JP4040370B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4040370B2
JP4040370B2 JP2002183833A JP2002183833A JP4040370B2 JP 4040370 B2 JP4040370 B2 JP 4040370B2 JP 2002183833 A JP2002183833 A JP 2002183833A JP 2002183833 A JP2002183833 A JP 2002183833A JP 4040370 B2 JP4040370 B2 JP 4040370B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor device
formula
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002183833A
Other languages
Japanese (ja)
Other versions
JP2004026961A (en
Inventor
秀明 笹嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002183833A priority Critical patent/JP4040370B2/en
Publication of JP2004026961A publication Critical patent/JP2004026961A/en
Application granted granted Critical
Publication of JP4040370B2 publication Critical patent/JP4040370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、成形性に優れた半導体封止用エポキシ樹脂組成物及び耐半田性に優れた半導体装置に関するものである。
【0002】
【従来の技術】
近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、又半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田処理時に高温にさらされ、気化した水蒸気の爆発的応力により半導体装置にクラックが発生したり、或いは半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生することにより、電気的信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田性の向上が大きな課題となっている。
【0003】
耐半田性を向上させる手段として、種々の提案がなされており、代表的なものとしては、(1)低粘度の樹脂成分を使用して無機充填材を高充填化し、樹脂成分を減少させて、エポキシ樹脂組成物の硬化物を低熱膨張化、低吸湿化させる、(2)吸湿性が少なく可撓性を有する樹脂の使用等が挙げられる。低粘度樹脂成分としては、低粘度のエポキシ樹脂、フェノール樹脂や結晶性エポキシ樹脂が挙げられるが、軟化点が低いものは常温で液状もしくは半固形のため取扱いに難点がある。一方結晶性エポキシ樹脂として代表的なビフェニル型エポキシ樹脂は、融点が100℃以上あり混練時に十分に溶けきれず分散が不十分な場合があった。又ビフェニル型エポキシ樹脂は、硬化剤であるフェノール樹脂との反応が遅いため硬化が不十分となる傾向にあり、金型からの離型時に半導体装置が金型に付着したり、又は半導体装置の割れ・欠けが発生する等の成形性に問題があった。このため成形性と耐半田性に優れたエポキシ樹脂組成物が求められている。
【0004】
【発明が解決しようとする課題】
本発明は、硬化が速く、成形性、耐半田性に優れた特性を有する半導体封止用エポキシ樹脂組成物及びこれを用いて半導体素子を封止してなる半導体装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、
[1] (A)示差走査熱量計を用い昇温速度5℃/分で測定して得られる融点が40〜50℃である式(1)で示される結晶性エポキシ樹脂、(B)式(7)で表されるフェノール樹脂、(C)1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート塩または2−メチルイミダゾールから選ばれる硬化促進剤及び(D)球状溶融シリカ、結晶シリカ、2次凝集シリカまたは水酸化アルミニウムから選ばれる無機充填材を必須成分とし、無機充填材が全エポキシ樹脂組成物中87〜94重量%であることを特徴とする半導体封止用エポキシ樹脂組成物、
【0006】
【化1】
【化2】
(nは平均値で1〜7の整数)
【0009】
[3] 第[1]項に記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0010】
【発明の実施の形態】
本発明に用いられる式(1)で示されるエポキシ樹脂を含む結晶性エポキシ樹脂は、1分子中に2個のエポキシ基を有する2官能型エポキシ樹脂で、従来の結晶性ビフェニル型エポキシ樹脂に比べ、立体障害が少なく硬化剤であるフェノール樹脂との反応が早く硬化性が高いため、成形性に優れている。通常ビスフェノールA型エポキシ樹脂は、分子量分布がブロードなため融点は持たず、数平均分子量の差により異なる軟化点を持つ。即ち平均分子量が小さい樹脂(数平均分子量が700以下)は、低粘度であるが常温で液状を示すため、取扱い作業性が悪く、得られたエポキシ樹脂組成物が固結しやすく好ましくない。分子量が大きい樹脂(数平均分子量が900以上)は、常温で固体であるが高粘度であり、これを用いたエポキシ樹脂組成物は流動性が十分に得られない。本発明に用いる式(1)で示されるエポキシ樹脂を含む結晶性エポキシ樹脂は、ほぼ単一分子量からなるものであり、取扱い作業性等の点から、その融点としては40〜50℃が好ましい。この範囲の融点ならば、常温では固形であり取扱い作業性が容易で、かつ溶融した状態では結晶性エポキシ樹脂の特徴である溶融粘度が低く、流動性に優れているため、無機充填材を多く配合することができ、エポキシ樹脂組成物の硬化物の低吸湿化及び低熱膨張化が図られ、耐半田性を向上させることができる。これらのエポキシ樹脂は、ジャパンエポキシレジン(株)からYL6810として市販されている。YL6810の150℃での溶融粘度は、0.1ポイズ以下である。これに対し結晶性ビフェニル型エポキシ樹脂YX4000H(ジャパンエポキシレジン(株))の150℃での溶融粘度は0.2ポイズである。
本発明でのエポキシ樹脂の融点とは、示差走査熱量計(セイコー電子工業(株)・製)を用い、エポキシ樹脂10mg前後を精秤し、昇温速度5℃/分で測定した吸熱ピークの温度を言う。
【0011】
式(1)で示されるエポキシ樹脂を含む結晶性エポキシ樹脂の特性を損なわない範囲で、他のエポキシ樹脂と併用することができる。併用できるエポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル(フェニレン骨格、ジフェニレン骨格を含む)型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、ヒドロキノン型エポキシ樹脂等が挙げられ、これらは単独でも混合して用いても良い。
【0012】
本発明に用いられるフェノール樹脂は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、一般式(2)で示されるフェノール樹脂、一般式(3)で示されるフェノール樹脂等が挙げられ、式(1)で示されるエポキシ樹脂を含む結晶性エポキシ樹脂の特徴を最大限発現させるには、分子内の水酸基が少ないために硬化物の吸水率が小さく、又低粘度化も可能であることから、特に一般式(2)で示されるフェノール樹脂、一般式(3)で示されるフェノール樹脂が好ましい。
一般式(2)又は一般式(3)で示されるフェノール樹脂中のAは、置換もしくは無置換の芳香族炭化水素に1個又は2個の水酸基を有する芳香族化合物であり、芳香族化合物としてはフェノール、クレゾール類、レゾルシン、カテコール、ナフトール、ジナフトール等が挙げられ、硬化性や吸水率の点からフェノール、ナフトールが好ましい。
【0013】
本発明で用いられる硬化促進剤は、前記エポキシ樹脂とフェノール樹脂との架橋反応を促進するものであればよく、例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミジン系化合物、トリフェニルホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート塩等の有機リン系化合物、2-メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は単独でも混合して用いても差し支えない。
【0014】
本発明で用いられる無機充填材については、特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカが好ましい。球状シリカの形状としては、流動性向上のために限りなく真球状であり、且つ粒度分布がブロードであることが好ましい。
【0015】
無機充填材の含有量は、全エポキシ樹脂組成物中87〜94重量%であることが必須である。87重量%未満だとエポキシ樹脂組成物が固結し取扱い作業性が悪化する他、エポキシ樹脂組成物の硬化物の低吸湿性が得られず、半導体装置の耐半田性が不十分となり、94重量%を越えるとエポキシ樹脂組成物の流動性が低下し、成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じる。
又必要に応じて無機充填材をカップリング剤やエポキシ樹脂或いはフェノール樹脂等で予め処理して用いても良く、処理の方法としては、例えば溶剤を用いて混合した後に溶媒を除去する方法や直接無機充填材に添加し、混合機を用いて処理する方法等がある。
【0016】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他、必要に応じて臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、酸化ビスマス水和物等の無機イオン交換体、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を適宜配合しても差し支えない。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分及びその他の添加剤等をミキサーを用いて常温混合し、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形すればよい。
【0017】
【実施例】
以下に、本発明を製造例、実施例及びその比較例を挙げて詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
なお結晶性エポキシ樹脂の融点は、前記方法で測定した。
実施例及び比較例で用いたエポキシ樹脂、フェノール樹脂の略号及び構造を、まとめて以下に示す。
【0018】
エポキシ樹脂(1):式(4)で示されるエポキシ樹脂を主成分とする樹脂(ジャパンエポキシレジン(株)製、YL6810)(融点45℃、エポキシ当量:172g/eq)
【0019】
【化5】
【0020】
エポキシ樹脂(2):式(5)で示されるエポキシ樹脂を主成分とする樹脂(ジャパンエポキシレジン(株)製、YX4000K)(融点105℃、エポキシ当量:185g/eq)
【0021】
【化6】
【0022】
フェノール樹脂(1):式(6)で示されるフェノール樹脂(軟化点70℃、水酸基当量170g/eq)
【0023】
【化7】
【0024】
フェノール樹脂(2):式(7)で示されるフェノール樹脂(軟化点87℃、水酸基当量210g/eq)
【0025】
【化8】
【0026】
フェノール樹脂(3):式(8)で示されるフェノール樹脂(軟化点67℃、水酸基当量203g/eq)
【0027】
【化9】
【0028】
エポキシ樹脂組成物の製造例
配合割合は重量部とする。
参考例1
エポキシ樹脂(1) 5.51重量部
フェノール樹脂(1) 5.44重量部
トリフェニルホスフィン 0.15重量部
溶融球状シリカ(平均粒径15μm) 88.00重量部
γ−グリシドキシプロピルトリメトキシシラン 0.30重量部
カーボンブラック 0.30重量部
カルナバワックス 0.30重量部
を、常温でミキサーを用いて混合し、70〜120℃で2本ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0029】
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で測定した。単位はcm。
硬化トルク:キュラストメータ((株)オリエンテック・製、JSRキュラストメータIVPS型)を用い、金型温度175℃、加熱開始90秒後のトルクを求めた。キュラストメータにおけるトルクは硬化性のパラメータであり、数値の大きい方が硬化性良好である。単位はN・m。
吸湿率:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間2分で直径50mm、厚さ3mmの円盤を成形し、175℃、8時間で後硬化し、更に85℃、相対湿度60%の環境下で168時間放置し、重量変化を測定して吸湿率を求めた。単位は重量%。
耐半田性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間2分で144pQFP(20×20×1.7mm厚さ)を成形し、175℃、8時間で後硬化させ、85℃、相対湿度65%及び85℃、相対湿度85%の環境下で各々168時間放置し、IRリフロー処理(240℃)を行った。処理後の内部の剥離及びクラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/10と表示する。
離型性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間2分で144pQFP(20×20×1.7mm厚さ)を10回連続で成形した。この10回の成形で、離型時に金型に付着したり、成形品に割れ・欠けが発生しなかったものを○と判定した。
金型汚れ:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間2分で144pQFP(20×20×1.7mm厚さ)を500回連続で成形した。成形品表面と金型表面の両方に白化があるものを×、いずれかに白化があるものを△、いずれにも白化のないものを○と判定した。
【0030】
実施例2、参考例3〜6、比較例1〜8
表1、表2の配合に従って、参考例1と同様にエポキシ樹脂組成物を得、参考例1と同様にして評価した。結果を表1、表2に示す。
なお参考例4、比較例4に用いたフェノールノボラック樹脂の水酸基当量は104g/eqである。比較例8に用いた固形ビスフェノールA型エポキシ樹脂の軟化点は64℃、エポキシ当量は470g/eqである。
【0031】
【表1】
【0032】
【表2】
【0033】
【発明の効果】
本発明に従うと、硬化が速く、金型汚れが少なく成形性に優れ、かつ低吸湿、低熱膨張に優れた特性を有したエポキシ樹脂組成物が得られ、これを用いて半導体素子を封止してなる半導体装置は耐半田性に優れている。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in moldability and a semiconductor device excellent in solder resistance.
[0002]
[Prior art]
In recent years, electronic devices have become smaller, lighter, and higher in performance, and semiconductor elements have been increasingly integrated, and surface mounting of semiconductor devices has been promoted. The demand for things has become increasingly severe. In particular, surface mounting of semiconductor devices has become common, and moisture-absorbed semiconductor devices are exposed to high temperatures during soldering, and cracks are generated in the semiconductor devices due to the explosive stress of vaporized water vapor, or semiconductors Debonding occurs at the interface between the element or lead frame and the cured product of the epoxy resin composition, resulting in defects that greatly impair electrical reliability, and preventing these defects, that is, improving solder resistance, is a major issue. It has become.
[0003]
Various proposals have been made as means for improving the soldering resistance. As typical examples, (1) using a low-viscosity resin component to increase the amount of inorganic filler and reducing the resin component (2) Use of a resin having low hygroscopicity and flexibility, for example, to lower the thermal expansion and moisture absorption of the cured product of the epoxy resin composition. Examples of the low-viscosity resin component include low-viscosity epoxy resins, phenol resins, and crystalline epoxy resins, but those having a low softening point are difficult to handle because they are liquid or semi-solid at room temperature. On the other hand, a biphenyl type epoxy resin typical as a crystalline epoxy resin has a melting point of 100 ° C. or higher and may not be sufficiently melted during kneading and may not be sufficiently dispersed. In addition, biphenyl type epoxy resin tends to be insufficiently cured because of its slow reaction with phenolic resin, which is a curing agent, and the semiconductor device adheres to the mold when released from the mold, or the semiconductor device There were problems with formability such as cracking and chipping. For this reason, an epoxy resin composition excellent in moldability and solder resistance is required.
[0004]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for encapsulating a semiconductor that has a fast curing property and excellent properties in moldability and solder resistance, and a semiconductor device in which a semiconductor element is encapsulated using the same.
[0005]
[Means for Solving the Problems]
The present invention
[1] (A) A crystalline epoxy resin represented by formula (1) having a melting point of 40 to 50 ° C. obtained by measurement at a heating rate of 5 ° C./min using a differential scanning calorimeter, formula (B) ( 7) selected from phenol resin represented by (C) 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, tetraphenylphosphonium tetraphenylborate salt or 2-methylimidazole A curing accelerator and (D) an inorganic filler selected from spherical fused silica, crystalline silica, secondary agglomerated silica or aluminum hydroxide are essential components, and the inorganic filler is 87 to 94% by weight in the total epoxy resin composition. An epoxy resin composition for semiconductor encapsulation, characterized in that
[0006]
[Chemical 1]
[Chemical 2]
(N is an average value and an integer of 1 to 7)
[0009]
[3] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition according to the item [1] ,
It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The crystalline epoxy resin containing the epoxy resin represented by the formula (1) used in the present invention is a bifunctional epoxy resin having two epoxy groups in one molecule, and compared with a conventional crystalline biphenyl type epoxy resin. Because of its low steric hindrance and quick reaction with the phenolic resin, which is a curing agent, and high curability, it has excellent moldability. Usually, bisphenol A type epoxy resins do not have a melting point because the molecular weight distribution is broad, and have different softening points depending on the number average molecular weight difference. That is, a resin having a small average molecular weight (a number average molecular weight of 700 or less) is low in viscosity but is liquid at room temperature. Therefore, the handling workability is poor, and the obtained epoxy resin composition is easily solidified. A resin having a large molecular weight (number average molecular weight of 900 or more) is solid at room temperature but has high viscosity, and an epoxy resin composition using the resin cannot provide sufficient fluidity. The crystalline epoxy resin containing the epoxy resin represented by the formula (1) used in the present invention has a substantially single molecular weight, and its melting point is preferably 40 to 50 ° C. from the viewpoint of handling workability. If the melting point is within this range, it is solid at room temperature, easy to handle, and in the melted state, it has a low melt viscosity, which is a characteristic of crystalline epoxy resin, and has excellent fluidity. It can mix | blend, the low moisture absorption and low thermal expansion of the hardened | cured material of an epoxy resin composition are achieved, and solder resistance can be improved. These epoxy resins are commercially available as YL6810 from Japan Epoxy Resin Co., Ltd. The melt viscosity of YL6810 at 150 ° C. is 0.1 poise or less. On the other hand, the melt viscosity at 150 ° C. of the crystalline biphenyl type epoxy resin YX4000H (Japan Epoxy Resin Co., Ltd.) is 0.2 poise.
The melting point of the epoxy resin in the present invention refers to the endothermic peak measured with a differential scanning calorimeter (Seiko Denshi Kogyo Co., Ltd.) using about 10 mg of epoxy resin and measured at a heating rate of 5 ° C./min. Say temperature.
[0011]
In the range which does not impair the characteristic of the crystalline epoxy resin containing the epoxy resin shown by Formula (1), it can use together with another epoxy resin. Examples of the epoxy resins that can be used in combination include phenol novolac type epoxy resins, cresol novolac type epoxy resins, phenol aralkyl (including phenylene skeleton and diphenylene skeleton) type epoxy resins, biphenyl type epoxy resins, dicyclopentadiene modified phenol type epoxy resins, Phenolmethane type epoxy resin, naphthalene ring-containing epoxy resin, hydroquinone type epoxy resin and the like may be mentioned, and these may be used alone or in combination.
[0012]
The phenol resin used in the present invention refers to monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure thereof are not limited. For example, phenol novolak resin, cresol novolak Resin, dicyclopentadiene-modified phenol resin, terpene-modified phenol resin, phenol resin represented by general formula (2), phenol resin represented by general formula (3), and the like, and epoxy resin represented by formula (1) In order to maximize the characteristics of the crystalline epoxy resin contained, since the water absorption of the cured product is small because the number of hydroxyl groups in the molecule is small and the viscosity can be lowered, it is particularly shown by the general formula (2). The phenol resin represented by the general formula (3) is preferred.
A in the phenol resin represented by the general formula (2) or the general formula (3) is an aromatic compound having one or two hydroxyl groups in a substituted or unsubstituted aromatic hydrocarbon. Includes phenol, cresols, resorcin, catechol, naphthol, dinaphthol and the like, and phenol and naphthol are preferable from the viewpoint of curability and water absorption.
[0013]
The curing accelerator used in the present invention may be any accelerator that promotes the crosslinking reaction between the epoxy resin and the phenol resin. For example, amidine compounds such as 1,8-diazabicyclo (5,4,0) undecene-7. Organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or in combination.
[0014]
There is no restriction | limiting in particular about the inorganic filler used by this invention, The thing generally used for the sealing material can be used. Examples thereof include fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, aluminum hydroxide, and the like, and fused spherical silica is particularly preferable. As the shape of the spherical silica, it is preferable that the shape is spherical as much as possible in order to improve fluidity, and the particle size distribution is broad.
[0015]
It is essential that the content of the inorganic filler is 87 to 94% by weight in the total epoxy resin composition. If it is less than 87% by weight, the epoxy resin composition solidifies and the handling workability deteriorates, and the low hygroscopicity of the cured product of the epoxy resin composition cannot be obtained, resulting in insufficient solder resistance of the semiconductor device. If it exceeds wt%, the fluidity of the epoxy resin composition is lowered, resulting in poor filling during molding, and inconveniences such as deformation of gold wires in the semiconductor device due to increased viscosity.
Further, if necessary, the inorganic filler may be used after being pretreated with a coupling agent, epoxy resin, phenol resin or the like. As a treatment method, for example, a method of removing the solvent after mixing with a solvent or a direct method may be used. There is a method of adding to an inorganic filler and processing using a mixer.
[0016]
In addition to the components (A) to (D), the epoxy resin composition of the present invention includes a brominated epoxy resin, an antimony oxide, a flame retardant such as a phosphorus compound, and an inorganic ion exchanger such as a bismuth oxide hydrate. , Coupling agents such as γ-glycidoxypropyltrimethoxysilane, colorants such as carbon black and bengara, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, higher fatty acids and their metal salts or Various additives such as a release agent such as paraffin and an antioxidant may be appropriately blended.
In the epoxy resin composition of the present invention, the components (A) to (D) and other additives are mixed at room temperature using a mixer, melt-kneaded in a kneader such as a roll, kneader or extruder, and pulverized after cooling. Is obtained.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0017]
【Example】
Hereinafter, the present invention will be described in detail with reference to Production Examples, Examples, and Comparative Examples, but the present invention is not limited to these Examples.
The melting point of the crystalline epoxy resin was measured by the above method.
The abbreviations and structures of epoxy resins and phenol resins used in Examples and Comparative Examples are collectively shown below.
[0018]
Epoxy resin (1): Resin mainly composed of epoxy resin represented by formula (4) (manufactured by Japan Epoxy Resin Co., Ltd., YL6810) (melting point: 45 ° C., epoxy equivalent: 172 g / eq)
[0019]
[Chemical formula 5]
[0020]
Epoxy resin (2): Resin mainly composed of epoxy resin represented by formula (5) (manufactured by Japan Epoxy Resin Co., Ltd., YX4000K) (melting point 105 ° C., epoxy equivalent: 185 g / eq)
[0021]
[Chemical 6]
[0022]
Phenol resin (1): Phenol resin represented by formula (6) (softening point 70 ° C., hydroxyl group equivalent 170 g / eq)
[0023]
[Chemical 7]
[0024]
Phenol resin (2): Phenol resin represented by formula (7) (softening point 87 ° C., hydroxyl group equivalent 210 g / eq)
[0025]
[Chemical 8]
[0026]
Phenol resin (3): Phenol resin represented by formula (8) (softening point 67 ° C., hydroxyl group equivalent 203 g / eq)
[0027]
[Chemical 9]
[0028]
The blending ratio of the production examples of the epoxy resin composition is parts by weight.
Reference example 1
Epoxy resin (1) 5.51 parts by weight Phenolic resin (1) 5.44 parts by weight Triphenylphosphine 0.15 parts by weight Fused spherical silica (average particle size 15 μm) 88.00 parts by weight γ-glycidoxypropyltrimethoxy Silane 0.30 parts by weight Carbon black 0.30 parts by weight Carnauba wax 0.30 parts by weight are mixed at room temperature using a mixer, kneaded at 70 to 120 ° C. using two rolls, cooled and pulverized. An epoxy resin composition was obtained. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0029]
Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. The unit is cm.
Curing torque: Using a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter IVPS type), the mold temperature was 175 ° C., and the torque 90 seconds after the start of heating was determined. The torque in the curast meter is a parameter of curability, and the larger the value, the better the curability. The unit is N · m.
Moisture absorption: Using a transfer molding machine, a disk with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 2 minutes was formed into a disk with a diameter of 50 mm and a thickness of 3 mm, and post-cured at 175 ° C. for 8 hours. The sample was allowed to stand for 168 hours in an environment of 85 ° C. and a relative humidity of 60%, and the weight change was measured to obtain the moisture absorption rate. The unit is% by weight.
Solder resistance: Using a transfer molding machine, 144 pQFP (20 × 20 × 1.7 mm thickness) was molded at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes, and at 175 ° C. for 8 hours. It was post-cured and left in an environment of 85 ° C., relative humidity 65% and 85 ° C., relative humidity 85% for 168 hours, respectively, and IR reflow treatment (240 ° C.) was performed. The presence or absence of internal peeling and cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.
Mold releasability: Using a transfer molding machine, 144 pQFP (20 × 20 × 1.7 mm thickness) was continuously molded 10 times with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes. In this 10 times molding, it was judged as “Good” if it adhered to the mold at the time of mold release or cracked or chipped in the molded product.
Mold dirt: Using a transfer molding machine, 144 pQFP (20 × 20 × 1.7 mm thickness) was continuously molded 500 times at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes. The case where both the surface of the molded product and the mold surface were whitened was judged as x, the case where any of them was whitened as Δ, and the case where none of them was whitened as ○.
[0030]
Example 2 , Reference Examples 3-6, Comparative Examples 1-8
Table 1, according to the formulation of Table 2, similarly to obtain an epoxy resin composition as in Reference Example 1, was evaluated in the same manner as in Reference Example 1. The results are shown in Tables 1 and 2.
The hydroxyl group equivalent of the phenol novolac resin used in Reference Example 4 and Comparative Example 4 is 104 g / eq. The softening point of the solid bisphenol A type epoxy resin used in Comparative Example 8 is 64 ° C., and the epoxy equivalent is 470 g / eq.
[0031]
[Table 1]
[0032]
[Table 2]
[0033]
【The invention's effect】
According to the present invention, an epoxy resin composition having a property of fast curing, less mold contamination, excellent moldability, and excellent low moisture absorption and low thermal expansion is obtained, which is used to seal a semiconductor element. The resulting semiconductor device has excellent solder resistance.

Claims (2)

(A)示差走査熱量計を用い昇温速度5℃/分で測定して得られる融点が40〜50℃である式(1)で示される結晶性エポキシ樹脂、(B)式(7)で表されるフェノール樹脂、(C)1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート塩または2−メチルイミダゾールから選ばれる硬化促進剤及び(D)球状溶融シリカ、結晶シリカ、2次凝集シリカまたは水酸化アルミニウムから選ばれる無機充填材を必須成分とし、無機充填材が全エポキシ樹脂組成物中87〜94重量%であることを特徴とする半導体封止用エポキシ樹脂組成物。
(nは平均値で1〜7の整数)
(A) A crystalline epoxy resin represented by formula (1) having a melting point of 40 to 50 ° C. obtained by measuring at a heating rate of 5 ° C./min using a differential scanning calorimeter, (B) in formula (7) A phenolic resin represented by (C) 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, tetraphenylphosphonium tetraphenylborate salt or 2-methylimidazole And (D) an inorganic filler selected from spherical fused silica, crystalline silica, secondary agglomerated silica or aluminum hydroxide is an essential component, and the inorganic filler is 87 to 94% by weight in the total epoxy resin composition. An epoxy resin composition for semiconductor encapsulation.
(N is an average value and an integer of 1 to 7)
請求項1に記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1.
JP2002183833A 2002-06-25 2002-06-25 Epoxy resin composition and semiconductor device Expired - Fee Related JP4040370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183833A JP4040370B2 (en) 2002-06-25 2002-06-25 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183833A JP4040370B2 (en) 2002-06-25 2002-06-25 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004026961A JP2004026961A (en) 2004-01-29
JP4040370B2 true JP4040370B2 (en) 2008-01-30

Family

ID=31179873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183833A Expired - Fee Related JP4040370B2 (en) 2002-06-25 2002-06-25 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4040370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069441B2 (en) * 2006-09-26 2012-11-07 パナソニック株式会社 Epoxy resin composition for manufacturing single-side sealed semiconductor device and single-side sealed semiconductor device

Also Published As

Publication number Publication date
JP2004026961A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
TWI388620B (en) Epoxy resin composition for encapsulating semiconductors, and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP2004067717A (en) Epoxy resin composition and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2003213084A (en) Epoxy resin composition and semiconductor device
JP4014311B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JP2006037009A (en) Epoxy resin composition and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JPH05206331A (en) Resin composition for sealing semiconductor
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP5191072B2 (en) Epoxy resin composition and semiconductor device
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP4379972B2 (en) Epoxy resin composition and semiconductor device
JP2003238660A (en) Epoxy resin composition and semiconductor device
JP5673613B2 (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2001335621A (en) Epoxy resin composition and semiconductor device
JP2002293886A (en) Epoxy resin composition and semiconductor device
JPH07126490A (en) Epoxy resin composition
JP2003212962A (en) Epoxy resin composition and semiconductor device
JP2001214036A (en) Epoxy resin composition and semiconductor device
JPH09208665A (en) Epoxy resin composition for semiconductor sealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4040370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees