ICI melt viscosity at 150 ° C. 0.7 × 10 2 mPa · s, hydroxyl group equivalent 170),
Embedded image
Figure 0005098125
[0026]
Epoxy resin b having a compound represented by formula (17) as a main component (melting point: 105 ° C., ICI melt viscosity at 150 ° C .: 0.2 × 10 2 mPa · s, epoxy equivalent: 185).
Embedded image
Figure 0005098125
[0027]
Table 1, to obtain an epoxy resin composition in the same manner as in Reference Example 1 according to the formulation shown in Table 2 were evaluated in the same manner as in Reference Example 1. The results are shown in Tables 1 and 2.
[Table 1]
Figure 0005098125
[0028]
[Table 2]
Figure 0005098125
[0029]
【Effect of the invention】
According to the present invention, an epoxy resin composition for semiconductor encapsulation having excellent flame retardancy and excellent moldability can be obtained without using a conventional flame retardant, and when this is used, a semiconductor device having excellent solder crack resistance Can be obtained.

Claims (2)

(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)一般式(5)で示されるフェノール樹脂、(D)硬化促進剤、及び(E)無機充填材を必須成分とし、(B)と(C)との重量比[(B)/(C)]が1〜10であり、前記(E)無機充填材が全エポキシ樹脂組成物中に88重量%以上95重量%以下配合され、難燃剤を含まないことを特徴とする鉛を含まない半田対応の半導体封止用エポキシ樹脂組成物。
Figure 0005098125
(式中のRは、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で1〜5の正数)。
Figure 0005098125
(式中のRは、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で1〜5の正数)。
Figure 0005098125
(式中のRは、炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0〜4の整数、nは平均値で1〜5の正数)
(A) an epoxy resin represented by general formula (1), (B) a phenol resin represented by general formula (2), (C) a phenol resin represented by general formula (5), (D) a curing accelerator, and (E) An inorganic filler is an essential component, the weight ratio [(B) / (C)] of (B) and (C) is 1 to 10, and the (E) inorganic filler is the total epoxy resin composition. An epoxy resin composition for semiconductor encapsulation that does not contain lead and contains no flame retardant, and is contained in the product in an amount of 88 wt% to 95 wt% .
Figure 0005098125
(In the formula, R 1 is a group selected from an alkyl group having 1 to 4 carbon atoms, and may be the same or different. M is an integer of 0 to 4, and n is an average value. 1-5 positive numbers).
Figure 0005098125
(In the formula, R 2 is a group selected from alkyl groups having 1 to 4 carbon atoms, and may be the same or different. M is an integer of 0 to 4, and n is an average value. 1-5 positive numbers).
Figure 0005098125
(In the formula, R 5 is a group selected from an alkyl group having 1 to 4 carbon atoms, and may be the same or different. M is an integer of 0 to 4, and n is an average value. 1-5 positive numbers)
請求項1記載の鉛を含まない半田対応のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device, wherein a semiconductor element is sealed with the solder-free epoxy resin composition containing no lead according to claim 1.
JP2001229255A 2001-07-30 2001-07-30 Epoxy resin composition and semiconductor device Expired - Fee Related JP5098125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229255A JP5098125B2 (en) 2001-07-30 2001-07-30 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229255A JP5098125B2 (en) 2001-07-30 2001-07-30 Epoxy resin composition and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012143741A Division JP5673613B2 (en) 2012-06-27 2012-06-27 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003040981A JP2003040981A (en) 2003-02-13
JP5098125B2 true JP5098125B2 (en) 2012-12-12

Family

ID=19061629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229255A Expired - Fee Related JP5098125B2 (en) 2001-07-30 2001-07-30 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5098125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214813A (en) * 2012-06-27 2012-11-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI320421B (en) * 2003-02-18 2010-02-11 Sumitomo Bakelite Co Epoxy resin composition and semiconductor device
JP5055778B2 (en) * 2006-02-06 2012-10-24 住友ベークライト株式会社 Epoxy resin composition, epoxy resin molding material and semiconductor device
CN115466486B (en) * 2022-07-05 2023-07-28 上海道宜半导体材料有限公司 Epoxy resin composition and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140277A (en) * 1997-11-10 1999-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device produced by using the composition
JPH11147937A (en) * 1997-11-19 1999-06-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JPH11158351A (en) * 1997-11-28 1999-06-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP3388537B2 (en) * 1998-05-15 2003-03-24 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3582576B2 (en) * 1998-05-15 2004-10-27 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2000281748A (en) * 1999-03-30 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001172365A (en) * 1999-12-15 2001-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002179773A (en) * 2000-12-15 2002-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002293886A (en) * 2001-03-29 2002-10-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002356538A (en) * 2001-03-30 2002-12-13 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214813A (en) * 2012-06-27 2012-11-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2003040981A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
TWI388620B (en) Epoxy resin composition for encapsulating semiconductors, and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4040367B2 (en) Epoxy resin composition and semiconductor device
JP2004067717A (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4306329B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP2006213849A (en) Sealing resin composition and semiconductor sealing apparatus
JP2003213084A (en) Epoxy resin composition and semiconductor device
JP2006206696A (en) Epoxy resin composition and semiconductor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JP5673613B2 (en) Epoxy resin composition and semiconductor device
JP2014156607A (en) Epoxy resin composition and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2000281748A (en) Epoxy resin composition and semiconductor device
JP2008156403A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2003238660A (en) Epoxy resin composition and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP2002293886A (en) Epoxy resin composition and semiconductor device
JP2002179882A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees