JP4724947B2 - Epoxy resin molding material manufacturing method and semiconductor device - Google Patents

Epoxy resin molding material manufacturing method and semiconductor device Download PDF

Info

Publication number
JP4724947B2
JP4724947B2 JP2001122243A JP2001122243A JP4724947B2 JP 4724947 B2 JP4724947 B2 JP 4724947B2 JP 2001122243 A JP2001122243 A JP 2001122243A JP 2001122243 A JP2001122243 A JP 2001122243A JP 4724947 B2 JP4724947 B2 JP 4724947B2
Authority
JP
Japan
Prior art keywords
epoxy resin
molding material
dihydroxy
melting point
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001122243A
Other languages
Japanese (ja)
Other versions
JP2002317029A (en
Inventor
誠 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001122243A priority Critical patent/JP4724947B2/en
Publication of JP2002317029A publication Critical patent/JP2002317029A/en
Application granted granted Critical
Publication of JP4724947B2 publication Critical patent/JP4724947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、流動性、成形性及び耐半田クラック性に優れた特性を有する半導体封止用エポキシ樹脂成形材料の製造方法及び半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子の封止方法としてエポキシ樹脂成形材料のトランスファー成形が低コスト、大量生産に適した方法として採用されており、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により特性の向上が図られてきた。しかし、近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体の高集積化も年々進み、又半導体装置の表面実装化が増加する中で、半導体封止用エポキシ樹脂成形材料への要求はますます厳しいものとなってきている。このため、従来からのエポキシ樹脂成形材料では解決できない問題点もでてきている。
その最大の問題点は、表面実装の採用により、半導体装置が半田浸漬或いは半田リフロー工程で急激に200℃以上の高温にさらされ、吸湿した水分が爆発的に気化する際の応力により、半導体装置にクラックが発生したり、半導体素子、リードフレーム、インナーリード上の各種メッキされた各接合部分或いはLead On Chip構造の半導体装置では、ポリイミドテープ接着剤等と樹脂成形材料の硬化物との各界面で、剥離が生じ信頼性が著しく低下する現象である。
【0003】
更に近年半導体装置の薄型化に伴い、半導体装置中に占めるエポキシ樹脂成形材料の硬化物の厚みが一段と薄くなってきており、例えば64M、256MDRAM用の半導体装置は、1mm厚のTSOPが主流となりつつあり、耐半田クラック性の要求はますます強くなっている。又これら薄型半導体装置には、成形時の充填性が良好で、金線変形が少なく、半導体素子やリードフレームの変形(半導体素子のシフトやダイパッドシフトと呼ぶ)がないエポキシ樹脂成形材料が要求され、そのためエポキシ樹脂成形材料は成形時の流動性に優れることが必要である。半田リフロー処理による信頼性の低下の改良と成形時の流動性向上を両立するために、エポキシ樹脂成形材料中の溶融シリカ粉末の充填量を増加させることで低吸湿化、高強度化、低熱膨張化を達成し耐半田クラック性を向上させると共に、低溶融粘度の樹脂を使用して、成形時低粘度で高流動性を維持させる手法が提案されている。この手法におけるエポキシ樹脂としては、特に常温では固体で、溶融時は粘度が極端に低下する結晶性のエポキシ樹脂があり、特にその代表的な例としてビフェニル型エポキシ樹脂が広く使用され始めている。
【0004】
半導体封止用エポキシ樹脂成形材料は、一般的にエポキシ樹脂、フェノール樹脂、無機充填材、硬化促進剤及びその他の添加剤等をミキサーを用いて常温混合し、二軸混練機等の混練機で溶融混練し、冷却後粉砕する方法等で得られる。結晶性エポキシ樹脂を用いる場合、混練機での溶融混練時に結晶性エポキシ樹脂の融点以上で混練しないとエポキシ樹脂が十分に溶融せず均一分散しないので、この溶融混合物を用いた樹脂成形材料の成形品は不均一となり、強度が各部分によって異なるために半導体装置の特性が低下してしまう。しかし、溶融混練時にこの溶融混合物の温度が高いと、混練機内で硬化反応が進行してしまい、流動性の低下、成形時の未充填の原因となるゲル化物の発生等を招く恐れがある。
【0005】
【発明が解決しようとする課題】
本発明は、流動性、成形性、耐半田クラック性に優れた特性を有する半導体封止用エポキシ樹脂成形材料の製造方法及び半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
(1)(A)融点70〜150℃の結晶性エポキシ樹脂、(B)フェノール樹脂、(C)無機充填材、(D)離型剤及び(E)硬化促進剤を必須成分とし、かつ(D)離型剤の少なくとも1種以上の融点が、(A)融点70〜150℃の結晶性エポキシ樹脂の融点よりも15〜45℃低い特性を有するエポキシ樹脂成形材料を、混練機で加熱混練する半導体封止用エポキシ成形材料の製造方法であって、混練機吐出口における溶融混合物の温度が、(A)融点70〜150℃の結晶性エポキシ樹脂の融点よりも10〜15℃低いことを特徴とする半導体封止用エポキシ成形材料の製造方法、
(2)融点が70〜150℃の結晶性エポキシ樹脂が、一般式(1)、一般式(2)又は一般式(3)から選ばれる1種以上である第(1)項記載の半導体封止用エポキシ樹脂成形材料の製造方法、
【0007】
【化4】

Figure 0004724947
(式中のR1は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。)
【0008】
【化5】
Figure 0004724947
(式中のR2は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。R3は水素原子、炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。)
【0009】
【化6】
Figure 0004724947
(式中のR4は水素原子、炭素数1〜6のアルキル基から選択される原子又は基を表し、それらは互いに同一であっても異なっていてもよい。R5は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。)
【0010】
(3)結晶性エポキシ樹脂が、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、4,4’−メチレンビス(2,6−ジメチルフェノール)、或いは4,4’−(1−メチルエチリデン)ビス(2,6−ジメチルフェノール)、4,4’−ビス(2,3−ヒドロキシプロピルオキシ)−2,2’−ジメチル−5,5’−ジターシャリブチルジフェニルスルフィド、又は5−ターシャリブチル−4,4’−ジヒドロキシ−2,3’,5’−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベン、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、もしくは4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルスチルベンのグリシジルエーテル化物である第(1)項又は(2)項記載の半導体封止用エポキシ樹脂成形材料の製造方法、
(4)第(1)項、(2)項又は(3)項記載の半導体封止用エポキシ樹脂成形材料の製造方法で製造された半導体封止用エポキシ樹脂成形材料を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0011】
【発明の実施の形態】
本発明に用いられる結晶性エポキシ樹脂としては種々の構造のものがあるが、融点としては、70〜150℃が好ましい。70℃未満だと得られたエポキシ樹脂成形材料にべたつき等が発生し作業性が悪化するので好ましくない。150℃を越えると、成形材料の製造時に樹脂が十分に溶融せず均一分散しないので、この溶融混合物を用いた成形材料の成形品は不均一となり、強度が各部分によって異なるために半導体装置の特性が低下するので好ましくない。
結晶性エポキシ樹脂の融点は、示差走査熱量計(セイコー電子工業(株)製、DSC220)を用いて常温から昇温速度5℃/分で昇温した結晶融解の吸熱ピークの頂点の温度を示す。
これらの条件を満たす結晶性エポキシ樹脂としては、一般式(1)のビフェニル型エポキシ樹脂、一般式(2)のビスフェノール型エポキシ樹脂、一般式(3)のスチルベン型エポキシ樹脂が好ましい。
【0012】
【化7】
Figure 0004724947
(式中のR1は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。)
【0013】
【化8】
Figure 0004724947
(式中のR2は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。R3は水素原子、炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。)
【0014】
【化9】
Figure 0004724947
(式中のR4は水素原子、炭素数1〜6のアルキル基から選択される原子又は基を表し、それらは互いに同一であっても異なっていてもよい。R5は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。)
【0015】
一般式(1)のビフェニル型エポキシ樹脂としては、例えば4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルビフェニル、2,2’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルビフェニル、又は4,4’−ジヒドロキシ−3,3’,5,5’−テトラターシャリブチルビフェニル等(置換位置の異なる異性体を含む)のグリシジルエーテル化物等が挙げられ、これらは単独でも混合して用いてもよい。
【0016】
一般式(2)のビスフェノール型エポキシ樹脂としては、例えば4,4’−メチレンビス(2,6−ジメチルフェノール)、4,4’−(1−メチルエチリデン)ビス(2−メチルフェノール)、4,4’−メチレンビス(2−メチルフェノール)、4,4’−メチレンビス(2,3,6−トリメチルフェノール)、4,4’−エチリデンビス(2,6−ジメチルフェノール)、4,4’−(1−メチルエチリデン)ビス(2,6−ジメチルフェノール)、4,4’−(1−メチルエチリデン)ビス[2−(1−メチルエチル)フェノール]、又は4,4’−ビス(2,3−ヒドロキシプロピルオキシ)−2,2’−ジメチル−5,5’−ジターシャリブチルジフェニルスルフィド等のグリシジルエーテル化物等が挙げられ、これらは単独でも混合して用いてもよい。
【0017】
一般式(3)のスチルベン型エポキシ樹脂としては、例えば3−ターシャリブチル−4,4’−ジヒドロキシ−5,3’−ジメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,6−ジメチルスチルベン、5−ターシャリブチル−4,4’−ジヒドロキシ−2,3’,5’−トリメチルスチルベン、3−ターシャリブチル−2,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5’,6−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジメチルスチルベン、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、2,2’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルスチルベン、又は4,4’−ジヒドロキシ−3,3’,5,5’−テトラターシャリブチルスチルベン等(置換位置の異なる異性体を含む)のグリシジルエーテル化物等が挙げられ、これらは単独でも混合して用いてもよい。
【0018】
本発明に用いられる結晶性エポキシ樹脂の特性を損なわない範囲で他のエポキシ樹脂と併用してもよい。併用できるエポキシ樹脂としては、1分子内に2個以上のエポキシ基を有するモノマー、オリゴマー、ポリマー全般を指し、例えばオルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型(フェニレン骨格又はジフェニレン骨格を有する)エポキシ樹脂等挙げられ、これらは単独でも混合して用いてもよい。
【0019】
本発明に用いられるフェノール樹脂としては、1分子内に2個以上のフェノール性水酸基を有するモノマー、オリゴマー及びポリマー全般を指し、例えばフェノールノボラック樹脂、フェノールアラルキル(フェニレン骨格又はジフェニレン骨格を有する)樹脂、ナフトールアラルキル(フェニレン骨格又はジフェニレン骨格を有する)樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ナフトール樹脂等が挙げられ、これらは単独でも混合して用いてもよい。これらのフェノール樹脂は、分子量、軟化点、水酸基当量等に特に限定しないが、軟化点110℃以下の比較的低粘度のフェノール樹脂が好ましい。軟化点が110℃を越えるとエポキシ樹脂の低粘度化の効果が薄れるので好ましくない。
【0020】
本発明に用いられる無機充填材については、特に限定されないが、一般に封止材料に用いられている無機充填材を使用することができる。例えば溶融破砕シリカ粉末、溶融球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカ粉末が好ましい。形状は限りなく真球状であることが好ましく、又粒子の大きさの異なるものを混合することにより充填量を多くすることができる。
本発明に用いられる無機充填材の配合量としては、全エポキシ樹脂成形材料中に75〜93重量%が好ましい。75重量%未満だと成形された半導体装置の吸湿量が増大し、半田リフロー処理温度での強度が低下してしまうため、半田リフロー処理時に半導体装置にクラックが発生し易くなり好ましくない。一方93重量%を越えると、成形材料の成形時の流動性が低下し、未充填や半導体素子のチップシフト、ダイパッドシフトが発生し易くなり好ましくない。
【0021】
本発明に用いられる離型剤としては、天然ワックス、合成ワックス、高級脂肪酸及びその金属塩類、若しくはパラフィン等を指し、融点が前記結晶性エポキシ樹脂の融点よりも15℃〜45℃低いものが好ましい。
本発明に用いられる離型剤は結晶性エポキシ樹脂と相溶することにより、結晶性エポキシ樹脂の融点を降下させるため、混練機での加熱溶融混練時に結晶性エポキシ樹脂本来の融点よりも低い温度で混練しても結晶性エポキシ樹脂を十分に溶融させ均一分散させることが可能となり、混練機内での硬化反応の進行による流動性の低下、成形時における未充填の原因となるゲル化物の発生、成形品が不均一となり各部分の強度が異なることにより発生する耐半田クラック性の低下等を防ぐことができる。15℃未満だと離型剤と結晶性エポキシ樹脂が十分に相溶せず、又相溶による融点降下の効果が小さいので好ましくない。一方45℃を越えると得られたエポキシ樹脂成形材料にべたつき等が発生し作業性が悪化するので好ましくない。本発明での離型剤の融点の測定法は、結晶性エポキシ樹脂と同じ示差走査熱量計を用いて行う。
本発明のエポキシ樹脂成形材料を製造するのに用いる混練機は、混練時に発熱溶融させる機構を有する一般的な混練機であればよいが、例えば一軸式混練機、同方向回転二軸式混練機、異方向回転二軸式混練機等の容器固定型の水平軸形式の混練機が挙げられる。
【0022】
本発明で用いられる硬化促進剤は、前記エポキシ樹脂とフェノール樹脂との架橋反応を促進するものであればよく、例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のアミジン系化合物、トリフェニルホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は単独でも混合して用いてよい。
【0023】
本発明のエポキシ樹脂成形材料は、(A)〜(E)成分の他、必要に応じて臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、酸化ビスマス水和物等の無機イオン交換体、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック、ベンガラ等の着色剤、シリコーンオイル、シリコーンゴム等の低応力剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂成形材料は、(A)〜(E)成分及びその他の添加剤等をミキサーを用いて常温混合し、二軸式混練機等の混練機で溶融混練し、冷却後粉砕する一般的な方法で得られる。
本発明のエポキシ樹脂成形材料を用いて、半導体素子等の電子部品を封止し、半導体装置を造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形硬化すればよい。
【0024】
【実施例】
以下、本発明の実施例を示すが、本発明はこれらに限定されるものではない。
配合割合は重量部とする。
Figure 0004724947
各成分をミキサーを用いて常温で混合した後、二軸混練機にて吐出口における溶融混合物の温度が95℃になるように加熱混練を行い、冷却後粉砕して、成形材料を得た。得られた成形材料を以下の方法で評価した。結果を表1に示す。
【0025】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。単位はcm。
アセトン不溶分:加熱混練して得られた成形材料約100g前後を精秤し、容器にアセトン300gを精秤して共に20分間混合した後、アセトンに不溶でかつ粒度が70メッシュ以上のゲル化物の比率を求め、%で表示した。
未充填発生率:100ピンTQFP(パッケージサイズは14×14mm、厚み1.4mm、シリコンチップサイズは8.0×8.0mm、リードフレームはCu製)を金型温度175℃、注入圧力75kg/cm2、硬化時間1分にて50ショット連続でトランスファー成形し、ゲート詰まりによるパッケージ未充填が発生した比率を求め、%で表示した。
耐半田クラック性:100ピンTQFP(パッケージサイズは14×14mm、厚み1.4mm、シリコンチップサイズは8.0×8.0mm、リードフレームはCu製)を金型温度175℃、注入圧力75kg/cm2、硬化時間1分でトランスファー成形し、175℃、8時間で後硬化させた。得られた半導体パッケージを85℃、相対湿度85%の環境下で168時間放置し、その後240℃の半田槽に10秒間浸漬した。顕微鏡でパッケージを観察し、外部クラック[(クラック発生パッケージ数)/(全パッケージ数)×100]を%で表示した。又チップと成形材料の硬化物との剥離面積の割合を超音波探傷装置を用いて測定し、剥離率[(剥離面積)/(チップ面積)×100]として、5個のパッケージの平均値を求め、%で表示した。
【0026】
実施例2〜5、比較例1〜6
表1、表2に示す割合で各成分を配合し、実施例1と同様に表1、表2に示す温度で二軸混練機にて溶融混練を行い成形材料を得て、実施例1と同様にして評価した。結果を表1、表2に示す。
なお、実施例2〜5、比較例1〜6で用いたエポキシ樹脂、フェノール樹脂、離型剤の詳細を以下に示す。
実施例4に用いた結晶性エポキシ樹脂は、4,4’−ビス(2,3−エポキシプロポキシ)−3,3’,5,5’−テトラメチルスチルベンを主成分とする樹脂60重量%と4,4’−ビス(2,3−エポキシプロポキシ)−5−ターシャリブチル−2,3’,5’−トリメチルスチルベンを主成分とする樹脂40重量%との混合物である(エポキシ当量209、融点120℃、以下エポキシ樹脂Bという)。
フェノールアラルキル樹脂(水酸基当量174、軟化点75℃)
モンタン酸トリグリセリド(融点81℃)
酸化ポリエチレンA(融点97℃)
酸化ポリエチレンB(融点116℃)
【0027】
【表1】
Figure 0004724947
【0028】
【表2】
Figure 0004724947
【0029】
【発明の効果】
本発明の製造方法に従うと、流動性、成形性に優れた半導体封止用エポキシ樹脂成形材料が得られ、これを用いた半導体装置は耐半田クラック性に優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an epoxy resin molding material for semiconductor encapsulation and a semiconductor device having characteristics excellent in fluidity, moldability and solder crack resistance.
[0002]
[Prior art]
Transfer molding of epoxy resin molding material is adopted as a low-cost and suitable method for mass production as a sealing method for semiconductor elements such as IC and LSI. From the viewpoint of reliability, epoxy resin and phenolic resin, which is a curing agent, are also used. Improvements have been made to improve properties. However, due to the recent trend toward smaller, lighter, and higher performance electronic devices, semiconductor integration has progressed year by year, and the surface mounting of semiconductor devices has increased. The demand for materials has become increasingly severe. For this reason, the problem which cannot be solved with the conventional epoxy resin molding material has also come out.
The biggest problem is that by adopting surface mounting, the semiconductor device is suddenly exposed to a high temperature of 200 ° C. or higher in the solder dipping or solder reflow process, and the moisture when moisture absorbed explosively vaporizes the semiconductor device. In the case of cracks in the semiconductor element, various plated joints on the semiconductor element, lead frame, inner lead, or lead-on-chip semiconductor device, each interface between the polyimide tape adhesive and the cured resin molding material This is a phenomenon in which peeling occurs and reliability is significantly lowered.
[0003]
Further, in recent years, with the thinning of semiconductor devices, the thickness of the cured product of the epoxy resin molding material in the semiconductor devices has become even thinner. For example, for semiconductor devices for 64M and 256MDRAM, 1 mm thick TSOP is becoming the mainstream. There is an increasing demand for solder crack resistance. In addition, these thin semiconductor devices require an epoxy resin molding material that has good filling properties during molding, little gold wire deformation, and no semiconductor element or lead frame deformation (called semiconductor element shift or die pad shift). Therefore, it is necessary that the epoxy resin molding material has excellent fluidity during molding. In order to achieve both improvement in reliability reduction due to solder reflow processing and improvement in fluidity during molding, the amount of molten silica powder in the epoxy resin molding material is increased to reduce moisture absorption, increase strength, and reduce thermal expansion. A technique has been proposed in which a low melt viscosity resin is used and a high fluidity is maintained at the time of molding using a low melt viscosity resin. As an epoxy resin in this method, there is a crystalline epoxy resin that is solid at room temperature and whose viscosity is extremely reduced when melted. Biphenyl type epoxy resins have begun to be widely used as a typical example.
[0004]
Epoxy resin molding material for semiconductor encapsulation is generally mixed with epoxy resin, phenol resin, inorganic filler, curing accelerator and other additives at room temperature using a mixer, and a kneader such as a twin-screw kneader. It can be obtained by a method of melt-kneading and pulverizing after cooling. When a crystalline epoxy resin is used, the epoxy resin does not melt sufficiently and does not uniformly disperse unless it is kneaded above the melting point of the crystalline epoxy resin during melt kneading in a kneader. Molding of a resin molding material using this molten mixture The product becomes non-uniform and the strength of each part varies, so that the characteristics of the semiconductor device deteriorate. However, if the temperature of the molten mixture at the time of melt kneading is high, the curing reaction proceeds in the kneading machine, which may cause a decrease in fluidity and generation of a gelled product that causes unfilling at the time of molding.
[0005]
[Problems to be solved by the invention]
The present invention provides a method for producing an epoxy resin molding material for semiconductor encapsulation and a semiconductor device having characteristics excellent in fluidity, moldability and solder crack resistance.
[0006]
[Means for Solving the Problems]
The present invention
(1) (A) a crystalline epoxy resin having a melting point of 70 to 150 ° C., (B) a phenol resin, (C) an inorganic filler, (D) a release agent and (E) a curing accelerator, and ( D) An epoxy resin molding material having a characteristic that the melting point of at least one release agent is 15 to 45 ° C. lower than the melting point of the crystalline epoxy resin having a melting point of 70 to 150 ° C. is heated and kneaded in a kneader. A method for producing an epoxy molding material for semiconductor encapsulation, wherein the temperature of the molten mixture at the discharge port of the kneader is 10 to 15 ° C. lower than the melting point of the crystalline epoxy resin having a melting point of 70 to 150 ° C. A method for producing an epoxy molding material for semiconductor encapsulation,
(2) The semiconductor encapsulation according to item (1), wherein the crystalline epoxy resin having a melting point of 70 to 150 ° C. is at least one selected from the general formula (1), the general formula (2), or the general formula (3). Manufacturing method of epoxy resin molding material for fixing,
[0007]
[Formula 4]
Figure 0004724947
(R 1 in the formula represents an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other. M is an integer of 0 to 4.)
[0008]
[Chemical formula 5]
Figure 0004724947
(In the formula, R 2 represents an alkyl group having 1 to 6 carbon atoms, and they may be the same as or different from each other. M is an integer of 0 to 4. R 3 is a hydrogen atom, 1 to carbon atoms. 6 alkyl groups, which may be the same or different from each other.)
[0009]
[Chemical 6]
Figure 0004724947
(In the formula, R 4 represents a hydrogen atom or an atom or group selected from an alkyl group having 1 to 6 carbon atoms, and they may be the same or different from each other. R 5 has 1 to 6 carbon atoms. And they may be the same or different from each other, m is an integer of 0 to 4.)
[0010]
(3) Crystalline epoxy resin is 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl, 4,4′-methylenebis (2,6-dimethyl) Phenol), or 4,4 ′-(1-methylethylidene) bis (2,6-dimethylphenol), 4,4′-bis (2,3-hydroxypropyloxy) -2,2′-dimethyl-5, 5′-ditertiarybutyl diphenyl sulfide, or 5-tertiarybutyl-4,4′-dihydroxy-2,3 ′, 5′-trimethylstilbene, 3-tertiarybutyl-4,4′-dihydroxy-3 ′, 5,5′-trimethylstilbene, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylstilbene, 4,4′-dihydroxy-3,3′-ditertiarybutyl-6,6′- Dimethyl The epoxy resin for semiconductor encapsulation according to item (1) or (2), which is glycidyl etherified product of tilbene or 4,4′-dihydroxy-3,3′-ditertiarybutyl-5,5′-dimethylstilbene Manufacturing method of molding material,
(4) The semiconductor element is sealed using the epoxy resin molding material for semiconductor encapsulation produced by the method for producing an epoxy resin molding material for semiconductor encapsulation described in the item (1), (2) or (3). A semiconductor device characterized by being stopped,
It is.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The crystalline epoxy resin used in the present invention has various structures, and the melting point is preferably 70 to 150 ° C. If it is lower than 70 ° C., the resulting epoxy resin molding material is not sticky and the workability is deteriorated, which is not preferable. When the temperature exceeds 150 ° C., the resin is not sufficiently melted and uniformly dispersed at the time of manufacturing the molding material, so that the molded product of the molding material using this molten mixture becomes non-uniform and the strength varies depending on each part. This is not preferable because the characteristics deteriorate.
The melting point of the crystalline epoxy resin indicates the temperature at the top of the endothermic peak of crystal melting, which is heated from room temperature at a heating rate of 5 ° C./minute using a differential scanning calorimeter (Seiko Electronics Co., Ltd., DSC220). .
As the crystalline epoxy resin satisfying these conditions, a biphenyl type epoxy resin of the general formula (1), a bisphenol type epoxy resin of the general formula (2), and a stilbene type epoxy resin of the general formula (3) are preferable.
[0012]
[Chemical 7]
Figure 0004724947
(R 1 in the formula represents an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other. M is an integer of 0 to 4.)
[0013]
[Chemical 8]
Figure 0004724947
(In the formula, R 2 represents an alkyl group having 1 to 6 carbon atoms, and they may be the same as or different from each other. M is an integer of 0 to 4. R 3 is a hydrogen atom, 1 to carbon atoms. 6 alkyl groups, which may be the same or different from each other.)
[0014]
[Chemical 9]
Figure 0004724947
(In the formula, R 4 represents a hydrogen atom or an atom or group selected from an alkyl group having 1 to 6 carbon atoms, and they may be the same or different from each other. R 5 has 1 to 6 carbon atoms. And they may be the same or different from each other, m is an integer of 0 to 4.)
[0015]
Examples of the biphenyl type epoxy resin of the general formula (1) include 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl, 4,4′-dihydroxy- 3,3′-ditertiarybutyl-6,6′-dimethylbiphenyl, 2,2′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylbiphenyl, 4,4′-dihydroxy-3, 3′-ditertiarybutyl-5,5′-dimethylbiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetratertiarybutylbiphenyl, etc. (including isomers with different substitution positions) Examples thereof include glycidyl ether compounds, and these may be used alone or in combination.
[0016]
Examples of the bisphenol type epoxy resin of the general formula (2) include 4,4′-methylenebis (2,6-dimethylphenol), 4,4 ′-(1-methylethylidene) bis (2-methylphenol), 4, 4'-methylenebis (2-methylphenol), 4,4'-methylenebis (2,3,6-trimethylphenol), 4,4'-ethylidenebis (2,6-dimethylphenol), 4,4 '-( 1-methylethylidene) bis (2,6-dimethylphenol), 4,4 ′-(1-methylethylidene) bis [2- (1-methylethyl) phenol], or 4,4′-bis (2,3 -Hydroxypropyloxy) -2,2'-dimethyl-5,5'-ditertiarybutyldiphenyl sulfide and the like, and the like, and these may be used alone or in combination. May be.
[0017]
Examples of the stilbene type epoxy resin represented by the general formula (3) include 3-tert-butyl-4,4′-dihydroxy-5,3′-dimethylstilbene, 3-tert-butyl-4,4′-dihydroxy-3 ′. , 6-Dimethylstilbene, 5-tert-butyl-4,4′-dihydroxy-2,3 ′, 5′-trimethylstilbene, 3-tert-butyl-2,4′-dihydroxy-3 ′, 5 ′, 6 -Trimethylstilbene, 3-tert-butyl-4,4'-dihydroxy-3 ', 5', 6-trimethylstilbene, 3-tert-butyl-4,4'-dihydroxy-3 ', 5,5'-trimethyl Stilbene, 4,4′-dihydroxy-3,3′-dimethylstilbene, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylstilbene, 4,4′-dihydroxy-3,3 ′ Ditertiarybutyl stilbene, 4,4′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,2′-dihydroxy-3,3′-ditertiarybutyl-6,6′- Dimethylstilbene, 2,4′-dihydroxy-3,3′-ditertiarybutyl-6,6′-dimethylstilbene, 2,2′-dihydroxy-3,3 ′, 5,5′-tetramethylstilbene, 4, 4′-dihydroxy-3,3′-ditertiarybutyl-5,5′-dimethylstilbene, 4,4′-dihydroxy-3,3 ′, 5,5′-tetratertiarybutylstilbene, etc. (Including different isomers) and the like, and these may be used alone or in combination.
[0018]
You may use together with another epoxy resin in the range which does not impair the characteristic of the crystalline epoxy resin used for this invention. Examples of epoxy resins that can be used in combination include monomers, oligomers, and polymers that have two or more epoxy groups in one molecule. For example, orthocresol novolac type epoxy resins, phenol novolac type epoxy resins, dicyclopentadiene-modified phenol type epoxy resins. , Naphthol type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type (having a phenylene skeleton or diphenylene skeleton) epoxy resin, and the like. These may be used alone or in combination.
[0019]
The phenol resin used in the present invention refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule, such as phenol novolac resin, phenol aralkyl (having a phenylene skeleton or diphenylene skeleton) resin, Examples thereof include naphthol aralkyl (having a phenylene skeleton or diphenylene skeleton) resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, naphthol resin, and the like. These may be used alone or in combination. These phenol resins are not particularly limited to molecular weight, softening point, hydroxyl group equivalent, etc., but relatively low viscosity phenol resins having a softening point of 110 ° C. or lower are preferred. When the softening point exceeds 110 ° C., the effect of lowering the viscosity of the epoxy resin is diminished.
[0020]
Although it does not specifically limit about the inorganic filler used for this invention, The inorganic filler generally used for the sealing material can be used. Examples thereof include fused crushed silica powder, fused spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, alumina, titanium white, and aluminum hydroxide, and fused spherical silica powder is particularly preferred. The shape is preferably infinitely spherical, and the amount of filling can be increased by mixing particles having different particle sizes.
As a compounding quantity of the inorganic filler used for this invention, 75 to 93 weight% is preferable in all the epoxy resin molding materials. If it is less than 75% by weight, the moisture absorption amount of the molded semiconductor device increases and the strength at the solder reflow processing temperature decreases, so that cracks are likely to occur in the semiconductor device during the solder reflow processing, which is not preferable. On the other hand, if it exceeds 93% by weight, the fluidity at the time of molding of the molding material is lowered, and unfilling, chip shift of the semiconductor element, and die pad shift are likely to occur, which is not preferable.
[0021]
The mold release agent used in the present invention refers to natural wax, synthetic wax, higher fatty acid and its metal salt, or paraffin, and preferably has a melting point 15 to 45 ° C. lower than the melting point of the crystalline epoxy resin. .
The mold release agent used in the present invention lowers the melting point of the crystalline epoxy resin by being compatible with the crystalline epoxy resin, so that the temperature lower than the original melting point of the crystalline epoxy resin at the time of heat melt kneading in a kneader. It becomes possible to sufficiently melt and uniformly disperse the crystalline epoxy resin even when kneaded in, the decrease in fluidity due to the progress of the curing reaction in the kneader, the generation of gelled products that cause unfilling during molding, It is possible to prevent a decrease in resistance to solder cracks caused by unevenness of the molded product and different strength of each part. If it is less than 15 ° C., the release agent and the crystalline epoxy resin are not sufficiently compatible with each other, and the effect of lowering the melting point due to the compatibility is small. On the other hand, if it exceeds 45 ° C., the resulting epoxy resin molding material will be sticky and the workability will deteriorate, such being undesirable. In the present invention, the melting point of the release agent is measured using the same differential scanning calorimeter as that of the crystalline epoxy resin.
The kneader used for producing the epoxy resin molding material of the present invention may be a general kneader having a mechanism for exothermic melting at the time of kneading. For example, a uniaxial kneader, a co-rotating biaxial kneader And a container-fixed horizontal axis type kneader such as a bi-directional rotating biaxial kneader.
[0022]
The curing accelerator used in the present invention may be any accelerator that promotes the crosslinking reaction between the epoxy resin and the phenol resin. For example, amidine compounds such as 1,8-diazabicyclo (5,4,0) undecene-7. And organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or in combination.
[0023]
In addition to the components (A) to (E), the epoxy resin molding material of the present invention includes, if necessary, a brominated epoxy resin, a flame retardant such as antimony oxide and a phosphorus compound, and an inorganic ion exchanger such as bismuth oxide hydrate. Various additives such as coupling agents such as γ-glycidoxypropyltrimethoxysilane, colorants such as carbon black and bengara, low stress agents such as silicone oil and silicone rubber, and antioxidants can be blended. .
In the epoxy resin molding material of the present invention, the components (A) to (E) and other additives are mixed at room temperature using a mixer, melt-kneaded in a kneader such as a biaxial kneader, and pulverized after cooling. It is obtained by a general method.
In order to seal an electronic component such as a semiconductor element and produce a semiconductor device using the epoxy resin molding material of the present invention, it may be molded and cured by a molding method such as transfer molding, compression molding, or injection molding.
[0024]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto.
The blending ratio is parts by weight.
Figure 0004724947
Each component was mixed at room temperature using a mixer, then heated and kneaded with a twin-screw kneader so that the temperature of the molten mixture at the discharge port was 95 ° C., cooled and pulverized to obtain a molding material. The obtained molding material was evaluated by the following methods. The results are shown in Table 1.
[0025]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The unit is cm.
Acetone insoluble content: About 100 g of molding material obtained by heating and kneading is precisely weighed, 300 g of acetone is precisely weighed in a container and mixed together for 20 minutes, and then gelled insoluble in acetone and having a particle size of 70 mesh or more. The ratio was calculated and expressed in%.
Unfilled incidence: 100-pin TQFP (package size 14 x 14 mm, thickness 1.4 mm, silicon chip size 8.0 x 8.0 mm, lead frame made of Cu), mold temperature 175 ° C, injection pressure 75 kg / Transfer molding was performed continuously for 50 shots with a cm 2 and curing time of 1 minute, and the ratio of unfilled packages due to gate clogging was determined and displayed in%.
Solder crack resistance: 100-pin TQFP (package size: 14 × 14 mm, thickness: 1.4 mm, silicon chip size: 8.0 × 8.0 mm, lead frame made of Cu), mold temperature: 175 ° C., injection pressure: 75 kg / Transfer molding was performed with a cm 2 curing time of 1 minute, and post-curing was performed at 175 ° C. for 8 hours. The obtained semiconductor package was left in an environment of 85 ° C. and relative humidity 85% for 168 hours, and then immersed in a solder bath at 240 ° C. for 10 seconds. The package was observed with a microscope, and external cracks [(number of crack generating packages) / (total number of packages) × 100] were displayed in%. The ratio of the peeled area between the chip and the cured material of the molding material was measured using an ultrasonic flaw detector, and the average value of the five packages was determined as the peel rate [(peeled area) / (chip area) × 100]. Calculated and displayed in%.
[0026]
Examples 2-5, Comparative Examples 1-6
Each component was blended in the proportions shown in Tables 1 and 2, and in the same manner as in Example 1, melt-kneading was performed in a biaxial kneader at the temperatures shown in Tables 1 and 2 to obtain molding materials. Evaluation was performed in the same manner. The results are shown in Tables 1 and 2.
In addition, the detail of the epoxy resin, phenol resin, and mold release agent which were used in Examples 2-5 and Comparative Examples 1-6 is shown below.
The crystalline epoxy resin used in Example 4 was 60% by weight of a resin mainly composed of 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylstilbene. 4,4′-bis (2,3-epoxypropoxy) -5-tertiarybutyl-2,3 ′, 5′-trimethylstilbene and 40% by weight of a resin (epoxy equivalent 209, Melting point 120 ° C., hereinafter referred to as epoxy resin B).
Phenol aralkyl resin (hydroxyl equivalent 174, softening point 75 ° C)
Montanic acid triglyceride (melting point 81 ° C)
Polyethylene oxide A (melting point 97 ° C)
Polyethylene oxide B (melting point 116 ° C)
[0027]
[Table 1]
Figure 0004724947
[0028]
[Table 2]
Figure 0004724947
[0029]
【The invention's effect】
According to the production method of the present invention, an epoxy resin molding material for semiconductor encapsulation excellent in fluidity and moldability is obtained, and a semiconductor device using this is excellent in solder crack resistance.

Claims (4)

(A)融点70〜150℃の結晶性エポキシ樹脂、(B)フェノール樹脂、(C)無機充填材、(D)離型剤及び(E)硬化促進剤を必須成分とし、かつ(D)離型剤の少なくとも1種以上の融点が、(A)融点70〜150℃の結晶性エポキシ樹脂の融点よりも15〜45℃低い特性を有するエポキシ樹脂成形材料を、混練機で加熱混練する半導体封止用エポキシ成形材料の製造方法であって、混練機吐出口における溶融混合物の温度が、(A)融点70〜150℃の結晶性エポキシ樹脂の融点よりも10〜15℃低いことを特徴とする半導体封止用エポキシ成形材料の製造方法。(A) Crystalline epoxy resin having a melting point of 70 to 150 ° C., (B) phenol resin, (C) inorganic filler, (D) mold release agent and (E) curing accelerator as essential components, and (D) release A semiconductor encapsulant in which an epoxy resin molding material having a characteristic that the melting point of at least one of the molds is 15 to 45 ° C. lower than the melting point of the crystalline epoxy resin (A) having a melting point of 70 to 150 ° C. is heated and kneaded by a kneader. A method for producing an epoxy molding material for fastening, wherein the temperature of the molten mixture at the discharge port of the kneader is 10 to 15 ° C. lower than the melting point of the crystalline epoxy resin having a melting point of 70 to 150 ° C. Manufacturing method of epoxy molding material for semiconductor encapsulation. 融点が70〜150℃の結晶性エポキシ樹脂が、一般式(1)、一般式(2)又は一般式(3)から選ばれる1種以上である請求項1記載の半導体封止用エポキシ樹脂成形材料の製造方法。
Figure 0004724947
(式中のR1は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。)
Figure 0004724947
(式中のR2は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。R3は水素原子、炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。)
Figure 0004724947
(式中のR4は水素原子、炭素数1〜6のアルキル基から選択される原子又は基を表し、それらは互いに同一であっても異なっていてもよい。R5は炭素数1〜6のアルキル基を表し、それらは互いに同一であっても異なっていてもよい。mは0〜4の整数。)
The epoxy resin molding for semiconductor encapsulation according to claim 1, wherein the crystalline epoxy resin having a melting point of 70 to 150 ° C. is one or more selected from the general formula (1), the general formula (2), or the general formula (3). Material manufacturing method.
Figure 0004724947
(R 1 in the formula represents an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other. M is an integer of 0 to 4.)
Figure 0004724947
(In the formula, R 2 represents an alkyl group having 1 to 6 carbon atoms, and they may be the same as or different from each other. M is an integer of 0 to 4. R 3 is a hydrogen atom, 1 to carbon atoms. 6 alkyl groups, which may be the same or different from each other.)
Figure 0004724947
(In the formula, R 4 represents a hydrogen atom or an atom or group selected from an alkyl group having 1 to 6 carbon atoms, and they may be the same or different from each other. R 5 has 1 to 6 carbon atoms. And these may be the same or different, and m is an integer of 0 to 4.)
結晶性エポキシ樹脂が、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、4,4’−メチレンビス(2,6−ジメチルフェノール)、或いは4,4’−(1−メチルエチリデン)ビス(2,6−ジメチルフェノール)、4,4’−ビス(2,3−ヒドロキシプロピルオキシ)−2,2’−ジメチル−5,5’−ジターシャリブチルジフェニルスルフィド、又は5−ターシャリブチル−4,4’−ジヒドロキシ−2,3’,5’−トリメチルスチルベン、3−ターシャリブチル−4,4’−ジヒドロキシ−3’,5,5’−トリメチルスチルベン、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルスチルベン、4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−6,6’−ジメチルスチルベン、もしくは4,4’−ジヒドロキシ−3,3’−ジターシャリブチル−5,5’−ジメチルスチルベンのグリシジルエーテル化物である請求項1又は2記載の半導体封止用エポキシ樹脂成形材料の製造方法。  Crystalline epoxy resin is 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl, 4,4′-methylenebis (2,6-dimethylphenol), Alternatively, 4,4 ′-(1-methylethylidene) bis (2,6-dimethylphenol), 4,4′-bis (2,3-hydroxypropyloxy) -2,2′-dimethyl-5,5′- Ditertiarybutyl diphenyl sulfide, or 5-tertiarybutyl-4,4′-dihydroxy-2,3 ′, 5′-trimethylstilbene, 3-tertiarybutyl-4,4′-dihydroxy-3 ′, 5,5 '-Trimethylstilbene, 4,4'-dihydroxy-3,3', 5,5'-tetramethylstilbene, 4,4'-dihydroxy-3,3'-ditertiary rib 3. For semiconductor encapsulation according to claim 1, which is a glycidyl etherified product of -6,6'-dimethylstilbene or 4,4'-dihydroxy-3,3'-ditertiarybutyl-5,5'-dimethylstilbene. Manufacturing method of epoxy resin molding material. 請求項1、2又は3記載の半導体封止用エポキシ樹脂成形材料の製造方法で製造された半導体封止用エポキシ樹脂成形材料を用いて半導体素子を封止してなることを特徴とする半導体装置。  A semiconductor device comprising a semiconductor element sealed using the epoxy resin molding material for semiconductor encapsulation produced by the method for producing an epoxy resin molding material for semiconductor encapsulation according to claim 1, 2 or 3. .
JP2001122243A 2001-04-20 2001-04-20 Epoxy resin molding material manufacturing method and semiconductor device Expired - Lifetime JP4724947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001122243A JP4724947B2 (en) 2001-04-20 2001-04-20 Epoxy resin molding material manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122243A JP4724947B2 (en) 2001-04-20 2001-04-20 Epoxy resin molding material manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2002317029A JP2002317029A (en) 2002-10-31
JP4724947B2 true JP4724947B2 (en) 2011-07-13

Family

ID=18971982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122243A Expired - Lifetime JP4724947B2 (en) 2001-04-20 2001-04-20 Epoxy resin molding material manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP4724947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609919B2 (en) * 2003-12-04 2011-01-12 新日鐵化学株式会社 Method for solidifying composition containing crystalline organic oligomer
CN110330602B (en) * 2019-07-25 2022-07-29 上海东升新材料有限公司 Amphoteric heavy calcium grinding dispersant and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129139A (en) * 1998-10-27 2000-05-09 Matsushita Electric Works Ltd Production of granular semiconductor sealing material and granular semiconductor sealing material
JP2000273281A (en) * 1999-03-19 2000-10-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2000281870A (en) * 1999-03-30 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048922B2 (en) * 1996-04-26 2000-06-05 住友ベークライト株式会社 Method for producing epoxy resin composition for semiconductor encapsulation
JP3834916B2 (en) * 1997-03-10 2006-10-18 東洋インキ製造株式会社 UV curable resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129139A (en) * 1998-10-27 2000-05-09 Matsushita Electric Works Ltd Production of granular semiconductor sealing material and granular semiconductor sealing material
JP2000273281A (en) * 1999-03-19 2000-10-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2000281870A (en) * 1999-03-30 2000-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2002317029A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP3562565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2001002755A (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JP2003041096A (en) Method for manufacturing epoxy resin molding material and semiconductor device
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JPH10158360A (en) Epoxy resin composition
JP4379973B2 (en) Epoxy resin composition and semiconductor device
JP3434676B2 (en) Epoxy resin composition and semiconductor device
JP2003213084A (en) Epoxy resin composition and semiconductor device
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2000327883A (en) Epoxy resin composition and semiconductor device
JP4706089B2 (en) Epoxy resin composition and semiconductor device
JP2001240726A (en) Epoxy resin composition and semiconductor device
JP4586286B2 (en) Epoxy resin composition and semiconductor device
JPH1045872A (en) Epoxy resin composition
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JPH11181244A (en) Epoxy resin composition and semiconductor device
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP4517433B2 (en) Epoxy resin composition and semiconductor device
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2001040180A (en) Epoxy resin composition and semiconductor device
JP4560871B2 (en) Epoxy resin composition and semiconductor device
JPH11172075A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3