JP5191072B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP5191072B2
JP5191072B2 JP2000072543A JP2000072543A JP5191072B2 JP 5191072 B2 JP5191072 B2 JP 5191072B2 JP 2000072543 A JP2000072543 A JP 2000072543A JP 2000072543 A JP2000072543 A JP 2000072543A JP 5191072 B2 JP5191072 B2 JP 5191072B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
resin composition
phenol
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000072543A
Other languages
Japanese (ja)
Other versions
JP2001261779A (en
Inventor
優輝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000072543A priority Critical patent/JP5191072B2/en
Publication of JP2001261779A publication Critical patent/JP2001261779A/en
Application granted granted Critical
Publication of JP5191072B2 publication Critical patent/JP5191072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐半田性に優れた半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
従来よりダイオード、トランジスタ、IC、LSI等の半導体部品を、外的刺激(機械的・熱的衝撃、化学的作用等)から保護するためには、生産性やコストの点を考慮してエポキシ樹脂組成物で封入成形するのが一般的になっている。近年の半導体の高集積度化に伴い半導体素子寸法の増大と相反して、最近の電子機器の小型化による半導体装置寸法の小型化・薄型化が進み、更にプリント回路基板への実装方法も従来のピン挿入型から表面実装型へ移行してきたため、表面実装半田処理時の熱衝撃による半導体装置のクラックや、半導体素子・リードフレームとエポキシ樹脂組成物の硬化物との界面での剥離といった問題が生じ易くなり、耐熱性に優れたエポキシ樹脂組成物が強く求められている。
これらのクラックや剥離は、半田処理前の半導体装置自身が吸湿し、半田処理時の高温下でその水分が水蒸気爆発を起こすことによって生じると考えられており、これを防ぐためにエポキシ樹脂組成物に低吸湿性を付与する等の手法がよく用いられ、その低吸湿化の手法の一つとして低粘度の結晶性エポキシ樹脂を用いて無機充填材を高充填化し、樹脂成分の含有量を減少させる技術がある。従来、このような手法に用いられるエポキシ樹脂としては、ビフェニル型エポキシ樹脂等がある。しかしながら、ビフェニル型エポキシ樹脂といえども、無機充填材をエポキシ樹脂組成物に90重量%以上配合することは製造上、簡単ではなく、これを実現するためにはより高度な生産技術を必要とすることが多く、生産コストが高くなることにもなる。更に低粘度の樹脂としては低分子のビスフェノール型エポキシ樹脂があるが常温で液状のため取り扱い作業性に劣り、半導体用封止材料に適用するには問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、常温で固形の超低溶融粘度エポキシ樹脂を用いて、従来以上に無機充填材の高充填化を容易にし、低吸湿化を図った半導体封止用エポキシ樹脂組成物及び耐半田性に優れた半導体装置を提供するのものである。
【0004】
【課題を解決するための手段】
本発明は、
(A)一般式(1)において、n=0体の構造のものを90%以上含むビスフェノールA型エポキシ樹脂を30重量%以上含むエポキシ樹脂、(B)フェノール樹脂、(C)無機充填材、及び(D)硬化促進剤を必須成分とし、全エポキシ樹脂のエポキシ基に対する全フェノール樹脂のフェノール性水酸基の当量比が0.5〜2.0であり、ビスフェノールA型エポキシ樹脂の融点が40〜50℃であり、無機充填材(C)の含有量が全エポキシ樹脂(A)と全フェノール樹脂(B)の合計量100重量部当たり10711460重量部であり、硬化促進剤(D)の含有量が全エポキシ樹脂と全フェノール樹脂の合計量100重量部当たり0.4〜20重量部であることを特徴とする半導体封止用エポキシ樹脂組成物及びこれを用いて半導体素子を封止してなることを特徴とする半導体装置である。
【化2】

Figure 0005191072
(式中のnは整数)
【0005】
【発明の実施の形態】
本発明に用いられる一般式(1)において、n=0体の構造のものを90%以上含むビスフェノールA型エポキシ樹脂は、常温で結晶性を示し、従来のビフェニル型エポキシ樹脂より、更に加熱時の溶融粘度が低く、ビフェニル型エポキシ樹脂を主として用いたエポキシ樹脂組成物よりも流動性に優れ、無機充填材を更に高充填化することができ、ひいてはエポキシ樹脂組成物の低吸湿化が可能となるため、耐半田クラック性の向上に寄与する。又低分子量であるにも関わらず、常温で固体として取り扱うことができるため、取り扱い作業性に優れている。残余の樹脂は、一般式(1)の構造のオリゴマーを指す。
【0006】
本発明に用いられる一般式(1)において、n=0体の構造のものを90%以上含むビスフェノールA型エポキシ樹脂の融点としては、35〜60℃が好ましく、より好ましくは40〜50℃が望ましい。35℃未満だと、常温で樹脂がブロッキングを起こし、取り扱い作業性やこれを用いた樹脂組成物の常温保存性の低下があり好ましくない。60℃を越えると、粘度が高くなり無機充填材の高充填化ができなくなるおそれがあり好ましくない。本発明でのエポキシ樹脂の融点とは、示差走査熱量計(セイコー電子工業(株)・製)を用い、常温から昇温速度5℃/分で測定したときの融解ピークの頂点の温度を言う。
本発明に用いられる一般式(1)において、n=0体の構造のものを90%以上含むビスフェノールA型エポキシ樹脂の特性を最大限に引き出すためには、全エポキシ樹脂中に30重量%以上、より好ましくは50重量%以上望ましい。30重量%未満だと、無機充填材の高充填化が充分に発現されないおそれがある。
併用する場合の他のエポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、臭素化エポキシ樹脂等が挙げられ、これらは単独でも混合して用いても良い。更に、常温で液状のエポキシ樹脂や高軟化点のエポキシ樹脂を作業性や流動性の問題ない範囲内で併用しても良い。
【0007】
本発明に用いるフェノール樹脂としては、例えば、フェノールノボラック樹脂、フェニレン又はジフェニレン骨格を有するフェノールアラルキル樹脂、ビフェニルアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられ、これらは単独でも混合して用いても良い。これらのフェノール樹脂は、分子量、軟化点、水酸基当量等に制限なく使用することができるが、軟化点90℃以下の比較的低粘度のフェノール樹脂が好ましい。軟化点が90℃を越えると、本発明に用いるビスフェノールA型エポキシ樹脂の特徴である低粘度の効果が薄れるので好ましくない。
全エポキシ樹脂のエポキシ基と全フェノール樹脂のフェノール性水酸基との当量比としては、好ましくは0.5〜2.0、特に好ましくは0.7〜1.5である。0.5〜2.0の範囲を外れると、硬化性、耐湿信頼性等が低下するので好ましくない。
【0008】
本発明に用いられる無機充填材の種類については特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ粉末、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカが好ましい。形状は限りなく真球状であることが好ましく、又粒子の大きさの異なるものを混合することにより充填量を多くすることができる。無機充填材の配合量としては、全エポキシ樹脂と全フェノール樹脂との合計量100重量部当たり200〜2400重量部が好ましく、特に400〜1600重量部が好ましい。200重量部未満だと、無機充填材による補強効果が十分に発現せず、かつ吸湿要因である樹脂成分の配合量が多くなるので、高吸湿性となるおそれがあり、2400重量部を越えると、樹脂組成物の流動性が低下し、成形時に充填不良等が生じるおそれがあるので好ましくない。
本発明に用いられる無機充填材は、予め十分に混合しておくことが好ましい。又必要に応じて無機充填材をシランカップリング剤やエポキシ樹脂あるいはフェノール樹脂で予め処理して用いても良く、処理の方法としては、溶剤を用いて混合した後に溶媒を除去する方法や直接無機充填材に添加し、混合機を用いて処理する方法等がある。
【0009】
本発明で用いられる硬化促進剤の種類については特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えばトリフェニルホスフィン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、2−メチルイミダゾール等が挙げられる。配合量としては、全エポキシ樹脂と全フェノール樹脂との合計量100重量部当たり0.4〜20重量部が好ましい。配合量が0.4重量部未満だと、加熱成形時に十分な硬化性が得られないおそれがあり、20重量部を越えると、硬化が速すぎて成形時に流動性の低下による充填不良等を生じるおそれがあるので好ましくない。
【0010】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他、必要に応じて臭素化エポキシ樹脂、酸化アンチモン、リン化合物、水酸化マグネシウム、硼酸化合物等の難燃剤類、酸化ビスマス水和物等の無機イオン交換体、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力化成分、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分、及びその他の添加剤等をミキサーを用いて常温混合し、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕する一般的な方法で得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すれば良い。
【0011】
【実施例】
以下、本発明を実施例で具体的に説明する。
実施例1の配合を以下に示す。配合割合は重量部とする。
ビスフェノールA型エポキシ樹脂(式(1)のn=0体の含有量96%、融点45℃)(以下、エポキシ樹脂Aという) 4.9重量部
フェノールノボラック樹脂(水酸基当量105、軟化点80℃)2.9重量部
溶融球状シリカ粉末 90.0重量部
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという) 0.3重量部
臭素化ビスフェノールA型エポキシ樹脂(エポキシ当量284、軟化点84℃) 0.5重量部
酸化アンチモン 0.5重量部
カーボンブラック 0.2重量部
γ−グリシドキシプロピルトリメトキシシラン 0.3重量部
カルナバワックス 0.4重量部
をミキサーを用いて混合した後、表面温度が90℃と45℃の2本ロールを用いて30回混練し、得られた混練物シートを冷却後粉砕して、樹脂組成物とした。得られた樹脂組成物の特性を以下の方法で評価した。結果を表1に示す。
【0012】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力7MPa、硬化時間2分で測定した。
単位はcm。
吸水率:トランスファー成形機を用いて、金型温度175℃、注入圧力7MPa 、硬化時間2分で直径50mm、厚さ3mmの成形品を成形し、175℃、8時間で後硬化し、得られた成形品を85℃、相対湿度85%の環境下で168時間放置し、重量変化を測定して吸水率を計算した。単位は重量%。
耐半田性:トランスファー成形機を用いて、金型温度175℃、注入圧力7MPa 、硬化時間2分で100pTQFP(パッケージサイズは14×14mm、厚み1.4mm、半導体素子の寸法は8.0×8.0mm、リードフレームは42アロイ製)を成形し、175℃、8時間で後硬化し、得られたパッケージを85℃、相対湿度85%で168時間放置し、その後240℃の半田槽に10秒間浸漬した。顕微鏡でパッケージを観察し、外部クラックの発生率[(クラック発生パッケージ数)/(全パッケージ数)×100]を求めた。単位は%。又半導体素子と樹脂組成物の硬化物との界面での剥離面積の割合を超音波探傷装置を用いて測定し、剥離率[(剥離面積)/(半導体素子面積)×100]を求めた。単位は%。
ショアD硬度:金型温度175℃、注入圧力7MPa 、硬化時間2分で成形し、型開き10秒後に測定したショアD硬度の値を硬化性とする。ショアD硬度は硬化性の指標であり、数値が大きい方が硬化性が良好である。
【0013】
実施例2〜5、比較例1〜4
表1の配合に従い、実施例1と同様にして樹脂組成物を得て、実施例1と同様にして評価した。結果を表1に示す。
実施例1以外に用いたエポキシ樹脂は、ビスフェノールA型エポキシ樹脂(式(1)のn=0の含有量92%、融点45℃)(以下、エポキシ樹脂Bという)、ビスフェノールA型エポキシ樹脂(式(1)のn=0の含有量8%、軟化点64℃)(以下、エポキシ樹脂Cという)、ビスフェノールA型エポキシ樹脂(式(1)のn=0の含有量53%、常温半固形)(以下、エポキシ樹脂Dという)、ビスフェノールA型エポキシ樹脂(式(1)のn=0の含有量78%、常温液状)(以下、エポキシ樹脂Eという)、ビフェニル型エポキシ樹脂(油化シェルエポキシ(株)・製、YX4000K)である。フェノール樹脂は、フェノールアラルキル樹脂(水酸基当量174、軟化点75℃)である。
【表1】
Figure 0005191072
【0014】
【発明の効果】
本発明のエポキシ樹脂組成物は、無機充填材の高充填化が可能となり、これを用いた半導体装置は耐半田性に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent solder resistance and a semiconductor device using the same.
[0002]
[Prior art]
In order to protect semiconductor parts such as diodes, transistors, ICs, and LSIs from external stimuli (mechanical / thermal shock, chemical action, etc.), epoxy resin has been considered in consideration of productivity and cost. It is common to encapsulate with a composition. Contrary to the recent increase in semiconductor device size and the increase in semiconductor device dimensions, the recent downsizing of electronic equipment has led to the downsizing and thinning of semiconductor device dimensions, as well as the conventional mounting method on printed circuit boards. Since the transition from the pin insertion type to the surface mounting type, there are problems such as cracks in the semiconductor device due to thermal shock during surface mounting solder processing and peeling at the interface between the semiconductor element / lead frame and the cured epoxy resin composition. There is a strong demand for epoxy resin compositions that are easily generated and have excellent heat resistance.
These cracks and delamination are thought to be caused by the moisture absorption of the semiconductor device itself before the solder processing and the water vapor explosion at a high temperature during the solder processing. To prevent this, the epoxy resin composition has Techniques such as imparting low hygroscopicity are often used, and as one of the techniques for reducing hygroscopicity, low-viscosity crystalline epoxy resins are used to increase the filling of inorganic fillers and reduce the content of resin components There is technology. Conventionally, as an epoxy resin used in such a method, there is a biphenyl type epoxy resin or the like. However, even if it is a biphenyl type epoxy resin, blending an inorganic filler in an epoxy resin composition in an amount of 90% by weight or more is not easy in production, and more advanced production technology is required to realize this. In many cases, the production cost becomes high. Further, as a low-viscosity resin, there is a low molecular weight bisphenol type epoxy resin.
[0003]
[Problems to be solved by the invention]
The present invention uses an ultra-low melt viscosity epoxy resin that is solid at room temperature, facilitates higher filling of inorganic fillers than ever, and lowers moisture absorption to provide an epoxy resin composition for semiconductor encapsulation and solder resistance. An excellent semiconductor device is provided.
[0004]
[Means for Solving the Problems]
The present invention
(A) In the general formula (1), an epoxy resin containing 30% by weight or more of a bisphenol A type epoxy resin containing 90% or more of n = 0 structure, (B) a phenol resin, (C) an inorganic filler, And (D) a curing accelerator as an essential component, the equivalent ratio of phenolic hydroxyl groups of all phenol resins to the epoxy groups of all epoxy resins is 0.5 to 2.0, and the melting point of bisphenol A type epoxy resin is 40 to 50 ° C., the content of the inorganic filler (C) is 1071 to 1460 parts by weight per 100 parts by weight of the total amount of the total epoxy resin (A) and the total phenol resin (B), and the curing accelerator (D) The epoxy resin composition for semiconductor encapsulation, characterized in that the content is 0.4 to 20 parts by weight per 100 parts by weight of the total amount of all epoxy resins and all phenol resins, and half using this By comprising a body element sealing a semiconductor device according to claim.
[Chemical 2]
Figure 0005191072
(Where n is an integer)
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the general formula (1) used in the present invention, a bisphenol A type epoxy resin containing 90% or more of n = 0 body structure exhibits crystallinity at room temperature, and is more heated than a conventional biphenyl type epoxy resin. The melt viscosity is low, the fluidity is superior to the epoxy resin composition mainly using the biphenyl type epoxy resin, the inorganic filler can be further filled, and the moisture absorption of the epoxy resin composition can be reduced. Therefore, it contributes to the improvement of solder crack resistance. In addition, although it has a low molecular weight, it can be handled as a solid at room temperature, so it is excellent in handling workability. The remaining resin refers to an oligomer having a structure of the general formula (1).
[0006]
In the general formula (1) used in the present invention, the melting point of the bisphenol A type epoxy resin containing 90% or more of the n = 0 structure is preferably 35 to 60 ° C, more preferably 40 to 50 ° C. desirable. When the temperature is lower than 35 ° C., the resin is blocked at room temperature, which is not preferable because the handling workability and the room temperature storage stability of the resin composition using the resin are reduced. If it exceeds 60 ° C., the viscosity becomes high, and there is a possibility that the inorganic filler cannot be highly filled, which is not preferable. The melting point of the epoxy resin in the present invention refers to the temperature at the top of the melting peak when measured with a differential scanning calorimeter (Seiko Denshi Kogyo Co., Ltd.) at a heating rate of 5 ° C./min. .
In the general formula (1) used in the present invention, in order to maximize the characteristics of the bisphenol A type epoxy resin containing 90% or more of n = 0 body structure, 30% by weight or more in the total epoxy resin More preferably, 50% by weight or more is desirable. If it is less than 30% by weight, high filling of the inorganic filler may not be sufficiently exhibited.
Other epoxy resins used in combination include, for example, cresol novolac type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthol type epoxy resin, triphenolmethane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin And brominated epoxy resins and the like, and these may be used alone or in combination. Further, an epoxy resin that is liquid at room temperature or an epoxy resin having a high softening point may be used in combination as long as there is no problem in workability and fluidity.
[0007]
Examples of the phenol resin used in the present invention include a phenol novolak resin, a phenol aralkyl resin having a phenylene or diphenylene skeleton, a biphenyl aralkyl resin, a terpene-modified phenol resin, a dicyclopentadiene-modified phenol resin, and the like. May be used. These phenol resins can be used without limitation in terms of molecular weight, softening point, hydroxyl equivalent, etc., but a relatively low viscosity phenol resin having a softening point of 90 ° C. or lower is preferred. When the softening point exceeds 90 ° C., the effect of low viscosity, which is a characteristic of the bisphenol A type epoxy resin used in the present invention, is not preferable.
The equivalent ratio of epoxy groups of all epoxy resins to phenolic hydroxyl groups of all phenol resins is preferably 0.5 to 2.0, particularly preferably 0.7 to 1.5. If it is out of the range of 0.5 to 2.0, curability, moisture resistance reliability and the like are lowered, which is not preferable.
[0008]
There is no restriction | limiting in particular about the kind of inorganic filler used for this invention, What is generally used for the sealing material can be used. Examples thereof include fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica powder, alumina, titanium white, aluminum hydroxide, and the like, and fused spherical silica is particularly preferable. The shape is preferably infinitely spherical, and the amount of filling can be increased by mixing particles having different particle sizes. As a compounding quantity of an inorganic filler, 200-2400 weight part is preferable per 100 weight part of total amounts of all the epoxy resins and all phenol resins, and 400-1600 weight part is especially preferable. If it is less than 200 parts by weight, the reinforcing effect by the inorganic filler is not sufficiently exhibited, and the amount of the resin component that is a moisture absorption factor increases, so there is a possibility that it becomes highly hygroscopic, and if it exceeds 2400 parts by weight In addition, the fluidity of the resin composition is lowered, and filling failure or the like may occur at the time of molding.
The inorganic filler used in the present invention is preferably mixed well in advance. Further, if necessary, the inorganic filler may be used after being pretreated with a silane coupling agent, an epoxy resin or a phenol resin. As a treatment method, a method of removing the solvent after mixing with a solvent or a direct inorganic filler may be used. There is a method of adding to a filler and processing using a mixer.
[0009]
There is no restriction | limiting in particular about the kind of hardening accelerator used by this invention, What is generally used for the sealing material can be used. Examples thereof include triphenylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7, 2-methylimidazole and the like. As a compounding quantity, 0.4-20 weight part is preferable per 100 weight part of total amounts of all the epoxy resins and all the phenol resins. If the blending amount is less than 0.4 parts by weight, sufficient curability may not be obtained at the time of heat molding, and if it exceeds 20 parts by weight, curing will be too fast, resulting in poor filling due to a decrease in fluidity at the time of molding. Since it may occur, it is not preferable.
[0010]
In addition to the components (A) to (D), the epoxy resin composition of the present invention includes flame retardants such as brominated epoxy resin, antimony oxide, phosphorus compound, magnesium hydroxide, boric acid compound, and bismuth oxide water as necessary. Inorganic ion exchangers such as Japanese products, coupling agents such as γ-glycidoxypropyltrimethoxysilane, colorants such as carbon black and bengara, low stress components such as silicone oil and silicone rubber, natural wax, synthetic wax In addition, various additives such as mold release agents such as higher fatty acids and their metal salts or paraffin, and antioxidants can be blended.
In the epoxy resin composition of the present invention, the components (A) to (D) and other additives are mixed at room temperature using a mixer, melt-kneaded in a kneader such as a roll, a kneader, or an extruder, and then cooled. It is obtained by a general method of grinding.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it may be molded and cured by a molding method such as a transfer mold, a compression mold, or an injection mold.
[0011]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples.
The formulation of Example 1 is shown below. The blending ratio is parts by weight.
Bisphenol A type epoxy resin (content of n = 0 isomer of formula (1) 96%, melting point 45 ° C.) (hereinafter referred to as epoxy resin A) 4.9 parts by weight phenol novolak resin (hydroxyl equivalent 105, softening point 80 ° C.) ) 2.9 parts by weight fused spherical silica powder 90.0 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.3 parts by weight brominated bisphenol A type epoxy resin (epoxy) 0.5 parts by weight antimony oxide 0.5 parts by weight carbon black 0.2 parts by weight γ-glycidoxypropyltrimethoxysilane 0.3 parts by weight carnauba wax 0.4 parts by weight And then kneading 30 times using two rolls having a surface temperature of 90 ° C. and 45 ° C., cooling the obtained kneaded material sheet and crushing it to obtain a resin composition It was. The characteristics of the obtained resin composition were evaluated by the following methods. The results are shown in Table 1.
[0012]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 7 MPa, and a curing time of 2 minutes.
The unit is cm.
Water absorption: Using a transfer molding machine, a molded product having a mold temperature of 175 ° C., an injection pressure of 7 MPa, a curing time of 2 minutes and a diameter of 50 mm and a thickness of 3 mm is molded and post-cured at 175 ° C. for 8 hours. The molded product was allowed to stand for 168 hours in an environment of 85 ° C. and a relative humidity of 85%, and the weight change was measured to calculate the water absorption rate. The unit is% by weight.
Solder resistance: Using a transfer molding machine, a mold temperature of 175 ° C., an injection pressure of 7 MPa, a curing time of 2 minutes, 100 pTQFP (package size is 14 × 14 mm, thickness is 1.4 mm, and semiconductor element dimensions are 8.0 × 8 0.0 mm, lead frame made of 42 alloy) and post-cured at 175 ° C. for 8 hours. The resulting package is left at 185 ° C. for 168 hours at 85 ° C. and 85% relative humidity, and then placed in a solder bath at 240 ° C. for 10 hours. Soaked for 2 seconds. The package was observed with a microscope, and the occurrence rate of external cracks [(number of cracked packages) / (total number of packages) × 100] was determined. Units%. The ratio of the peeled area at the interface between the semiconductor element and the cured resin composition was measured using an ultrasonic flaw detector, and the peel rate [(peeled area) / (semiconductor element area) × 100] was determined. Units%.
Shore D hardness: Molded at a mold temperature of 175 ° C., an injection pressure of 7 MPa and a curing time of 2 minutes, and the value of Shore D hardness measured 10 seconds after mold opening is defined as curability. Shore D hardness is an index of curability, and the larger the value, the better the curability.
[0013]
Examples 2-5, Comparative Examples 1-4
According to the composition in Table 1, resin compositions were obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
Epoxy resins used other than Example 1 were bisphenol A type epoxy resin (content of n = 0 in formula (1) 92%, melting point 45 ° C.) (hereinafter referred to as epoxy resin B), bisphenol A type epoxy resin ( Content of n = 0 in formula (1) 8%, softening point 64 ° C. (hereinafter referred to as epoxy resin C), bisphenol A type epoxy resin (content of n = 0 in formula (1) 53%, half temperature) Solid) (hereinafter referred to as epoxy resin D), bisphenol A type epoxy resin (78% content of n = 0 in formula (1), liquid at room temperature) (hereinafter referred to as epoxy resin E), biphenyl type epoxy resin (oilification) Shell Epoxy Co., Ltd., YX4000K). The phenol resin is a phenol aralkyl resin (hydroxyl equivalent 174, softening point 75 ° C.).
[Table 1]
Figure 0005191072
[0014]
【Effect of the invention】
The epoxy resin composition of the present invention can be highly filled with an inorganic filler, and a semiconductor device using this has excellent solder resistance.

Claims (2)

(A)一般式(1)において、n=0体の構造のものを90%以上含むビスフェノールA型エポキシ樹脂を30重量%以上含むエポキシ樹脂、(B)フェノール樹脂、(C)無機充填材、及び(D)硬化促進剤を必須成分とし、全エポキシ樹脂のエポキシ基に対する全フェノール樹脂のフェノール性水酸基の当量比が0.5〜2.0であり、ビスフェノールA型エポキシ樹脂の融点が40〜45℃であり、無機充填材(C)の含有量が全エポキシ樹脂(A)と全フェノール樹脂(B)の合計量100重量部当たり1071〜1460重量部であり、硬化促進剤(D)の含有量が全エポキシ樹脂と全フェノール樹脂の合計量100重量部当たり0.4〜20重量部であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0005191072
(式中のnは整数。 )
(A) In the general formula (1), an epoxy resin containing 30% by weight or more of a bisphenol A type epoxy resin containing 90% or more of n = 0 structure, (B) a phenol resin, (C) an inorganic filler, And (D) a curing accelerator as an essential component, the equivalent ratio of phenolic hydroxyl groups of all phenol resins to the epoxy groups of all epoxy resins is 0.5 to 2.0, and the melting point of bisphenol A type epoxy resin is 40 to 45 ° C., the content of the inorganic filler (C) is 1071 to 1460 parts by weight per 100 parts by weight of the total amount of the total epoxy resin (A) and the total phenol resin (B), and the curing accelerator (D) Content is 0.4-20 weight part per 100 weight part of total amounts of all the epoxy resins and all the phenol resins, The epoxy resin composition for semiconductor sealing characterized by the above-mentioned.
Figure 0005191072
(In the formula, n is an integer.)
請求項1記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition for sealing a semiconductor according to claim 1.
JP2000072543A 2000-03-15 2000-03-15 Epoxy resin composition and semiconductor device Expired - Fee Related JP5191072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072543A JP5191072B2 (en) 2000-03-15 2000-03-15 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072543A JP5191072B2 (en) 2000-03-15 2000-03-15 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2001261779A JP2001261779A (en) 2001-09-26
JP5191072B2 true JP5191072B2 (en) 2013-04-24

Family

ID=18590930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072543A Expired - Fee Related JP5191072B2 (en) 2000-03-15 2000-03-15 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5191072B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017018A (en) * 2010-09-10 2011-01-27 Mitsubishi Chemicals Corp Epoxy resin composition and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157560A (en) * 1994-12-12 1996-06-18 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition
JPH1121425A (en) * 1997-07-02 1999-01-26 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JPH1121426A (en) * 1997-07-02 1999-01-26 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JPH1171442A (en) * 1997-08-28 1999-03-16 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH1171443A (en) * 1997-08-28 1999-03-16 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device sealed therewith
JP3685669B2 (en) * 1999-11-01 2005-08-24 ジャパンエポキシレジン株式会社 Epoxy resin composition

Also Published As

Publication number Publication date
JP2001261779A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
TWI388620B (en) Epoxy resin composition for encapsulating semiconductors, and semiconductor device
JP4561220B2 (en) Epoxy resin composition and semiconductor device
JP5191072B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP4014311B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4569260B2 (en) Epoxy resin composition and semiconductor device
JP3109399B2 (en) Epoxy resin composition for TAB sealing and TAB device
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2002080694A (en) Epoxy resin composition and semiconductor device
JP2003292730A (en) Epoxy resin composition and semiconductor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JP5067994B2 (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP4910240B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH0645740B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JPH05206331A (en) Resin composition for sealing semiconductor
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4802421B2 (en) Epoxy resin composition and semiconductor device
JP2001335621A (en) Epoxy resin composition and semiconductor device
JP2001226463A (en) Epoxy resin composition and semiconductor device
JP4660973B2 (en) Epoxy resin composition and semiconductor device
JP2000226497A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110128

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5191072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees