JP4040367B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4040367B2
JP4040367B2 JP2002160925A JP2002160925A JP4040367B2 JP 4040367 B2 JP4040367 B2 JP 4040367B2 JP 2002160925 A JP2002160925 A JP 2002160925A JP 2002160925 A JP2002160925 A JP 2002160925A JP 4040367 B2 JP4040367 B2 JP 4040367B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor device
antimony
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002160925A
Other languages
Japanese (ja)
Other versions
JP2004002574A (en
Inventor
文広 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002160925A priority Critical patent/JP4040367B2/en
Publication of JP2004002574A publication Critical patent/JP2004002574A/en
Application granted granted Critical
Publication of JP4040367B2 publication Critical patent/JP4040367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高温保管特性及び電気的耐湿信頼性に優れた半導体封止用エポキシ樹脂組成物、及び半導体装置に関するものである。
【0002】
【従来の技術】
従来からダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物を用いて封止されている。特に集積回路では、エポキシ樹脂、フェノール樹脂、及び溶融シリカ、結晶シリカ等の無機充填材を配合した耐熱性、耐湿性に優れたエポキシ樹脂組成物が用いられている。
ところが近年、電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、又半導体装置の表面実装化が促進されるなかで、半導体素子の封止に用いられているエポキシ樹脂組成物への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田リフロー処理時に高温にさらされ、半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生し、ひいては半導体装置にクラックを生じる等、半導体装置の信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田クラック性の向上が大きな課題となっている。
更に、環境負荷物質の撤廃の一環として、鉛を含まない半田への代替が進められている。鉛を含まない半田では、従来の半田に比べ融点が高いため表面実装時のリフロー温度は、従来より20℃程度高く、260℃が必要とされる。鉛を含まない半田対応のための半田リフロー温度の変更によって、エポキシ樹脂組成物の硬化物とパッドとの界面での剥離、半導体素子と半導体樹脂ペーストとの界面での剥離に起因する半導体装置のクラックの問題が生じてきた。これら、半田クラックや剥離は、半田リフロー処理前の半導体装置自身が吸湿し、半田リフロー処理時の高温下でその水分が水蒸気爆発を起こすことによって生じると考えられており、それを防ぐために、例えば、無機充填材を高充填したり、低吸湿性や強靭性をもつエポキシ樹脂やフェノール樹脂を用いたりして、エポキシ樹脂組成物に低吸湿性を付与する、強度を向上させる等の手法が用いられている。しかしながら、これらの手法を用いたエポキシ樹脂組成物といえども、鉛を含まない半田に対応のエポキシ樹脂組成物としては不十分であり、更なる改良が望まれている。
【0003】
また、エポキシ樹脂組成物中には、通常、難燃性を付与するために臭素含有有機化合物等のハロゲン系難燃剤、及び三酸化ニアンチモン、四酸化ニアンチモン等のアンチモン化合物が配合されていることが多く、これらの原料を使用しているエポキシ樹脂組成物を用いた半導体装置は100〜260℃の高温下或いは多湿下での電気特性の安定性の低下、即ち、半導体装置の抵抗値が時間と共に増大して半導体素子の導通不良が発生するという問題があり、電気的耐湿信頼性や高温保管性が悪いことが指摘されている。
近年、地球環境に配慮した企業活動の重視によって有害性のおそれのある物質の削減・撤廃の動きがあり、ハロゲン系難燃剤、アンチモン化合物を使用しないで、難燃性に優れたエポキシ樹脂組成物の開発が要求され、これらに代わる環境対応の難燃剤としては、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物等が用いられるようになって来ている。これらの使用により電気的耐湿信頼性や高温保管性の問題は少なくはなってきたが、しかしながら、ハロゲン化物及びアンチモン化合物を使用したエポキシ樹脂組成物と同じ製造装置で生産した場合、製造工程において、ハロゲン化物及びアンチモン化合物を使用しない材料を製造しても残存ハロゲン化物及び残存アンチモン化合物が少量混入し、その結果、そのエポキシ樹脂組成物を用いた半導体装置は電気的耐湿信頼性や高温保管性が満足出来ないという問題が発生した。
【0004】
【発明が解決しようとする課題】
本発明は、従来の難燃剤を用いなくとも難燃性に優れ、また、成形性且つ耐半田クラック性に優れ、更には、高温保管特性及び電気的耐湿信頼性に優れた半導体封止用エポキシ樹脂組成物、及び半導体装置を提供するものである。
【0005】
【課題を解決するための手段】
[1] (A)一般式(2)で示されるエポキシ樹脂と、式(6)で示されるエポキシ樹脂と、(B)一般式(3)で示されるフェノール樹脂と、(C)シリカ、アルミナまたは窒化珪素から選ばれる無機充填材と、(D)式(4)で示される硬化促進剤と、を必須成分とし、全エポキシ樹脂組成物に対し、(C)無機充填材の含有量が70〜92重量%、(D)式(4)で示される硬化促進剤の含有量が0.05〜0.5重量%であり、蛍光X線で測定したBr原子の含有量が15ppm以下、アンチモン原子の含有量が75ppm以下であることを特徴とする半導体封止用エポキシ樹脂組成物、
【0006】
【化1】
【0010】
第[1]項に記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に用いる一般式(1)で示される硬化促進剤は、テトラ置換ホスホニウムと分子化合物の安定性や硬化性、硬化物物性の点で非常に優れている2,3−ジヒドロキシナフタレンとの分子会合体である。テトラ置換ホスホニウムカチオンと有機アニオンで構成され、テトラ置換ホスホニウムイオンの正電荷の周囲を有機アニオンが取り囲み、安定化した構造となっているものと考えられる。一般式(1)で示される硬化促進剤は、常温では触媒活性を示さないのでエポキシ樹脂組成物の硬化反応が進むことなく、成形時の高温において触媒活性が発現し、エポキシ樹脂組成物を硬化させる特徴を有している。また、比較的狭い温度領域において急激に触媒活性を発現する特徴があることから、これを用いたエポキシ樹脂組成物を成形金型に注入した初期には、反応が大幅に進行することなく、流動時の溶融粘度が低いため無機充填材の配合量を上げても十分な流動性を保ち、無機充填材の配合量を上げた結果として、難燃性、耐半田クラック性を向上させる。又注入終了後には、その高い触媒活性によってエポキシ樹脂組成物を硬度に硬化させることが出来るため、優れた成形性を示す。ホスホニウムイオンとしては、置換又は無置換のアリール基やアルキル基を置換基として有するテトラ置換ホスホニウムイオンが、熱や加水分解に対して安定であり好ましく、具体的にはテトラフェニルホスホニウム、テトラトリルホスホニウム等のテトラアリール置換ホスホニウム、トリフェニルメチルホスホニウム等のトリアリールホスフィン、アルキルハライドから合成されたトリアリールモノアルキルホスホニウム、テトラブチルホスホニウム等のテトラアルキル置換ホスホニウム等が例示される。
【0012】
従来の技術にも記載した通り、ハロゲン化物及びアンチモン化合物を使用したエポキシ樹脂組成物と同じ製造装置で生産した場合、たとえ生産設備を入念に掃除して、ハロゲンレス、アンチモンレスのエポキシ樹脂組成物を製造したとしても、その直前に製造したハロゲン、アンチモン入りエポキシ樹脂組成物が0.5重量%程度、即ち、ハロゲン原子量としては10ppm程度、アンチモン原子量としては50ppm程度混入する可能性がある。そして、この僅かな量のハロゲン原子とアンチモン原子が混入したエポキシ樹脂組成物を用いた半導体装置の電気的耐湿信頼性や高温保管性は、ハロゲン化物及びアンチモン化合物含有のエポキシ樹脂組成物よりは良くなるものの、十分であると言うほどではなく、半導体装置の電気的耐湿信頼性や高温保管性を更に改善するためには、更にわずかなハロゲン原子やアンチモン原子を取り除く必要がある。本発明に用いる一般式(1)で示される硬化促進剤中の2,3−ジヒドロキシナフタレンは、2,3−ジヒドロキシナフタレン3分子に対しアンチモン1分子と反応してキレート構造を作り、アンチモン原子を捕捉するという特徴をもつため、製造工程において樹脂組成物中に少量混入するアンチモン化合物によって引き起こされる電気的耐湿信頼性や高温保管性への悪影響を回避することができるという優れた特徴も有している。実際に、ハロゲン化物としてBr含有率35重量%のBr化フェノールノボラック型エポキシ樹脂を0.5重量%、アンチモン化合物として三酸化二アンチモンを0.5重量%使用したエポキシ樹脂組成物を作製したのち、同じ製造装置にて式(4)で示される硬化促進剤を0.5重量%使用したエポキシ樹脂組成物を作製したところ、アンチモン原子が2,3−ジヒドロキシナフタレンと反応して安定化したため、そのエポキシ樹脂組成物を使用した半導体装置はわずかなハロゲン原子が存在しているものの電気的耐湿信頼性や高温保管性は非常に優れていた。ハロゲン原子に関しては10ppm程度の混入では、電気的耐湿信頼性や高温保管性にはそれ程影響を及ぼさないことも確認出来た。
【化7】
(mは0≦m≦2の数を示す。)
【0013】
本特許で使用される一般式(1)で示される硬化促進剤は、全エポキシ樹脂組成物に対し、0.05〜0.5重量%含まれる必要がある。下限値を下回ると、アンチモンの混入により半導体装置の電気的耐湿信頼性や高温保管性が低下する可能性があったり、エポキシ樹脂組成物の硬化性が不十分となったりするため好ましくない。また上限値を越えると、エポキシ樹脂組成物の成形時の流動性が低下し、成形時に未充填という問題が起こる可能性があるため好ましくない。
【0014】
また、硬化促進剤として、電気的耐湿信頼性及び高温保管性を低下させる2−メチルイミダゾール等のイミダゾール化合物を除いて、必要に応じて一般に封止材料に使用されているエポキシ基とフェノール性水酸基との硬化反応を促進させるものを併用しても構わない。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、トリフェニルホスフィン等の有機リン系化合物等が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は2種類以上を併用してもよい。これらの内では、特に1,8−ジアザビシクロ(5,4,0)ウンデセン−7が、各種基材に対する密着性の向上のために有効であり、更にテトラフェニルホスホニウム・テトラナフトイックアシッドボレートは、エポキシ樹脂組成物の常温保管特性を大幅に向上させる効果がある。
【0015】
本発明で用いられるエポキシ樹脂は、1分子中にエポキシ基を2個以上有するものであれば、何ら制限はなく、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ナフトールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ジシクロペンタジエン変性フェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
【0016】
本発明で用いられるフェノール樹脂は、1分子中にフェノール性水酸基を2個以上有するものであれば、何ら制限はなく、例えば、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ナフトールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ビスフェノールA、トリフェノールメタン型樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
【0017】
全エポキシ樹脂中のエポキシ基数と全フェノール樹脂及び硬化促進剤中のフェノール性水酸基数の比(当量比)としては、(エポキシ基数)/(フェノール性水酸基数)=0.8〜1.3が好ましく、この範囲を外れると、エポキシ樹脂組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下を示すだけでなく、高温あるいは多湿下で半導体装置の抵抗値が時間と共に増大して半導体素子の導通不良が発生するという、電気的耐湿信頼性や高温保管性の低下問題が生じる可能性がある。
【0018】
本発明で用いられる無機充填材としては、一般に封止材料に使用されているものを広く使用することができ、例えば、溶融シリカ、球状シリカ、結晶シリカ、2次凝集シリカ、多孔質シリカ、2次凝集シリカ又は多孔質シリカを粉砕したシリカ、アルミナ、窒化珪素等が挙げられるが、これらに限定されるものではない。これらは1種類を単独で用いても2種類以上を併用してもよい。特に、溶融シリカ、結晶シリカが好ましい。
又無機充填材の形状としては、破砕状でも球状でもかまわないが、耐半田クラック性を向上させるために高充填する点や、流動性、機械強度及び熱的特性のバランスの点から球状溶融シリカが好ましい。
最大粒径としては75μm以下が好ましく、平均粒径としては5〜25μmが好ましい。粒度分布としては広いものが、成形時のエポキシ樹脂組成物の溶融粘度を低減するために有効である。更にシランカップリング剤等で予め表面処理をしたものを用いてもよい。
【0019】
無機充填材の配合量としては、全エポキシ樹脂組成物中に70〜92重量%が好ましい。下限値を下回ると、エポキシ樹脂やフェノール樹脂の樹脂使用量が増えるため、高温保管特性や電気的耐湿信頼性が悪くなる。また、エポキシ樹脂組成物の硬化物の吸湿量が増大し、半田処理温度での強度が低下してしまうため、半田処理時に半導体装置にクラックが生じやすくなったりもする。一方、上限値を越えると、エポキシ樹脂組成物の成形時の流動性が低下し、未充填や半導体素子のパッドシフトが発生し易くなる可能性がある。無機充填材はなるべく多く配合した方が、エポキシ樹脂組成物の硬化物の吸湿率が減少し、耐半田クラック性が向上、また、難燃性が向上するので、成形時の流動性が許容される範囲内でなるべく多く配合した方が好ましい。
【0020】
本発明は、ハロゲン化合物及びアンチモン化合物を含まずに難燃性を達成するものである。本発明における全エポキシ樹脂組成物中のハロゲン原子、アンチモン原子の含有量は、それぞれ15ppm以下、75ppm以下であることが好ましく、更に好ましくは、それぞれ10ppm以下、50ppm以下である。これは経済上の理由から原料や製造段階において混入する微量の成分以外には、ハロゲン原子及びアンチモン原子を添加しないことを意味しているものであるが、一方、ハロゲン原子及びアンチモン原子の含有量が上記範囲内であれば、一般式(1)で示される硬化促進剤の作用により電気的耐湿信頼性や高温保管性への悪影響を回避することができるものである。
ハロゲン化合物及びアンチモン化合物を含まずに難燃性を達成するには、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物等を配合するか、あるいは、難燃性を有する樹脂を用いる方法があるが、金属水酸化物のみで難燃性を得ようとすると金属水酸化物を比較的多量に配合する必要があり、この場合には、硬化特性の低下による成形性の問題及び線膨張係数の増加による耐半田クラック性の低下が見られるため、一般式(2)及び一般式(3)の難燃性を有する樹脂を用いた方が好ましい。一般式(2)及び(3)で示されるエポキシ樹脂及びフェノール樹脂を用いたエポキシ樹脂組成物の硬化物について簡単に説明すると、エポキシ基間及水酸基間の疎水性構造により架橋点間距離が長いことで、エポキシ樹脂組成物の硬化物は燃焼時の温度では非常に軟らかくなっているため、燃焼時に硬化物の内部で発生する熱分解ガスが、硬化物の層をゴムのように膨張させて発泡層を形成し、この発泡層による未燃焼部への酸素の遮断と断熱作用によって、難燃性が非常に高いという特徴を有し、また、ガラス転移温度を越えた高温域での弾性率が低く、260℃での表面実装の半田付け時における熱応力にも耐え得るという特徴も発現する。従って、一般式(2)及び一般式(3)で示されるエポキシ樹脂及びフェノール樹脂を使用すると、難燃剤を使用しなくても、難燃性及び耐半田クラック性の両者が優れた特性をもつエポキシ樹脂組成物が得られる。また、他のエポキシ樹脂及びフェノール樹脂を併用する場合にも、一般式(2)で示されるエポキシ樹脂、及び一般式(3)で示されるフェノール樹脂が各々、全エポキシ樹脂中及び全フェノール樹脂中に対して70重量%以上含有されていれば、これらの特徴を損なわないが、70重量%未満だと、燃焼しやすくなったり、吸湿率が高くなったり、高弾性化による耐半田クラック性の低下が起こる可能性がある。
【0021】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他、必要に応じて酸化ビスマス水和物等の無機イオン交換体、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分、及びその他の添加剤等、ミキサー等を用いて常温混合し、ロール、ニーダー、押出機等の混練機で加熱混練、冷却後粉砕して得られる。本発明のエポキシ樹脂組成物は、電気部品或いは電子部品であるトランジスタ、集積回路等の被覆・絶縁・封止等に適用することができる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。
【0022】
【実施例】
以下に、本発明の実施例を挙げて詳細に説明するが、本発明はこれらに限定されるものではない。各成分の配合割合は重量%とする。
<実施例1>
【化8】
【0023】
【化9】
【0024】
【化10】
【0025】
【化11】
【0026】
【化12】
【0027】
球状溶融シリカ(平均粒径22μm) 87.00重量%
カーボンブラック 0.30重量%
カルナバワックス 0.30重量%
ハイドロタルサイト 0.30重量%
γ−グリシドキシプロピルトリメトキシシラン 0.40重量%
をミキサーを用いて常温で混合し、70〜110℃でロールを用いて混練し、冷却後粉砕し、タブレット化してエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0028】
評価方法
・スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
・硬化性:(株)オリエンテック・製、JSRキュラストメーターIVPSを用いて、ダイスの直径35mm、振幅角1°、成形温度175℃における5分後のトルクに対し、90%のトルクに達するまでの時間を硬化性の指標とした。すなわち、90%に達する時間が遅いほど硬化が悪いことになる。単位は秒。
・熱時曲げ強度・熱時曲げ弾性率:低圧トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で試験片(幅10mm、厚さ4mm、長さ80mm)を成形し、ポストキュアとして175℃で8時間処理した後、熱時曲げ強度及び熱時曲げ弾性率をJIS K 6911に準じて(260℃で)測定した。単位はいずれもN/mm2
・吸湿率:低圧トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間120秒で直径50mm、厚さ3mmの円盤状試験片を成形し、ポストキュアとして175℃で8時間処理した。試験片の吸湿処理前と、85℃、相対湿度85%の環境下で168時間吸湿処理した後の重量変化を測定し、試験片の吸湿率を百分率で示した。単位は重量%。
・耐半田クラック性:低圧トランスファー成形機を用いて金型温度175℃、注入圧力9.3MPa、硬化時間120秒で160pLQFP(厚さ1.4mm、チップサイズ7mm×7mm)を成形した。ポストキュアとして175℃で8時間処理したパッケージ5個を、85℃、相対湿度60%の環境下で168時間処理した後、IRリフロー処理(260℃)を行った(n=5)。処理後の内部の剥離又はクラックの有無を超音波探傷装置で観察し、不良パッケージの個数を数えた。不良パッケージの個数がi個であるとき、i/5と表示する。
・難燃性:低圧トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で試験片を成形し、ポストキュアとして175℃で8時間処理した後、UL−94垂直試験(試験片厚さ3.2mm)を行い、難燃性を判定した。
・アンチモン原子、Br原子量:吸湿率を測定した直径50mm、厚さ3mmの円盤状試験片を用いて、蛍光X線装置にて、試験片にX線を照射し、アンチモン原子、Br原子量を測定した。単位はppm。
・高温保管性:低圧トランスファー成形機を用いて金型温度175℃、注入圧力、6.9MPa、硬化時間120秒で16pDIP(チップサイズ3mm×3.5mm)成形した。ポストキュアとして175℃で8時間処理後、高温保管試験(185℃、1000時間及び200℃、500時間)を行い、配線間の電気抵抗値が初期値に対し20%増加したパッケージを不良と判定した。10配線間中の不良率を百分率で示した。単位は%。
・耐湿信頼性:低圧トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で16SOP(厚さ1.95mm、チップサイズ3.5mm×3.0mm)を成形した。ポストキュアとして175℃で8時間処理後、プレッシャークッカー試験(125℃、圧力2.2MPa)を行い、回路のオープン不良を測定し、不良発生時間で表した。単位は時間。
【0029】
参考例2〜7および9、実施例8、比較例1〜6>
実施例1以外で用いた原材料を以下に示す。
式(9)で示されるエポキシ樹脂f(150℃でのICI溶融粘度6.7×102mPa・s、エポキシ当量273、Br35重量%含有)
【化13】
【0030】
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという)
水酸化アルミニウム(平均粒径5μm)
三酸化二アンチモン
【0031】
表1及び表2の処方に従い実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1及び表2に示す。
【表1】
【0032】
【表2】
【0033】
【発明の効果】
本発明に従うと、従来の難燃剤を用いなくとも難燃性に優れ、また、成形性且つ耐半田クラック性に優れ、更には、高温保管特性及び電気的耐湿信頼性に優れた半導体封止用エポキシ樹脂組成物を得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in high-temperature storage characteristics and electrical moisture resistance reliability, and a semiconductor device.
[0002]
[Prior art]
Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed using an epoxy resin composition. In particular, an integrated circuit uses an epoxy resin composition excellent in heat resistance and moisture resistance in which an epoxy resin, a phenol resin, and an inorganic filler such as fused silica or crystalline silica are blended.
However, in recent years, with the trend toward smaller, lighter, and higher performance electronic devices, higher integration of semiconductor elements has been progressing year by year, and surface mounting of semiconductor devices has been promoted. The demands on the epoxy resin compositions used are becoming increasingly severe. In particular, the surface mounting of semiconductor devices is becoming common, and moisture-absorbing semiconductor devices are exposed to high temperatures during solder reflow processing, and peeled off at the interface between the semiconductor element and lead frame and the cured epoxy resin composition. As a result, defects that greatly impair the reliability of the semiconductor device, such as cracks in the semiconductor device, occur, and prevention of these defects, that is, improvement in resistance to solder cracks is a major issue.
Furthermore, as part of the elimination of environmentally hazardous substances, replacement with lead-free solder is being promoted. Since solder containing no lead has a higher melting point than conventional solder, the reflow temperature at the time of surface mounting is about 20 ° C. higher than before and requires 260 ° C. By changing the solder reflow temperature for soldering that does not contain lead, the peeling of the epoxy resin composition at the interface between the cured product and the pad, and the peeling at the interface between the semiconductor element and the semiconductor resin paste, The problem of cracks has arisen. These solder cracks and delamination are considered to be caused by moisture absorption by the semiconductor device itself before the solder reflow process, and its moisture causing a steam explosion at a high temperature during the solder reflow process. , Using high-filled inorganic fillers, using low-hygroscopic or tough epoxy resins or phenolic resins to give low-hygroscopic properties to epoxy resin compositions, improving strength, etc. It has been. However, even an epoxy resin composition using these techniques is insufficient as an epoxy resin composition corresponding to solder containing no lead, and further improvement is desired.
[0003]
The epoxy resin composition usually contains a halogen-based flame retardant such as a bromine-containing organic compound and an antimony compound such as niantimony trioxide and niantimony tetroxide in order to impart flame retardancy. In many cases, a semiconductor device using an epoxy resin composition using these raw materials has a low stability of electrical characteristics under high temperature or high humidity of 100 to 260 ° C., that is, the resistance value of the semiconductor device is low. It has been pointed out that there is a problem that the conduction failure of the semiconductor element occurs with time, and the electrical moisture resistance reliability and high temperature storage property are poor.
In recent years, there has been a movement to reduce or eliminate substances that may be harmful due to the importance of corporate activities in consideration of the global environment. Epoxy resin compositions with excellent flame resistance without using halogenated flame retardants and antimony compounds As an alternative to environmentally friendly flame retardants, metal hydroxides such as aluminum hydroxide and magnesium hydroxide have been used. With these uses, the problems of electrical moisture resistance reliability and high-temperature storage stability have decreased, however, when produced in the same production equipment as the epoxy resin composition using halide and antimony compound, Even when materials that do not use halides and antimony compounds are manufactured, residual halides and residual antimony compounds are mixed in a small amount. As a result, semiconductor devices using the epoxy resin composition have electrical moisture resistance reliability and high-temperature storage stability. The problem of not being satisfied occurred.
[0004]
[Problems to be solved by the invention]
The present invention is excellent in flame retardancy without using a conventional flame retardant, excellent in moldability and solder crack resistance, and further excellent in high temperature storage characteristics and electrical moisture resistance reliability. A resin composition and a semiconductor device are provided.
[0005]
[Means for Solving the Problems]
[1] (A) Epoxy resin represented by general formula (2), epoxy resin represented by formula (6), (B) phenol resin represented by general formula (3), (C) silica, alumina Alternatively, an inorganic filler selected from silicon nitride and a curing accelerator represented by (D) formula (4) are essential components, and the total amount of (C) inorganic filler is 70 with respect to the total epoxy resin composition. -92 wt%, (D) The content of the curing accelerator represented by the formula (4) is 0.05-0.5 wt%, the content of Br atom measured by fluorescent X-ray is 15 ppm or less, antimony An epoxy resin composition for encapsulating a semiconductor, wherein the atomic content is 75 ppm or less,
[0006]
[Chemical 1]
[0010]
[ 2 ] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to item [1] ,
It is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The curing accelerator represented by the general formula (1) used in the present invention is a molecule of tetra-substituted phosphonium and 2,3-dihydroxynaphthalene, which is very excellent in terms of stability and curability of the molecular compound and physical properties of the cured product. It is an association. It is thought that it is composed of a tetra-substituted phosphonium cation and an organic anion, and the organic anion surrounds the positive charge of the tetra-substituted phosphonium ion and has a stabilized structure. Since the curing accelerator represented by the general formula (1) does not exhibit catalytic activity at room temperature, the curing reaction of the epoxy resin composition does not proceed and the catalytic activity is exhibited at a high temperature during molding, thereby curing the epoxy resin composition. It has the feature to make. In addition, since there is a characteristic that the catalytic activity is suddenly expressed in a relatively narrow temperature range, at the initial stage when the epoxy resin composition using this is injected into the molding die, the reaction does not proceed greatly, Since the melt viscosity at that time is low, sufficient fluidity is maintained even if the amount of the inorganic filler is increased, and as a result of increasing the amount of the inorganic filler, flame retardancy and solder crack resistance are improved. Moreover, since the epoxy resin composition can be hardened by the high catalytic activity after the completion of the injection, excellent moldability is exhibited. As the phosphonium ion, a tetra-substituted phosphonium ion having a substituted or unsubstituted aryl group or alkyl group as a substituent is preferable because it is stable against heat and hydrolysis. Specifically, tetraphenylphosphonium, tetratolylphosphonium, etc. And tetraaryl-substituted phosphonium, triarylphosphine such as triphenylmethylphosphonium, triarylmonoalkylphosphonium synthesized from alkyl halide, tetraalkyl-substituted phosphonium such as tetrabutylphosphonium, and the like.
[0012]
As described in the prior art, when producing with the same production equipment as the epoxy resin composition using halide and antimony compound, even if the production equipment is carefully cleaned, the halogenless and antimonyless epoxy resin composition Even if it is produced, the halogen and antimony-containing epoxy resin composition produced immediately before that may be mixed in about 0.5% by weight, that is, about 10 ppm as the halogen atom amount and about 50 ppm as the antimony atom amount. And, the electrical moisture resistance reliability and high-temperature storage stability of the semiconductor device using the epoxy resin composition in which a small amount of halogen atoms and antimony atoms are mixed are better than the epoxy resin composition containing halide and antimony compound. However, it is not sufficient, and in order to further improve the electrical moisture resistance reliability and high-temperature storage property of the semiconductor device, it is necessary to further remove some halogen atoms and antimony atoms. The 2,3-dihydroxynaphthalene in the curing accelerator represented by the general formula (1) used in the present invention reacts with one antimony molecule with respect to three 2,3-dihydroxynaphthalene molecules to form a chelate structure. Since it has a characteristic of capturing, it has an excellent characteristic that it can avoid adverse effects on electrical moisture resistance reliability and high-temperature storage stability caused by an antimony compound mixed in a small amount in the resin composition in the production process. Yes. After actually preparing an epoxy resin composition using 0.5% by weight of a Br-phenol novolac epoxy resin having a Br content of 35% by weight as a halide and 0.5% by weight of antimony trioxide as an antimony compound, In addition, when an epoxy resin composition using 0.5 wt% of the curing accelerator represented by the formula (4) was prepared in the same production apparatus, the antimony atom was stabilized by reacting with 2,3-dihydroxynaphthalene. Although the semiconductor device using the epoxy resin composition has few halogen atoms, it has excellent electrical moisture resistance reliability and high temperature storage property. It was also confirmed that the incorporation of about 10 ppm of halogen atoms did not significantly affect the electrical moisture resistance reliability and high temperature storage stability.
[Chemical 7]
(M represents a number of 0 ≦ m ≦ 2.)
[0013]
The curing accelerator represented by the general formula (1) used in this patent needs to be contained in an amount of 0.05 to 0.5% by weight with respect to the total epoxy resin composition. If the value is below the lower limit, it is not preferable because the anti-mony mixture may reduce the electrical moisture resistance reliability and high-temperature storage property of the semiconductor device, and the curability of the epoxy resin composition may be insufficient. On the other hand, if the upper limit is exceeded, the fluidity at the time of molding the epoxy resin composition is lowered, and there is a possibility that the problem of unfilling at the time of molding may be unfavorable.
[0014]
Moreover, as a hardening accelerator, except for imidazole compounds such as 2-methylimidazole that reduce electrical moisture resistance reliability and high-temperature storage stability, epoxy groups and phenolic hydroxyl groups generally used in sealing materials as needed Those that accelerate the curing reaction may be used in combination. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, amine compounds such as tributylamine and benzyldimethylamine, tetraphenylphosphonium tetranaphthoic acid borate, tri Examples include, but are not limited to, organophosphorus compounds such as phenylphosphine. Two or more kinds of these curing accelerators may be used in combination. Among these, 1,8-diazabicyclo (5,4,0) undecene-7 is particularly effective for improving adhesion to various substrates, and tetraphenylphosphonium tetranaphthoic acid borate is This has the effect of greatly improving the room temperature storage characteristics of the epoxy resin composition.
[0015]
The epoxy resin used in the present invention is not limited as long as it has two or more epoxy groups in one molecule. For example, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, naphthol novolak type epoxy resin , Phenol aralkyl type epoxy resin (having phenylene skeleton, biphenylene skeleton, etc.), naphthol aralkyl type epoxy resin (having phenylene skeleton, biphenylene skeleton, etc.), dicyclopentadiene modified phenol type epoxy resin, stilbene type epoxy resin, triphenolmethane Type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, and the like. These may be used alone or in combination of two or more.
[0016]
The phenol resin used in the present invention is not particularly limited as long as it has two or more phenolic hydroxyl groups in one molecule. For example, a phenol aralkyl resin (having a phenylene skeleton, a biphenylene skeleton, or the like), a naphthol aralkyl resin, or the like. (Having a phenylene skeleton, a biphenylene skeleton, etc.), terpene-modified phenolic resin, dicyclopentadiene-modified phenolic resin, bisphenol A, triphenolmethane type resin, etc. These may be used alone or in combination of two or more. You may use together.
[0017]
As a ratio (equivalent ratio) of the number of epoxy groups in all epoxy resins and the number of phenolic hydroxyl groups in all phenol resins and curing accelerator, (number of epoxy groups) / (number of phenolic hydroxyl groups) = 0.8 to 1.3 Preferably, out of this range, not only does the epoxy resin composition have low curability or glass transition temperature, but also the resistance of the semiconductor device increases with time at high temperature or high humidity. There is a possibility that a problem of deterioration in electrical moisture resistance reliability and high-temperature storage stability, in which an element conduction failure occurs, may occur.
[0018]
As the inorganic filler used in the present invention, those generally used for sealing materials can be widely used. For example, fused silica, spherical silica, crystalline silica, secondary agglomerated silica, porous silica, 2 Examples thereof include, but are not limited to, silica, alumina, silicon nitride and the like obtained by pulverizing secondary agglomerated silica or porous silica. These may be used alone or in combination of two or more. In particular, fused silica and crystalline silica are preferable.
The shape of the inorganic filler may be either crushed or spherical, but spherical fused silica from the viewpoint of high filling to improve solder crack resistance and the balance of fluidity, mechanical strength and thermal characteristics. Is preferred.
The maximum particle size is preferably 75 μm or less, and the average particle size is preferably 5 to 25 μm. A wide particle size distribution is effective for reducing the melt viscosity of the epoxy resin composition during molding. Further, a surface treated beforehand with a silane coupling agent or the like may be used.
[0019]
As a compounding quantity of an inorganic filler, 70 to 92 weight% is preferable in all the epoxy resin compositions. If the lower limit is not reached, the amount of epoxy resin or phenol resin used increases, resulting in poor high-temperature storage characteristics and electrical moisture resistance reliability. Further, the moisture absorption amount of the cured epoxy resin composition increases and the strength at the solder processing temperature decreases, so that the semiconductor device may be easily cracked during the solder processing. On the other hand, when the upper limit is exceeded, fluidity during molding of the epoxy resin composition is lowered, and there is a possibility that unfilling and pad shift of the semiconductor element are likely to occur. Adding as much inorganic filler as possible reduces the moisture absorption rate of the cured epoxy resin composition, improves the resistance to solder cracks, and improves the flame retardancy, allowing fluidity during molding. It is preferable to blend as much as possible within the range.
[0020]
The present invention achieves flame retardancy without containing halogen compounds and antimony compounds. The content of halogen atoms and antimony atoms in all epoxy resin compositions in the present invention is preferably 15 ppm or less and 75 ppm or less, respectively, more preferably 10 ppm or less and 50 ppm or less, respectively. This means that for economic reasons, halogen atoms and antimony atoms are not added, except for trace amounts of components mixed in the raw materials and production stage. On the other hand, the content of halogen atoms and antimony atoms is not included. Is within the above range, the effect of the curing accelerator represented by the general formula (1) can avoid adverse effects on electrical moisture resistance reliability and high-temperature storage properties.
In order to achieve flame retardancy without containing halogen compounds and antimony compounds, there are methods of blending metal hydroxides such as aluminum hydroxide and magnesium hydroxide, or using a flame retardant resin. However, in order to obtain flame retardancy using only metal hydroxide, it is necessary to add a relatively large amount of metal hydroxide. In this case, there is a problem of formability due to a decrease in curing characteristics and a linear expansion coefficient. Since a decrease in solder crack resistance due to the increase is seen, it is preferable to use a resin having flame retardancy of general formula (2) and general formula (3). Briefly explaining the cured product of the epoxy resin composition using the epoxy resin and phenol resin represented by the general formulas (2) and (3), the distance between the cross-linking points is long due to the hydrophobic structure between the epoxy groups and between the hydroxyl groups. Therefore, since the cured product of the epoxy resin composition is very soft at the temperature at the time of combustion, the pyrolysis gas generated inside the cured product at the time of combustion expands the layer of the cured product like rubber. It has a feature that it has a very high flame resistance due to the formation of a foamed layer, which blocks the oxygen to the unburned part by this foamed layer and has a heat insulation effect, and also has an elastic modulus at high temperatures exceeding the glass transition temperature. And the characteristics that it can withstand thermal stress during surface mounting soldering at 260 ° C. are also exhibited. Therefore, when the epoxy resin and the phenol resin represented by the general formula (2) and the general formula (3) are used, both flame retardancy and solder crack resistance have excellent characteristics without using a flame retardant. An epoxy resin composition is obtained. Moreover, also when using together another epoxy resin and a phenol resin, the epoxy resin shown by General formula (2) and the phenol resin shown by General formula (3) are respectively in all epoxy resins and all phenol resins. However, if it is contained in an amount of 70% by weight or more, these characteristics are not impaired. However, if it is less than 70% by weight, it is easy to burn, the moisture absorption rate is increased, and the solder crack resistance due to high elasticity is increased. A decline may occur.
[0021]
The epoxy resin composition of the present invention includes components (A) to (D), an inorganic ion exchanger such as bismuth oxide hydrate as necessary, and a coupling agent such as γ-glycidoxypropyltrimethoxysilane. , Colorants such as carbon black and bengara, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, mold release agents such as higher fatty acids and their metal salts or paraffin, and various additives such as antioxidants Can be blended.
The epoxy resin composition of the present invention is mixed at room temperature using a mixer, etc., with components (A) to (D) and other additives, and after heat-kneading and cooling with a kneader such as a roll, kneader or extruder. It is obtained by grinding. The epoxy resin composition of the present invention can be applied to covering, insulating, sealing, and the like of transistors and integrated circuits that are electrical or electronic components.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be molded and cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0022]
【Example】
Examples of the present invention will be described in detail below, but the present invention is not limited thereto. The blending ratio of each component is weight%.
<Example 1>
[Chemical 8]
[0023]
[Chemical 9]
[0024]
[Chemical Formula 10]
[0025]
Embedded image
[0026]
Embedded image
[0027]
Spherical fused silica (average particle size 22 μm) 87.00 wt%
Carbon black 0.30% by weight
Carnauba wax 0.30% by weight
Hydrotalcite 0.30% by weight
γ-glycidoxypropyltrimethoxysilane 0.40% by weight
Were mixed at room temperature using a mixer, kneaded using a roll at 70 to 110 ° C., crushed after cooling, and tableted to obtain an epoxy resin composition. This epoxy resin composition was evaluated by the following method. The results are shown in Table 1.
[0028]
Evaluation method: Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Curability: Using JSR Curlastometer IVPS, manufactured by Orientec Co., Ltd., reaches 90% of the torque after 5 minutes at a die diameter of 35 mm, an amplitude angle of 1 °, and a molding temperature of 175 ° C. The time until was used as an index of curability. That is, the slower the time to reach 90%, the worse the cure. The unit is seconds.
・ Bending strength during heating ・ Bending elastic modulus during heating: Using a low-pressure transfer molding machine, a test piece with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds (width 10 mm, thickness 4 mm, length 80 mm) ) Was processed as a post cure at 175 ° C. for 8 hours, and then the hot bending strength and the hot bending elastic modulus were measured according to JIS K 6911 (at 260 ° C.). All units are N / mm 2 .
-Moisture absorption: Using a low-pressure transfer molding machine, a disk-shaped test piece having a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 120 seconds, a diameter of 50 mm, and a thickness of 3 mm was molded, and the post-cure was 8 at 175 ° C. Time processed. The weight change before the moisture absorption treatment of the test piece and after the moisture absorption treatment for 168 hours in an environment of 85 ° C. and 85% relative humidity was measured, and the moisture absorption rate of the test piece was shown as a percentage. The unit is% by weight.
Solder crack resistance: 160 pLQFP (thickness 1.4 mm, chip size 7 mm × 7 mm) was molded using a low-pressure transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 9.3 MPa, and a curing time of 120 seconds. Five packages treated as post-cure at 175 ° C. for 8 hours were treated in an environment of 85 ° C. and a relative humidity of 60% for 168 hours, followed by IR reflow treatment (260 ° C.) (n = 5). The presence or absence of internal peeling or cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is i, i / 5 is displayed.
Flame retardancy: Using a low-pressure transfer molding machine, a test piece was molded at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, a curing time of 120 seconds, treated as a post cure at 175 ° C. for 8 hours, and then UL- A 94 vertical test (test piece thickness: 3.2 mm) was conducted to determine flame retardancy.
-Antimony atom, Br atomic weight: Using a disk-shaped test piece having a diameter of 50 mm and a thickness of 3 mm, the moisture absorption rate was measured with a fluorescent X-ray apparatus, and the test piece was irradiated with X-rays to measure the antimony atom and Br atomic weight. did. The unit is ppm.
High temperature storage property: 16pDIP (chip size 3 mm × 3.5 mm) was molded using a low pressure transfer molding machine at a mold temperature of 175 ° C., injection pressure, 6.9 MPa, and curing time of 120 seconds. After curing at 175 ° C for 8 hours as a post cure, a high temperature storage test (185 ° C, 1000 hours and 200 ° C, 500 hours) is performed, and a package whose electrical resistance value between wirings is increased by 20% from the initial value is determined to be defective did. The defect rate among 10 wirings is shown as a percentage. Units%.
-Moisture resistance reliability: Molding 16SOP (thickness 1.95mm, chip size 3.5mm x 3.0mm) with mold temperature 175 ° C, injection pressure 9.8MPa, curing time 120 seconds using low pressure transfer molding machine did. After processing at 175 ° C. for 8 hours as post-cure, a pressure cooker test (125 ° C., pressure 2.2 MPa) was performed, and the open circuit failure was measured and expressed as the failure occurrence time. The unit is time.
[0029]
< Reference Examples 2-7 and 9, Example 8 , Comparative Examples 1-6>
The raw materials used other than Example 1 are shown below.
Epoxy resin f represented by formula (9) (ICI melt viscosity at 150 ° C. 6.7 × 10 2 mPa · s, epoxy equivalent 273, Br 35 wt% contained)
Embedded image
[0030]
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU)
Aluminum hydroxide (average particle size 5μm)
Antimony trioxide [0031]
Epoxy resin compositions were obtained in the same manner as in Example 1 according to the formulations in Tables 1 and 2, and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
[Table 1]
[0032]
[Table 2]
[0033]
【The invention's effect】
According to the present invention, it is excellent in flame retardancy without using a conventional flame retardant, excellent in moldability and solder crack resistance, and further excellent in high temperature storage characteristics and electrical moisture resistance reliability. An epoxy resin composition can be obtained.

Claims (2)

(A)一般式(2)で示されるエポキシ樹脂と、式(6)で示されるエポキシ樹脂と、(B)一般式(3)で示されるフェノール樹脂と、(C)シリカ、アルミナまたは窒化珪素から選ばれる無機充填材と、(D)式(4)で示される硬化促進剤と、を必須成分とし、全エポキシ樹脂組成物に対し、(C)無機充填材の含有量が70〜92重量%、(D)式(4)で示される硬化促進剤の含有量が0.05〜0.5重量%であり、蛍光X線で測定したBr原子の含有量が15ppm以下、アンチモン原子の含有量が75ppm以下であることを特徴とする半導体封止用エポキシ樹脂組成物。
(A) an epoxy resin represented by the general formula (2), an epoxy resin represented by the formula (6), (B) a phenol resin represented by the general formula (3), and (C) silica, alumina or silicon nitride. And (D) the curing accelerator represented by the formula (4) as essential components, and the total amount of (C) inorganic filler is 70 to 92 weights based on the total epoxy resin composition. %, (D) the content of the curing accelerator represented by the formula (4) is 0.05 to 0.5% by weight, the content of Br atom measured by fluorescent X-ray is 15 ppm or less, the content of antimony atom An epoxy resin composition for encapsulating a semiconductor, wherein the amount is 75 ppm or less.
請求項1に記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1.
JP2002160925A 2002-06-03 2002-06-03 Epoxy resin composition and semiconductor device Expired - Fee Related JP4040367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160925A JP4040367B2 (en) 2002-06-03 2002-06-03 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160925A JP4040367B2 (en) 2002-06-03 2002-06-03 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004002574A JP2004002574A (en) 2004-01-08
JP4040367B2 true JP4040367B2 (en) 2008-01-30

Family

ID=30430140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160925A Expired - Fee Related JP4040367B2 (en) 2002-06-03 2002-06-03 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4040367B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY148463A (en) 2004-07-29 2013-04-30 Sumitomo Bakelite Co Epoxy resin composition and semiconductor device
JP4951953B2 (en) * 2005-12-13 2012-06-13 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4951954B2 (en) * 2005-12-13 2012-06-13 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
CN101107285B (en) * 2005-01-20 2011-01-12 住友电木株式会社 Epoxy resin composition, method for forming latent of the same and semiconductor device
JP2006206748A (en) * 2005-01-28 2006-08-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006213849A (en) * 2005-02-04 2006-08-17 Kyocera Chemical Corp Sealing resin composition and semiconductor sealing apparatus
JP2008231242A (en) * 2007-03-20 2008-10-02 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
KR101768287B1 (en) * 2014-11-28 2017-08-16 삼성에스디아이 주식회사 Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
KR101768305B1 (en) * 2015-04-15 2017-08-16 삼성에스디아이 주식회사 Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
KR102343438B1 (en) * 2019-10-10 2021-12-24 삼성에스디아이 주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same

Also Published As

Publication number Publication date
JP2004002574A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3582576B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2007013284A1 (en) Epoxy resin composition and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4040367B2 (en) Epoxy resin composition and semiconductor device
JP2004067717A (en) Epoxy resin composition and semiconductor device
JP4306329B2 (en) Epoxy resin composition and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JP2010031233A (en) Semiconductor sealing epoxy resin composition, and one side sealing type semiconductor device produced by sealing semiconductor device using the same
JP2003213084A (en) Epoxy resin composition and semiconductor device
JP2002179773A (en) Epoxy resin composition and semiconductor device
JP5673613B2 (en) Epoxy resin composition and semiconductor device
JP2001158852A (en) Epoxy resin composition and semiconductor device
JP2005225971A (en) Epoxy resin composition and semiconductor device
JP2014156607A (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JP2003238660A (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2008156403A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP2006111672A (en) Semiconductor sealing resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4040367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees