JP4379972B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4379972B2
JP4379972B2 JP28405399A JP28405399A JP4379972B2 JP 4379972 B2 JP4379972 B2 JP 4379972B2 JP 28405399 A JP28405399 A JP 28405399A JP 28405399 A JP28405399 A JP 28405399A JP 4379972 B2 JP4379972 B2 JP 4379972B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
fatty acid
carbon atoms
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28405399A
Other languages
Japanese (ja)
Other versions
JP2001106871A (en
Inventor
伸一 前佛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP28405399A priority Critical patent/JP4379972B2/en
Publication of JP2001106871A publication Critical patent/JP2001106871A/en
Application granted granted Critical
Publication of JP4379972B2 publication Critical patent/JP4379972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、離型性に優れた半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、又、半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。特に半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田処理時に高温にさらされ、気化した水蒸気の爆発的応力により半導体装置にクラックが発生したり、或いは半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生することにより、電気的信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田クラック性の向上が大きな課題となっている。
この耐半田クラック性を向上させる手段として、種々の提案がなされており、代表的なものとしては、(1)低粘度の樹脂成分を使用して無機充填材を高充填化し、樹脂成分を減少させて、エポキシ樹脂組成物の硬化物を低熱膨張化、低吸湿化させる、(2)吸湿性が少なく可撓性を有する樹脂の使用等が挙げられる。低粘度樹脂成分としては、低粘度のエポキシ樹脂や結晶性エポキシ樹脂、硬化剤としての低粘度のフェノール樹脂が挙げられ、これらは一般的に低分子量化合物であり、このため成形時の加熱により3次元化して得られる架橋構造の架橋密度は低くなり、機械的強度や熱時弾性率が低い硬化物となるため、金型からの離型時に硬化物が金型に付着したり、或いは成形品の割れ・欠けが発生する等、離型性に劣るという欠点を有する。
吸湿性が少なく可撓性を有する樹脂としては、フェノールアラルキル樹脂、ナフトールアラルキル樹脂等があり、耐半田クラック性の向上には効果があるが、このタイプの樹脂を用いた場合、硬化物が柔軟な構造を持つという特徴がある反面、熱時の剛性に欠け、又、硬化が遅く、離型性に劣るという欠点がある。
【0003】
離型性を向上させるためには離型剤を多量に配合することが対策として挙げられるが、一方、多量の離型剤が、半導体装置内部の半導体素子やそれを搭載するリードフレームとエポキシ樹脂組成物の硬化物との界面に移行するため、これら界面の接着性を著しく損なう結果になる。このことにより、半導体装置を吸湿後、半田処理すると、これらの界面で剥離が発生したり、その剥離に起因するクラックが発生することがある。
このため、離型性と耐半田クラック性が両立するエポキシ樹脂組成物の開発が望まれていた。
【0004】
【発明が解決しようとする課題】
本発明は、流動性、離型性に優れるとともに、型汚れが少なく耐半田クラック性に優れた半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明は(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機質充填材、及び(E)炭素数12〜24の飽和脂肪酸(a)と炭素数12〜40の脂肪酸アマイド(b)が重量比(a/b)30/70〜70/30の割合で含まれる離型剤を必須成分とし、脂肪酸アマイド(b)がステアリン酸モノアマイド、N−ステアリン酸モノメチロールアマイドから選ばれ、離型剤(E)の添加量が全エポキシ樹脂組成物中に0.05〜0.4重量%であることを特徴とし、特に、炭素数12〜24の飽和脂肪酸(a)と炭素数12〜40の脂肪酸アマイド(b)が重量比(a/b)30/70〜70/30の割合で含まれる離型剤(E)と、エポキシ樹脂(A)及び/又はフェノール樹脂(B)とを予め溶融混合した請求項1記載の半導体封止用エポキシ樹脂組成物及びこれを用いて半導体素子を封止してなることを特徴とする半導体装置である。
【0006】
【発明の実施の形態】
本発明で用いられるエポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは単独でも混合して用いてもよい。
これらの内では、常温では結晶性の固体であるが、融点を越えると極めて低粘度の液状となり、無機充填材を高充填化できるビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂が好ましい。
ビフェニル型エポキシ樹脂としては、例えば、3,3’,5,5’−テトラメチルビフェノールジグリシジルエーテル、ビフェノールジグリシジルエーテル等が挙げられる。
その他のエポキシ樹脂も極力粘度の低いものを使用することが望ましい。低粘度のエポキシ樹脂を用いることにより、無機充填材を高充填化でき、耐半田クラック性を向上できるが、架橋密度が低くなるため、離型性に難点があり、本発明の離型剤と併用することにより、離型性を改善できる。
【0007】
本発明で用いられるフェノール樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン及び/又はジフェニレン骨格を有するフェノールアラルキル樹脂等が挙げられ、これらは単独でも混合して用いてもよい。無機充填材の高充填化のためには、エポキシ樹脂と同様に、低粘度のものが好ましい。
可撓性、低吸湿性のためには、フェニレン及び/又はジフェニレン骨格を有するフェノールアラルキル樹脂の使用が望ましい。
低粘度、可撓性を有するフェノール樹脂は、エポキシ樹脂の場合と同様に架橋密度が低くなるため、離型性に難点があり、本発明の離型剤と併用することにより、離型性を改善できる。
【0008】
本発明で用いられる硬化促進剤としては、前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒となり得るものを指し、例えば、トリブチルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミン系化合物、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。又、これらの硬化促進剤は単独でも混合して用いてもよい。
【0009】
本発明で用いられる無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。
無機質充填材の配合量を特に大きくする場合は、溶融シリカを用いるのが一般的である。溶融シリカは、破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つエポキシ樹脂組成物の溶融粘度の上昇を抑えるためには、球状のものを主に用いる方が好ましい。更に球状溶融シリカの配合量を高めるためには、球状溶融シリカの粒度分布がより広くなるように調整することが望ましい。
【0010】
本発明で用いられる離型剤は、炭素数12〜24の飽和脂肪酸と炭素数12〜40の脂肪酸アマイドとを特定の割合で含むものである。
炭素数12〜24の飽和脂肪酸としては、例えば、ステアリン酸、パルミチン酸等が挙げられ、これらは単独でも混合して用いてもよい。炭素数11以下のものだと、分子量が低すぎるため、連続成形時に離型剤自身の耐熱性不足による分解が進み、型汚れ、離型不良を起こし、又、炭素数25以上のものだと、融点が高くなり、溶融時の粘度を十分に低下させることができず十分な流動性が得られないので好ましくない。
【0011】
炭素数12〜40の脂肪酸アマイドとしては、例えば、ステアリン酸モノアマイド、N−ステアリン酸モノメチロールアマイド、N,N’−メチレンビスステアリン酸アマイド、N,N’−エチレンビスステアリン酸アマイド等が挙げられ、これらは単独でも混合して用いてもよい。ビフェニル型エポキシ樹脂を用いる場合は、特に高温時での離型性が悪く、高温での離型性を補うために、本発明の炭素数12〜40の脂肪酸アマイドとの併用が必須となる。炭素数11以下のものだと十分な離型性が得られず、又、炭素数41以上のものだと流動性が低下するため好ましくない。モノアマイド、ビスアマイドのいずれでも使用可能であるが、連続成形時の型汚れ防止のためには、耐熱性の良いビスアマイドがより好ましい。
【0012】
炭素数12〜24の飽和脂肪酸(a)と炭素数12〜40の脂肪酸アマイド(b)の配合割合としては、重量比(a/b)で30/70〜70/30であることが必須であり、飽和脂肪酸分がこの範囲より多すぎると、粘度が低下し流動性は出やすいものの、十分な離型性が得られないので好ましくない。又、飽和脂肪酸分がこの範囲より少なすぎると、離型性は十分であるが、粘度が高くなり、十分な流動性が得られないので好ましくない。
本発明の炭素数12〜24の飽和脂肪酸及び炭素数12〜40の脂肪酸アマイドの特性を損なわない範囲で、他の離型剤を併用することもできる。併用できるものとしては、例えば、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、高級脂肪酸、ステアリン酸亜鉛等の高級脂肪酸の金属塩類もしくはパラフィン等が挙げられる。
又、本発明の離型剤の添加量としては、全エポキシ樹脂組成物中に0.05〜0.4重量%が好ましい。0.05重量%未満だと、十分な流動性と離型性が得られず、0.4重量%を越えると、成形時に半導体装置内部の半導体素子やそれを搭載するリードフレームとエポキシ樹脂組成物の硬化物との界面に移行するため、接着性を著しく損ない、耐半田クラック性を低下させるので好ましくない。
【0013】
一般的に離型剤は、添加量を増加させるに従い、成形時に半導体装置内部の半導体素子やそれを搭載するリードフレームとエポキシ樹脂組成物の硬化物との界面に移行するため、これらの界面の接着性を著しく損ない、その結果、耐半田クラック性を低下させることとなる。そこで、なるべく離型剤を少なくし、有効にエポキシ樹脂組成物中に分散させるために、エポキシ樹脂(A)、フェノール樹脂(B)、離型剤(E)を予め溶融混合することが好ましい。
予め溶融混合する温度としては、(A)、(B)、(E)成分が十分に溶融する以上の温度、即ちそれぞれの融点又は軟化点よりも高い温度が必要であり、例えば、120〜160℃が好ましいが、この温度範囲に限定されるものではない。
溶融混合する組み合わせとしては、(A)と(E)、(B)と(E)、(A)と(B)と(E)成分のいずれの組み合わせでも良いが、特に、(A)と(B)と(E)成分の全てを溶融混合することが好ましい。
【0014】
本発明のエポキシ樹脂組成物は、(A)〜(E)成分を必須成分とするが、これ以外にも必要に応じてカップリング剤、臭素化エポキシ樹脂、三酸化アンチモン、リン化合物等の難燃剤、カーボンブラック等の着色剤、シリコーンオイル、シリコーンゴム、合成ゴム等の低応力剤、酸化防止剤等の各種添加剤を適宜配合してもよい。
本発明のエポキシ樹脂組成物は、(A)〜(E)成分、及びその他の添加剤等をミキサー等を用いて混合後、加熱ニーダ、熱ロール、押し出し機等を用いて加熱混練し、続いて冷却、粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
【0015】
【実施例】
以下、本発明を実施例で具体的に説明する。配合割合は重量部とする。
実施例1

Figure 0004379972
をミキサーを用いて混合した後、表面温度が95℃と25℃の2軸ロールを用いて20回混練し、得られた混練物シートを冷却後粉砕して、エポキシ樹脂組成物とした。得られたエポキシ樹脂組成物の特性を以下の方法で評価した。結果を表1に示す。
【0016】
評価方法
・スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。単位はcm。
・離型性:トランスファー成形機を用いて、金型温度175℃、注入圧力75kg/cm2、硬化時間2分で144pQFP(20×20×1.7mm厚さ)を10回連続で成形した。この10回の成形で、離型時に金型に付着したり、成形品に割れ・欠けが発生した回数が5回以上のものを×、1〜4回のものを△、発生なしのものを○と判定した。
・型汚れ:トランスファー成形機を用いて、金型温度175℃、注入圧力75kg/cm2、硬化時間2分で144pQFP(20×20×1.7mm厚さ)を500回連続で成形した。成形品表面と金型表面の両方に白化があるものを×、どちらかに白化があるものを△、どちらにも白化のないものを○と判定した。
・耐半田クラック性:トランスファー成形機を用いて、金型温度175℃、注入圧力75kg/cm2、硬化時間2分で144pQFP(20×20×1.7mm厚さ)を成形し、175℃、8時間で後硬化させ、85℃、相対湿度85%の環境下で168時間放置し、その後240℃の半田槽に10秒間浸漬した。顕微鏡で外部クラックを観察し、クラック数((クラック発生パッケージ数)/(全パッケージ数)×100)の値を求めた。単位は%。
【0017】
実施例2〜、比較例1〜5
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、実施例1と同様にして評価した。結果を表1、表2に示す。実施例3、比較例2では、予め(A)、(B)、及び(E)又はその他の離型剤成分を140℃で30分間溶融混合し、得られた溶融混合物を冷却後粉砕して使用した。
【0018】
【表1】
Figure 0004379972
【0019】
【表2】
Figure 0004379972
【0020】
【発明の効果】
本発明の半導体封止用エポキシ樹脂組成物は、流動性、離型性に優れるとともに、型汚れが少なく、これを用いた半導体装置は耐半田クラック性に優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in releasability, and a semiconductor device using the same.
[0002]
[Prior art]
In recent years, electronic devices have become smaller, lighter, and higher in performance, and semiconductor devices have been increasingly integrated and the surface mounting of semiconductor devices has been promoted. The demand for compositions has become increasingly severe. In particular, surface mounting of semiconductor devices has become common, and moisture-absorbed semiconductor devices are exposed to high temperatures during soldering, and cracks are generated in the semiconductor devices due to the explosive stress of vaporized water vapor, or semiconductors Peeling occurs at the interface between the element or lead frame and the cured epoxy resin composition, resulting in defects that greatly impair the electrical reliability, and preventing these defects, that is, improving solder crack resistance, is a major issue. It has become.
Various proposals have been made as means for improving the solder crack resistance. As typical examples, (1) a low-viscosity resin component is used to increase the amount of inorganic filler to reduce the resin component. (2) Use of a resin having low hygroscopicity and flexibility, and the like, for example, to reduce the thermal expansion and moisture absorption of the cured epoxy resin composition. Examples of the low-viscosity resin component include low-viscosity epoxy resins and crystalline epoxy resins, and low-viscosity phenol resins as curing agents, which are generally low molecular weight compounds. The cross-linked density of the cross-linked structure obtained by dimensionalization becomes low, resulting in a cured product with low mechanical strength and thermal elastic modulus. Therefore, the cured product adheres to the mold when released from the mold, or a molded product. It has the disadvantage that it is inferior in releasability, such as cracking and chipping.
Resins with low hygroscopicity and flexibility include phenol aralkyl resins and naphthol aralkyl resins, which are effective in improving solder crack resistance. However, when this type of resin is used, the cured product is flexible. Although it has a characteristic of having a simple structure, it has a drawback that it lacks rigidity when heated, and is slow in curing and inferior in releasability.
[0003]
In order to improve releasability, a large amount of a release agent may be included as a countermeasure. On the other hand, a large amount of a release agent is used for the semiconductor element inside the semiconductor device, the lead frame on which the semiconductor element is mounted, and the epoxy resin. Since it moves to the interface with the cured product of the composition, the adhesion at these interfaces is significantly impaired. As a result, when the semiconductor device is subjected to moisture treatment and then soldered, peeling may occur at these interfaces, or cracks may be generated due to the peeling.
For this reason, development of the epoxy resin composition in which mold release property and solder crack resistance are compatible has been desired.
[0004]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation having excellent fluidity and releasability, less mold contamination, and excellent resistance to solder cracks, and a semiconductor device using the same.
[0005]
[Means for Solving the Problems]
The present invention includes (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, (D) an inorganic filler, and (E) a saturated fatty acid having 12 to 24 carbon atoms (a) and 12 to 40 carbon atoms. Of which the fatty acid amide (b) is an essential component, and the fatty acid amide (b) is stearic acid monoamide and N-stearic acid monomethylol. It is selected from amides, and the addition amount of the release agent (E) is 0.05 to 0.4% by weight in the total epoxy resin composition, and in particular, a saturated fatty acid having 12 to 24 carbon atoms (a ) And a fatty acid amide (b) having 12 to 40 carbon atoms in a weight ratio (a / b) of 30/70 to 70/30, a release agent (E), an epoxy resin (A) and / or phenol The resin (B) is melt-mixed in advance. A semiconductor device characterized by comprising sealing the semiconductor element using the epoxy resin composition for semiconductor encapsulation and its mounting.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the epoxy resin used in the present invention include a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stilbene type epoxy resin, a triphenolmethane type epoxy resin, and a phenol aralkyl type epoxy. Resins, naphthol type epoxy resins, alkyl-modified triphenol methane type epoxy resins, triazine nucleus-containing epoxy resins, dicyclopentadiene-modified phenol type epoxy resins, and the like may be used alone or in combination.
Of these, biphenyl type epoxy resins, bisphenol type epoxy resins, and stilbene type epoxy resins that are crystalline solids at room temperature but become liquids with extremely low viscosity when the melting point is exceeded and can be highly filled with inorganic fillers are preferred. .
Examples of the biphenyl type epoxy resin include 3,3 ′, 5,5′-tetramethylbiphenol diglycidyl ether, biphenol diglycidyl ether, and the like.
It is desirable to use other epoxy resins having a viscosity as low as possible. By using a low-viscosity epoxy resin, the inorganic filler can be highly filled, and the solder crack resistance can be improved. However, since the crosslinking density is low, there is a problem in the releasability, and the release agent of the present invention By using in combination, the releasability can be improved.
[0007]
Examples of the phenol resin used in the present invention include phenol novolak resin, cresol novolak resin, naphthol aralkyl resin, triphenolmethane resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, phenol having a phenylene and / or diphenylene skeleton. Examples thereof include aralkyl resins, and these may be used alone or in combination. In order to increase the filling of the inorganic filler, a material having a low viscosity is preferable like the epoxy resin.
For flexibility and low hygroscopicity, it is desirable to use a phenol aralkyl resin having a phenylene and / or diphenylene skeleton.
The phenol resin having low viscosity and flexibility has a low cross-link density as in the case of the epoxy resin, so there is a difficulty in releasability. By using it together with the release agent of the present invention, the releasability is improved. Can improve.
[0008]
The curing accelerator used in the present invention is one that can be a catalyst for the crosslinking reaction between the epoxy resin and the phenol resin, and examples thereof include tributylamine, 1,8-diazabicyclo (5,4,0) undecene-7, and the like. Amine compounds, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or in combination.
[0009]
Examples of the inorganic filler used in the present invention include fused silica, crystalline silica, alumina, silicon nitride, and aluminum nitride.
When the blending amount of the inorganic filler is particularly large, it is common to use fused silica. Fused silica can be used in either crushed or spherical shape, but in order to increase the blending amount of fused silica and to suppress the increase in the melt viscosity of the epoxy resin composition, it is better to mainly use spherical ones. preferable. Further, in order to increase the blending amount of the spherical fused silica, it is desirable to adjust so that the particle size distribution of the spherical fused silica becomes wider.
[0010]
The mold release agent used in the present invention contains a saturated fatty acid having 12 to 24 carbon atoms and a fatty acid amide having 12 to 40 carbon atoms in a specific ratio.
Examples of the saturated fatty acid having 12 to 24 carbon atoms include stearic acid and palmitic acid, and these may be used alone or in combination. If the number of carbon atoms is 11 or less, the molecular weight is too low, so the decomposition due to insufficient heat resistance of the release agent progresses during continuous molding, causing mold stains and mold release defects. , The melting point becomes high, the viscosity at the time of melting cannot be sufficiently lowered, and sufficient fluidity cannot be obtained.
[0011]
Examples of the fatty acid amide having 12 to 40 carbon atoms include stearic acid monoamide, N-stearic acid monomethylol amide, N, N′-methylenebisstearic acid amide, N, N′-ethylenebisstearic acid amide and the like. These may be used alone or in combination. When a biphenyl type epoxy resin is used, the releasability at high temperature is particularly poor, and in order to supplement the releasability at high temperature, the combined use with the fatty acid amide having 12 to 40 carbon atoms of the present invention is essential. When the number of carbon atoms is 11 or less, sufficient releasability cannot be obtained, and when the number of carbon atoms is 41 or more, the fluidity is lowered. Either monoamide or bisamide can be used, but bisamide having good heat resistance is more preferable for preventing mold contamination during continuous molding.
[0012]
As a blending ratio of the saturated fatty acid (a) having 12 to 24 carbon atoms and the fatty acid amide (b) having 12 to 40 carbon atoms, it is essential that the weight ratio (a / b) is 30/70 to 70/30. If the saturated fatty acid content is more than this range, the viscosity is lowered and fluidity tends to be obtained, but sufficient release properties cannot be obtained, which is not preferable. On the other hand, if the saturated fatty acid content is too small, the releasability is sufficient, but the viscosity becomes high and sufficient fluidity cannot be obtained.
Other release agents may be used in combination as long as the characteristics of the saturated fatty acid having 12 to 24 carbon atoms and the fatty acid amide having 12 to 40 carbon atoms of the present invention are not impaired. Examples of those that can be used in combination include natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids, metal salts of higher fatty acids such as zinc stearate, or paraffin.
Moreover, as an addition amount of the mold release agent of this invention, 0.05 to 0.4 weight% is preferable in all the epoxy resin compositions. If it is less than 0.05% by weight, sufficient fluidity and releasability cannot be obtained. If it exceeds 0.4% by weight, the semiconductor element inside the semiconductor device and the lead frame on which it is mounted and the epoxy resin composition during molding Since it moves to the interface between the cured product and the cured product, the adhesion is remarkably impaired and the solder crack resistance is lowered, which is not preferable.
[0013]
In general, as the release agent is increased in amount, the mold moves to the interface between the semiconductor element inside the semiconductor device and the lead frame on which the mold is mounted and the cured product of the epoxy resin composition at the time of molding. Adhesiveness is significantly impaired, and as a result, solder crack resistance is reduced. Therefore, it is preferable to melt and mix the epoxy resin (A), the phenol resin (B), and the release agent (E) in advance in order to reduce the release agent as much as possible and effectively disperse it in the epoxy resin composition.
As the temperature for melting and mixing in advance, a temperature at which the components (A), (B), and (E) are sufficiently melted, that is, a temperature higher than the respective melting point or softening point is required. C. is preferable, but is not limited to this temperature range.
As a combination to be melt-mixed, any combination of (A) and (E), (B) and (E), (A), (B) and (E) components may be used. It is preferable to melt and mix all of the components B) and (E).
[0014]
The epoxy resin composition of the present invention comprises the components (A) to (E) as essential components, but in addition to this, it is difficult to use coupling agents, brominated epoxy resins, antimony trioxide, phosphorus compounds, and the like. Various additives such as a flame retardant, a colorant such as carbon black, a low stress agent such as silicone oil, silicone rubber, and synthetic rubber, and an antioxidant may be appropriately blended.
In the epoxy resin composition of the present invention, the components (A) to (E) and other additives are mixed using a mixer or the like, then heated and kneaded using a heating kneader, a hot roll, an extruder, etc. Obtained by cooling and grinding.
In order to encapsulate an electronic component such as a semiconductor element using the epoxy resin composition of the present invention and manufacture a semiconductor device, it may be cured by a conventional molding method such as a transfer mold, a compression mold, or an injection mold. .
[0015]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples. The blending ratio is parts by weight.
Example 1
Figure 0004379972
Were mixed using a mixer, and then kneaded 20 times using biaxial rolls having surface temperatures of 95 ° C. and 25 ° C. The obtained kneaded material sheet was cooled and pulverized to obtain an epoxy resin composition. The characteristics of the obtained epoxy resin composition were evaluated by the following methods. The results are shown in Table 1.
[0016]
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The unit is cm.
Mold releasability: Using a transfer molding machine, 144 pQFP (20 × 20 × 1.7 mm thickness) was continuously molded 10 times with a mold temperature of 175 ° C., an injection pressure of 75 kg / cm 2 , and a curing time of 2 minutes. In this 10 times molding, the number of times that the mold adheres to the mold at the time of mold release, or the molded product has cracks / chips is 5 times or more, x is 1 to 4 times, Δ is no occurrence It was determined as “good”.
Mold stain: Using a transfer molding machine, 144 pQFP (20 × 20 × 1.7 mm thickness) was continuously molded 500 times with a mold temperature of 175 ° C., an injection pressure of 75 kg / cm 2 , and a curing time of 2 minutes. The case where both the surface of the molded product and the mold surface were whitened was judged as x, the case where either one was whitened was judged as Δ, and the case where neither was whitened was judged as ○.
Solder crack resistance: Using a transfer molding machine, 144 pQFP (20 × 20 × 1.7 mm thickness) was molded at a mold temperature of 175 ° C., an injection pressure of 75 kg / cm 2 , and a curing time of 2 minutes. It was post-cured in 8 hours, left in an environment of 85 ° C. and relative humidity 85% for 168 hours, and then immersed in a solder bath at 240 ° C. for 10 seconds. External cracks were observed with a microscope, and the value of the number of cracks ((number of crack generation packages) / (total number of packages) × 100) was determined. Units%.
[0017]
Examples 2-3 and Comparative Examples 1-5
According to the composition of Table 1 and Table 2, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2. Example 3, the ratio Comparative Examples 2, advance (A), (B), and (E), or other release agent components were melt-mixed for 30 minutes at 140 ° C., the resulting molten mixture was pulverized after cooling Used.
[0018]
[Table 1]
Figure 0004379972
[0019]
[Table 2]
Figure 0004379972
[0020]
【The invention's effect】
The epoxy resin composition for semiconductor encapsulation of the present invention is excellent in fluidity and releasability, and has little mold contamination, and a semiconductor device using the epoxy resin composition is excellent in solder crack resistance.

Claims (5)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機質充填材、及び(E)炭素数12〜24の飽和脂肪酸(a)と炭素数12〜40の脂肪酸アマイド(b)が重量比(a/b)30/70〜70/30の割合で含まれる離型剤を必須成分とし、脂肪酸アマイド(b)がステアリン酸モノアマイド、N−ステアリン酸モノメチロールアマイドから選ばれ、離型剤(E)の添加量が全エポキシ樹脂組成物中に0.05〜0.4重量%であることを特徴とする半導体封止用エポキシ樹脂組成物。(A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, and (E) saturated fatty acid (a) having 12 to 24 carbon atoms and fatty acid amide having 12 to 40 carbon atoms A mold release agent containing (b) at a weight ratio (a / b) of 30/70 to 70/30 is an essential component, and fatty acid amide (b) is selected from stearic acid monoamide and N-stearic acid monomethylol amide. And an addition amount of the release agent (E) is 0.05 to 0.4% by weight in the total epoxy resin composition. 炭素数12〜24の飽和脂肪酸(a)と炭素数12〜40の脂肪酸アマイド(b)が重量比(a/b)30/70〜70/30の割合で含まれる離型剤(E)と、エポキシ樹脂(A)及び/又はフェノール樹脂(B)とを予め溶融混合した請求項1記載の半導体封止用エポキシ樹脂組成物。  A release agent (E) containing a saturated fatty acid (a) having 12 to 24 carbon atoms and a fatty acid amide (b) having 12 to 40 carbon atoms in a weight ratio (a / b) of 30/70 to 70/30; The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the epoxy resin (A) and / or the phenol resin (B) are previously melt-mixed. エポキシ樹脂がビフェニル型エポキシ樹脂である請求項1、又は2記載の半導体封止用エポキシ樹脂組成物。  The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the epoxy resin is a biphenyl type epoxy resin. フェノール樹脂がフェノールアラルキル樹脂である請求項1、2、又は3記載の半導体封止用エポキシ樹脂組成物。  4. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the phenol resin is a phenol aralkyl resin. 請求項1、2、3、又は4記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition for semiconductor sealing according to claim 1.
JP28405399A 1999-10-05 1999-10-05 Epoxy resin composition and semiconductor device Expired - Fee Related JP4379972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28405399A JP4379972B2 (en) 1999-10-05 1999-10-05 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28405399A JP4379972B2 (en) 1999-10-05 1999-10-05 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2001106871A JP2001106871A (en) 2001-04-17
JP4379972B2 true JP4379972B2 (en) 2009-12-09

Family

ID=17673690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28405399A Expired - Fee Related JP4379972B2 (en) 1999-10-05 1999-10-05 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4379972B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041096A (en) * 2001-07-31 2003-02-13 Sumitomo Bakelite Co Ltd Method for manufacturing epoxy resin molding material and semiconductor device

Also Published As

Publication number Publication date
JP2001106871A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JPH0496928A (en) Epoxy resin composition and semiconductor device
JPH07268186A (en) Epoxy resin composition
JP5008222B2 (en) Epoxy resin composition and semiconductor device
JP4411760B2 (en) Epoxy resin composition and semiconductor device
JP4332972B2 (en) Epoxy resin composition and semiconductor device
JP4379972B2 (en) Epoxy resin composition and semiconductor device
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JP4524832B2 (en) Epoxy resin composition and semiconductor device
JP2991849B2 (en) Epoxy resin composition
JP4608736B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP4370666B2 (en) Semiconductor device
JP2658752B2 (en) Epoxy resin composition and semiconductor device
JP3417283B2 (en) Epoxy resin composition for sealing and semiconductor device sealing method
JP2823633B2 (en) Epoxy resin composition
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2001214036A (en) Epoxy resin composition and semiconductor device
JP4524835B2 (en) Epoxy resin composition and semiconductor device
JP2000273285A (en) Epoxy resin composition and semiconductor device
JP3093051B2 (en) Epoxy resin composition
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JP3004454B2 (en) Resin composition
JP2002317102A (en) Epoxy resin composition and semiconductor device
JPH03195722A (en) Epoxy resin composition
JP2690992B2 (en) Epoxy resin composition
JP3568654B2 (en) Epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees