JP3568654B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP3568654B2
JP3568654B2 JP28393495A JP28393495A JP3568654B2 JP 3568654 B2 JP3568654 B2 JP 3568654B2 JP 28393495 A JP28393495 A JP 28393495A JP 28393495 A JP28393495 A JP 28393495A JP 3568654 B2 JP3568654 B2 JP 3568654B2
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
curing agent
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28393495A
Other languages
Japanese (ja)
Other versions
JPH09124902A (en
Inventor
典久 星加
直樹 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP28393495A priority Critical patent/JP3568654B2/en
Publication of JPH09124902A publication Critical patent/JPH09124902A/en
Application granted granted Critical
Publication of JP3568654B2 publication Critical patent/JP3568654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイスの表面実装化における耐半田ストレス性と耐湿性に優れる半導体封止用エポキシ樹脂組成物に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、集積回路等の電子部品を、熱硬化性樹脂で封止しているが、特に集積回路では、耐熱性、耐湿性に優れたオルソクレゾールノボラック型エポキシ樹脂をフェノールノボラック樹脂で硬化させ、充填材として溶融シリカ、結晶シリカ等の無機充填材を配合したエポキシ樹脂組成物が用いられている。
ところが近年、集積回路の高集積化に伴いチップが徐々に大型化し、かつパッケージは従来のDIPタイプから表面実装化された小型、薄型のQFP、SOP、SOJ、TSOP、TQFP、PLCCに変わってきている。即ち、大型チップを小型で薄いパッケージに封入することになり、熱応力によりクッラクが発生し、これらのクラックによる耐湿性低下等の問題が大きくクローズアップされている。特に半田付け工程において、急激に200℃以上の高温にさらされることにより、パッケージの割れや樹脂とチップの剥離により耐湿性が劣化してしまうといった問題点がでてきている。従って、これらの大型チップを封止するのに適した、信頼性の高い半導体封止用樹脂組成物の開発が望まれている。
【0003】
【発明が解決しようとする課題】
本発明は、この様な問題点に対して、エポキシ樹脂として式(1)に示されるエポキシ化合物を用い、樹脂硬化剤として式(2)で示されるジヒドロキシベンゼン樹脂硬化剤を用いることにより、基板実装時における半導体パッケージの耐半田ストレス性と耐湿性を著しく向上させた半導体封止用エポキシ樹脂組成物を提供するところにある。
【0004】
【課題を解決するための手段】
本発明は、(A)式(1)で示されるエポキシ樹脂を、総エポキシ樹脂量に対して30〜100重量%含むエポキシ樹脂、
【0005】
【化7】

Figure 0003568654
(式中のR1は水素、アルキル基、ハロゲン類の中から選択される、同一もしくは異なる原子または基)
【0006】
(B)式(2)で示されるジヒドロキシベンゼン樹脂硬化剤を総樹脂硬化剤量に対して30〜100重量部含む樹脂硬化剤、
【0007】
【化8】
Figure 0003568654
(式中のRはSO、S、O、CO、C〜C20の2価の炭化水素の中から選択される、同一もしくは異なる原子または基、n=0〜20)
【0008】
(C)無機充填材、
(D)硬化促進剤を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物であり、従来のエポキシ樹脂組成物に比べ優れた信頼性として耐半田ストレス性と耐湿性を有する。
【0009】
【発明の属する技術分野】
本発明で用いる式(1)の分子構造で示されるエポキシ樹脂は、オレフィン2重結合を含んでいるため、硬化物の強度が高いという特性を有している。また溶融時には低粘度である。このエポキシ樹脂は公知物質である。このエポキシ樹脂の使用量は、これを調節することにより、耐半田ストレス性を最大限に引き出すことができる。耐半田ストレス性の効果を引き出すためには、式(1)で示されるエポキシ樹脂を、総エポキシ樹脂量に対して30重量%以上、好ましくは50重量%以上の使用が望ましい。30重量%未満であると、目標とした耐半田ストレス性が不充分である。
式(1)で示されるエポキシ樹脂以外に他のエポキシ樹脂を併用する場合は、例えば、ビフェニル型エポキシ化合物、ビスフェノール型エポキシ化合物、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ化合物、アルキル変性トリフェノールメタン型エポキシ化合物等を用いればよい。
【0010】
式(2)の分子構造で示されるジヒドロキシベンゼン樹脂硬化剤は、ジヒドロキシベンゼンとSO、S、O、CO、C〜C20の2価の炭化水素の中から選択される、同一もしくは異なる原子または基を導入させることにより得られる樹脂硬化剤で、従来のフェノールノボラック樹脂に比べ、ジヒドロキシベンゼンの効果としてゴム領域における高温時の強度が向上する。また、Rは、C以上の炭化水素が好ましく、炭化水素基の影響により比較的吸湿量が抑えられ、リードフレーム等の金属類及びシリコンチップとの接着性に優れている。
このジヒドロキシベンゼン樹脂硬化剤の使用量は、これを調節することにより、耐半田ストレス性を最大限に引き出すことができる。耐半田ストレス性の効果を引き出すためには、式(2)で示されるジヒドロキシベンゼン樹脂硬化剤を、総樹脂硬化剤量に対して30重量%以上、好ましくは50重量%以上の使用が望ましい。30重量%未満であると、目標とした耐半田ストレス性が不充分である。
【0011】
式(2)で示されるジヒドロキシベンゼン樹脂硬化剤以外に、他の樹脂硬化剤を併用する場合は、水酸基を有するポリマー全般を用いればよい。例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、パラキシリレン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン化合物等が挙げられ、特にフェノールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、パラキシリレン変性フェノール樹脂、テルペン変性フェノール樹脂及びこれらの混合物が好ましい。また、これらの硬化剤の配合量としては、エポキシ化合物のエポキシ基数と硬化剤の水酸基数を合わせるように配合することが好ましい。
【0012】
本発明で用いる無機充填材としては、溶融シリカ粉末、球状シリカ粉末、結晶シリカ粉末、二次凝集シリカ粉末、多孔質シリカ粉末、アルミナ等が挙げられ、特に球状シリカ粉末、及び溶融シリカ粉末と球状シリカ粉末との混合物が好ましい。また、無機充填材の配合量としては、耐半田ストレス性から総エポキシ樹脂組成物量に対して70〜90重量%が好ましい。無機充填材量が70重量%未満だと低熱膨張化、低吸水化が得られず、耐半田ストレス性が不充分である。また、無機充填材量が90重量%を越えると高粘度化による半導体パッケージ中のダイパット、金線ワイヤーのずれ等の不都合が生じる。
本発明で用いる硬化促進剤としては、エポキシ基と水酸基との硬化反応を促進させるものであればよく、一般に封止材料に用いられているものを広く用いることができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、、トリフェニルホスフィン、ベンジルジメチルアミン、2−メチルイミダゾール等が挙げられ、これらは単独でも混合して用いてもよい。
【0013】
本発明のエポキシ樹脂組成物は、エポキシ樹脂、ジヒドロキシベンゼン樹脂硬化剤、無機充填材及び硬化促進剤を必須成分とするが、これ以外に必要に応じてシランカップリング剤、ブロム化エポキシ樹脂、三酸化アンチモン、ヘキサブロムベンゼン等の難燃剤、カーボンブラック、ベンガラ等の着色剤、天然ワックス、合成ワックス等の離型剤及びシリコーンオイル、ゴム等の低応力添加剤等の種々の添加剤を適宜配合しても差し支えない。
また、本発明の封止用エポキシ樹脂組成物を成形材料として製造するには、エポキシ樹脂、ジヒドロキシベンゼン樹脂硬化剤、硬化促進剤、無機充填剤、その他の添加剤をミキサー等によって充分に均一に混合した後、更に熱ロールまたは、ニーダー等で溶融混練し、冷却後粉砕して封止材料とすることができる。これらの成形材料は、電気部品あるいは電子部品であるトランジスタ、集積回路等の被覆、絶縁、封止等に適用することができる。
【0014】
以下本発明を実施例で具体的に説明する。
実施例1
下記組成物
式(3)で示されるエポキシ樹脂
(融点150℃,エポキシ当量169g/eq) 3.16重量部
【0015】
【化9】
Figure 0003568654
【0016】
オルソクレゾールノボラック型エポキシ樹脂(軟化点58℃,エポキシ当量2
00g/eq) 5.88重量部
式(4)で示されるジヒドロキシベンゼン樹脂硬化剤(軟化点80℃,水酸基
当量88g/eq) 1.67重量部
【0017】
【化10】
Figure 0003568654
(nの値は0から3を示す混合物である。その重量割合はn=0が1に対し、n=1が、0.62、n=2が0.43、n=3が0.19である。)
【0018】
Figure 0003568654
を常温においてミキサーで混合し、70〜100℃で2軸ロールにより混練し、冷却後粉砕して成形材料とした。得られた成形材料をタブレット化し、低圧トランスファー成形機にて175℃、70kg/cm、120秒の条件で、半田ストレス試験用として6×6mmのチップを52pQFPに封止し、また半田耐湿性試験用として3×6mmのチップを16pSOPに封止した。評価結果を表1に示す。
【0019】
封止したテスト用素子について、下記の半田ストレス試験及び半田耐湿性試験を行った。
半田ストレス試験:封止したテスト用素子を、85℃、85%RHの環境下で24時間、48時間、72時間及び120時間処理し、その後260℃の半田槽に10秒間浸漬させた後、顕微鏡で外部クラックを観察し、(クラック発生数/総数)で表した。
半田耐湿性試験:封止したテスト用素子を、85℃、85%RHの環境下で24時間処理し、その後260℃の半田槽に10秒間浸漬させた後、プレッシャークッカー試験(125℃、100%RH)を行い、回路のオープン不良を測定した。
曲げ強度試験:JIS K 6911に準じ、240℃で測定。
【0020】
実施例2〜8
表1の処方に従って配合し、実施例1と同様にして成形材料を得た。これらの成形材料で試験用の封止した成形品を得、これらの成形品を用いて実施例1と同様に半田ストレス試験及び半田耐湿性試験を行った。
なお、実施例5、6に用いた式(5)で示されるエポキシ化合物は、融点124℃、エポキシ当量175g/eqであり、実施例7、8に用いた式(6)で示されるエポキシ化合物は、融点96℃、エポキシ当量204g/eqである。評価結果を表1に示す。
【0021】
比較例1〜5
表2の処方に従って配合し、実施例1と同様にして成形材料を得た。これらの成形材料で試験用の封止した成形品を得、これらの成形品を用いて実施例1と同様に半田ストレス試験及び半田耐湿性試験を行った。評価結果を表2に示す。
【0022】
【表1】
Figure 0003568654
【0023】
【表2】
Figure 0003568654
【0024】
【発明の効果】
本発明の樹脂組成物で封止された、半導体パッケージは、基板への実装時におけるパッケージの耐半田ストレス性が著しく向上し、かつ耐湿性も向上する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in solder stress resistance and moisture resistance in surface mounting of a semiconductor device.
[0002]
[Prior art]
Conventionally, electronic components such as diodes, transistors, and integrated circuits are sealed with a thermosetting resin.However, especially for integrated circuits, ortho-cresol novolak epoxy resin, which has excellent heat resistance and moisture resistance, is made of phenol novolak resin. An epoxy resin composition which is cured and blended with an inorganic filler such as fused silica or crystalline silica as a filler is used.
However, in recent years, chips have been gradually increased in size with the increase in integration of integrated circuits, and packages have changed from conventional DIP types to small and thin QFPs, SOPs, SOJs, TSOPs, TQFPs, and PLCCs, which are surface-mounted. I have. That is, a large chip is sealed in a small and thin package, cracks are generated by thermal stress, and problems such as a decrease in moisture resistance due to the cracks are greatly highlighted. Particularly, in the soldering process, there is a problem in that the device is suddenly exposed to a high temperature of 200 ° C. or more, and the moisture resistance is deteriorated due to cracking of the package or separation of the resin and the chip. Therefore, development of a highly reliable semiconductor encapsulating resin composition suitable for encapsulating these large chips is desired.
[0003]
[Problems to be solved by the invention]
The present invention solves such a problem by using an epoxy compound represented by the formula (1) as an epoxy resin and a dihydroxybenzene resin curing agent represented by the formula (2) as a resin curing agent. An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation in which the solder stress resistance and moisture resistance of a semiconductor package during mounting are significantly improved.
[0004]
[Means for Solving the Problems]
The present invention provides (A) an epoxy resin containing the epoxy resin represented by the formula (1) in an amount of 30 to 100% by weight based on the total epoxy resin amount;
[0005]
Embedded image
Figure 0003568654
(R 1 in the formula is the same or different atom or group selected from hydrogen, alkyl group, and halogens)
[0006]
(B) a resin curing agent containing 30 to 100 parts by weight of a dihydroxybenzene resin curing agent represented by the formula (2) based on the total resin curing agent amount;
[0007]
Embedded image
Figure 0003568654
(In the formula, R 2 is the same or different atom or group selected from SO 2 , S, O, CO, C 1 to C 20 divalent hydrocarbon, n = 0 to 20)
[0008]
(C) an inorganic filler,
(D) An epoxy resin composition for semiconductor encapsulation characterized by containing a curing accelerator as an essential component, having solder stress resistance and moisture resistance as reliability superior to conventional epoxy resin compositions.
[0009]
TECHNICAL FIELD OF THE INVENTION
The epoxy resin represented by the molecular structure of the formula (1) used in the present invention has a property that the strength of the cured product is high because it contains an olefin double bond. It has a low viscosity when melted. This epoxy resin is a known substance. By adjusting the amount of the epoxy resin used, the solder stress resistance can be maximized. In order to bring out the effect of resistance to solder stress, it is desirable to use the epoxy resin represented by the formula (1) in an amount of 30% by weight or more, preferably 50% by weight or more based on the total amount of the epoxy resin. If it is less than 30% by weight, the intended solder stress resistance is insufficient.
When another epoxy resin is used in addition to the epoxy resin represented by the formula (1), for example, a biphenyl type epoxy compound, a bisphenol type epoxy compound, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a triphenol methane type epoxy resin A compound, an alkyl-modified triphenolmethane-type epoxy compound, or the like may be used.
[0010]
The dihydroxybenzene resin curing agent represented by the molecular structure of the formula (2) is the same or different from dihydroxybenzene and divalent hydrocarbons of SO 2 , S, O, CO, and C 1 to C 20. A resin curing agent obtained by introducing atoms or groups. Compared with a conventional phenol novolak resin, the strength of a rubber region at a high temperature is improved as an effect of dihydroxybenzene. Further, R 2 is preferably a hydrocarbon of C 6 or more, has a relatively low moisture absorption due to the influence of the hydrocarbon group, and has excellent adhesion to metals such as a lead frame and a silicon chip.
By adjusting the amount of the dihydroxybenzene resin curing agent used, the solder stress resistance can be maximized. In order to bring out the effect of resistance to solder stress, it is desirable to use the dihydroxybenzene resin curing agent represented by the formula (2) in an amount of 30% by weight or more, preferably 50% by weight or more based on the total amount of the resin curing agent. If it is less than 30% by weight, the intended solder stress resistance is insufficient.
[0011]
When other resin curing agents are used in addition to the dihydroxybenzene resin curing agent represented by the formula (2), all polymers having a hydroxyl group may be used. For example, phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin, paraxylylene-modified phenol resin, terpene-modified phenol resin, triphenolmethane compound, etc. Phenolic resins, terpene-modified phenolic resins and mixtures thereof are preferred. The amount of the curing agent is preferably such that the number of epoxy groups in the epoxy compound is equal to the number of hydroxyl groups in the curing agent.
[0012]
Examples of the inorganic filler used in the present invention include fused silica powder, spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, porous silica powder, alumina and the like, particularly spherical silica powder, and fused silica powder and spherical silica powder. Mixtures with silica powder are preferred. The amount of the inorganic filler is preferably 70 to 90% by weight based on the total amount of the epoxy resin composition from the viewpoint of resistance to solder stress. When the amount of the inorganic filler is less than 70% by weight, low thermal expansion and low water absorption cannot be obtained, and the solder stress resistance is insufficient. On the other hand, if the amount of the inorganic filler exceeds 90% by weight, problems such as misalignment of the die pad and the gold wire in the semiconductor package due to the increase in viscosity occur.
As the curing accelerator used in the present invention, any one can be used as long as it promotes a curing reaction between an epoxy group and a hydroxyl group, and those generally used for a sealing material can be widely used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like can be mentioned, and these may be used alone or in combination.
[0013]
The epoxy resin composition of the present invention contains an epoxy resin, a dihydroxybenzene resin curing agent, an inorganic filler, and a curing accelerator as essential components. In addition to this, a silane coupling agent, a brominated epoxy resin, Various additives such as flame retardants such as antimony oxide and hexabromobenzene, coloring agents such as carbon black and red iron oxide, release agents such as natural wax and synthetic wax, and low stress additives such as silicone oil and rubber are appropriately mixed. No problem.
Further, in order to produce the sealing epoxy resin composition of the present invention as a molding material, epoxy resin, dihydroxybenzene resin curing agent, curing accelerator, inorganic filler, and other additives are sufficiently uniformly mixed by a mixer or the like. After mixing, the mixture is further melt-kneaded with a hot roll or a kneader, cooled, and pulverized to obtain a sealing material. These molding materials can be applied to coating, insulation, sealing, and the like of transistors and integrated circuits that are electric or electronic components.
[0014]
Hereinafter, the present invention will be described specifically with reference to Examples.
Example 1
3.16 parts by weight of an epoxy resin represented by the following composition formula (3) (melting point: 150 ° C., epoxy equivalent: 169 g / eq)
Embedded image
Figure 0003568654
[0016]
Orthocresol novolak epoxy resin (softening point 58 ° C, epoxy equivalent 2
5.88 parts by weight Dihydroxybenzene resin curing agent represented by the formula (4) (softening point 80 ° C., hydroxyl equivalent 88 g / eq) 1.67 parts by weight
Embedded image
Figure 0003568654
(The value of n is a mixture showing a value of 0 to 3. The weight ratio of n = 0 to 1, n = 1, 0.62, n = 2, 0.43, and n = 3 is 0.19. Is.)
[0018]
Figure 0003568654
Was mixed at room temperature with a mixer, kneaded at 70 to 100 ° C. with a biaxial roll, cooled and pulverized to obtain a molding material. The obtained molding material is tableted, and a 6 × 6 mm chip is sealed in a 52 pQFP for solder stress test at 175 ° C., 70 kg / cm 2 , 120 seconds using a low-pressure transfer molding machine. A 3 × 6 mm chip was sealed in 16 pSOP for testing. Table 1 shows the evaluation results.
[0019]
For the sealed test element, the following solder stress test and solder moisture resistance test were performed.
Solder stress test: The sealed test element was treated in an environment of 85 ° C. and 85% RH for 24 hours, 48 hours, 72 hours and 120 hours, and then immersed in a 260 ° C. solder bath for 10 seconds. External cracks were observed with a microscope and represented by (number of cracks generated / total number).
Solder moisture resistance test: The sealed test element was treated in an environment of 85 ° C. and 85% RH for 24 hours, then immersed in a solder bath at 260 ° C. for 10 seconds, and then subjected to a pressure cooker test (125 ° C., 100%). % RH), and the open failure of the circuit was measured.
Flexural strength test: Measured at 240 ° C. according to JIS K 6911.
[0020]
Examples 2 to 8
It was blended according to the formulation in Table 1 and a molding material was obtained in the same manner as in Example 1. Sealed molded products for testing were obtained from these molding materials, and a solder stress test and a solder moisture resistance test were performed using these molded products in the same manner as in Example 1.
The epoxy compound represented by the formula (5) used in Examples 5 and 6 has a melting point of 124 ° C. and an epoxy equivalent of 175 g / eq, and the epoxy compound represented by the formula (6) used in Examples 7 and 8 Has a melting point of 96 ° C. and an epoxy equivalent of 204 g / eq. Table 1 shows the evaluation results.
[0021]
Comparative Examples 1 to 5
It was blended according to the formulation in Table 2 and a molding material was obtained in the same manner as in Example 1. Sealed molded products for testing were obtained from these molding materials, and a solder stress test and a solder moisture resistance test were performed using these molded products in the same manner as in Example 1. Table 2 shows the evaluation results.
[0022]
[Table 1]
Figure 0003568654
[0023]
[Table 2]
Figure 0003568654
[0024]
【The invention's effect】
The semiconductor package sealed with the resin composition of the present invention has a remarkably improved soldering stress resistance when mounted on a substrate, and also has an improved moisture resistance.

Claims (3)

(A)式(1)で示されるエポキシ樹脂を、総エポキシ樹脂量に対して30〜100重量%含むエポキシ樹脂、
Figure 0003568654
(式中のR1は水素、アルキル基、ハロゲン類の中から選択される、同一もしくは異なる原子または基)
(B)式(2)で示されるジヒドロキシベンゼン樹脂硬化剤を、総樹脂硬化剤量に対して30〜100重量%含む樹脂硬化剤、
Figure 0003568654
(式中のR2はSO2、S、O、CO、C1〜C20の2価の炭化水素の中から選択される、同一もしくは異なる原子または基、n=0〜20)
(C)無機充填材、
(D)硬化促進剤
を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物。
(A) an epoxy resin containing the epoxy resin represented by the formula (1) in an amount of 30 to 100% by weight based on the total amount of the epoxy resin;
Figure 0003568654
(R 1 in the formula is the same or different atom or group selected from hydrogen, alkyl group, and halogens)
(B) a resin curing agent containing the dihydroxybenzene resin curing agent represented by the formula (2) in an amount of 30 to 100% by weight based on the total resin curing agent amount;
Figure 0003568654
(Wherein R 2 is the same or different atom or group selected from SO 2 , S, O, CO, and C 1 -C 20 divalent hydrocarbons, n = 0-20)
(C) an inorganic filler,
(D) An epoxy resin composition for semiconductor encapsulation, comprising a curing accelerator as an essential component.
式(1)が式(3)、式(5)又は式(6)である請求項1記載の半導体封止用エポキシ樹脂組成物。
Figure 0003568654
Figure 0003568654
Figure 0003568654
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the formula (1) is the formula (3), the formula (5) or the formula (6).
Figure 0003568654
Figure 0003568654
Figure 0003568654
式(2)が式(4)である請求項1、又は請求項2記載の半導体封止用エポキシ樹脂組成物。
Figure 0003568654
The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein the formula (2) is the formula (4).
Figure 0003568654
JP28393495A 1995-10-31 1995-10-31 Epoxy resin composition Expired - Fee Related JP3568654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28393495A JP3568654B2 (en) 1995-10-31 1995-10-31 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28393495A JP3568654B2 (en) 1995-10-31 1995-10-31 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH09124902A JPH09124902A (en) 1997-05-13
JP3568654B2 true JP3568654B2 (en) 2004-09-22

Family

ID=17672116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28393495A Expired - Fee Related JP3568654B2 (en) 1995-10-31 1995-10-31 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP3568654B2 (en)

Also Published As

Publication number Publication date
JPH09124902A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
JPH07268186A (en) Epoxy resin composition
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JP2991849B2 (en) Epoxy resin composition
JP2963260B2 (en) Epoxy resin composition
JP3568654B2 (en) Epoxy resin composition
JPH09143345A (en) Epoxy resin composition
JP3011807B2 (en) Epoxy resin composition
JP3310446B2 (en) Epoxy resin composition
JPH0940748A (en) Epoxy resin composition for semiconductor sealing
JP2843247B2 (en) Epoxy resin composition
JP3366456B2 (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JPH06184272A (en) Epoxy resin composition
JP3305098B2 (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JP2994127B2 (en) Epoxy resin composition
JP3302259B2 (en) Epoxy resin composition
JP2991846B2 (en) Epoxy resin composition
JPH09316176A (en) Epoxy resin composition for semiconductor sealing
JPH06100658A (en) Epoxy resin composition
JPH07238140A (en) Epoxy resin composition
JPH06107772A (en) Epoxy resin composition
JPH06298903A (en) Epoxy resin composition
JPH0559149A (en) Epoxy resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees