JP4660973B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4660973B2
JP4660973B2 JP2001177860A JP2001177860A JP4660973B2 JP 4660973 B2 JP4660973 B2 JP 4660973B2 JP 2001177860 A JP2001177860 A JP 2001177860A JP 2001177860 A JP2001177860 A JP 2001177860A JP 4660973 B2 JP4660973 B2 JP 4660973B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor device
general formula
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001177860A
Other languages
Japanese (ja)
Other versions
JP2002145995A (en
Inventor
典久 星加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001177860A priority Critical patent/JP4660973B2/en
Publication of JP2002145995A publication Critical patent/JP2002145995A/en
Application granted granted Critical
Publication of JP4660973B2 publication Critical patent/JP4660973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、難燃性に優れるエポキシ樹脂組成物、及び半導体装置に関するものである。
【0002】
【従来の技術】
従来、ダイオード、トランジスタ、集積回路等の半導体装置は、主にエポキシ樹脂組成物で封止されているが、これらのエポキシ樹脂組成物中には、通常、難燃性を付与するために臭素含有有機化合物及びアンチモン化合物が配合されている。ところが、環境・衛生の点から、臭素含有有機化合物及びアンチモン化合物を使用しなくとも、難燃性に優れたエポキシ樹脂組成物の開発が望まれている。
更に、半導体装置を150〜200℃での高温で長時間保管すると、難燃剤成分である臭素含有有機化合物やアンチモン化合物は、半導体装置の抵抗値の増加や金線の断線を引き起こすことが知られている。この観点からも、臭素含有有機化合物やアンチモン化合物を使用しないで高温保管特性に優れるエポキシ樹脂組成物の開発が待たれていた。
又、半導体装置のプリント回路基板への実装時において、鉛を含有する半田(スズ−鉛合金)が使用されており、同様に環境・衛生の点から、鉛を含有する半田(スズ−鉛合金)を使用しないことが望まれている。しかし鉛を含有する半田(スズ−鉛合金)では、融点は183℃であり、従って半田処理時の温度は220〜240℃であるが、これに対し、スズ−銀合金に代表される鉛を含有しない半田では、融点が高く、半田処理時の温度が260℃程度となるため、より耐半田ストレス性に優れたエポキシ樹脂組成物の開発が望まれている。
難燃性や耐半田ストレス性を向上させるためには、無機充填材を高充填化し、樹脂成分の含有量を減少させる必要があり、この手法の一つとして低粘度の結晶性エポキシ樹脂を用いる方法がある。現在、難燃剤を使用しないで低粘度の結晶性エポキシ樹脂を用いて無機充填材を高充填化したエポキシ樹脂組成物や、難燃性の高い樹脂を用いたエポキシ樹脂組成物が提案されているが、エポキシ樹脂組成物として良好な成形性と耐半田ストレス性とを完全に満足させるものは、未だ提案されていない。
【0003】
【発明が解決しようとする課題】
本発明は、実質的に臭素含有有機化合物、アンチモン化合物を含まず、良好な成形性、難燃性、耐半田ストレス性に優れた半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、
[1](A)一般式(3)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)無機充填材、及び(D)硬化促進剤を必須成分とし、(A)一般式(3)で示されるエポキシ樹脂を全エポキシ樹脂中に30重量%以上含有し、(B)一般式(2)で示されるフェノール樹脂を全フェノール樹脂中に30重量%以上含有し、難燃剤を含有せず、全エポキシ樹脂組成物中に含有される臭素原子及びアンチモン原子が、それぞれ0.05重量%以下であり、全無機物が全エポキシ樹脂組成物中87〜94重量%であることを特徴とする半導体封止用エポキシ樹脂組成物、
【化6】

Figure 0004660973
(式中、nは平均値で、1〜10の正数)
【0005】
【化5】
Figure 0004660973
(式中、nは平均値で、1〜10の正数)
【0006】
第[1]項記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0007】
【発明の実施の形態】
本発明で用いる一般式(3)で示されるエポキシ樹脂は、常温では結晶性の固体であるが、融点以上の温度域では急速に融解して極めて低粘度の液状になる特性を有している。これによって無機充填材の高充填化、ひいてはエポキシ樹脂組成物の硬化物の低吸湿化が可能となる。又、硬化性に優れており、エポキシ樹脂組成物の硬化物のガラス転移温度を越えた高温時での弾性率が低く、リードフレーム等の金属類との接着性に優れており、本発明の一般式(3)で示されるエポキシ樹脂を用いたエポキシ樹脂組成物で封止された半導体装置は、実装時の半田処理下でも高い信頼性を得ることができる。又、難燃性に優れ
ているため、硬化剤との組合せによっては難燃剤を配合しなくても良好な難燃性を発現できる。
一般式(3)中のnは平均値で1〜10の正数であるが、nが10を越えるとエポキシ樹脂の粘度が増大し、成形時のエポキシ樹脂組成物の流動性が劣り、より一層の低吸湿化のための無機充填材の高充填化ができなくなるので好ましくない。これらの内では硬化性の点から、一般式(3)で示されるエポキシ樹脂が好ましい。
本発明の一般式(3)で示されるエポキシ樹脂の融点としては、60〜120℃が好ましく、特に80〜110℃が好ましい。60℃未満だと、常温では液状又は半固形状であるため、作業性の問題や、これを用いたエポキシ樹脂組成物の常温保存性が低下する可能性がある。120℃を越えると、溶融混練時に十分に融解せず、均一分散できないので成形性及び硬化性が低下し、不均一な成形品となり、強度が各部分によって異なるために半導体装置の性能が低下する可能性がある。
本発明におけるエポキシ樹脂の融点は、示差走査熱量計(セイコー電子工業(株)、SSC/5200)を用いて、常温から昇温速度5℃/分で昇温したときの融解ピークの頂点の温度を示す。
更に、半導体装置の長期信頼性の点から、不純物として含有される塩素イオン、ナトリウムイオン、その他のフリーのイオンは、極力少ないことが望ましい。一般式(3)で示されるエポキシ樹脂の特性を損なわない範囲で、他のエポキシ樹脂と併用してもよいが、耐半田ストレス性を最大限に引き出すためには、一般式(3)で示されるエポキシ樹脂を全エポキシ樹脂中に30重量%以上含むことが好ましく、特に50重量%以上が好ましい。30重量%未満だと、耐半田ストレス性が不十分となる可能性がある。併用するエポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、トリフェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
【0008】
本発明で用いる一般式(2)で示されるフェノール樹脂は、メチレン−ビフェニル骨格−メチレン構造を有しており、これを用いたエポキシ樹脂組成物の硬化物は弾性率が低くなり、又、吸湿量が抑えられるので、リードフレーム等の金属類、及びシリコンチップ等の半導体素子との密着性に優れる。又、難燃性に優れ、エポキシ樹脂との組合せによっては難燃剤を配合しなくても良好な難燃性を発現できる。
本発明のフェノール樹脂の特性を損なわない範囲で、他のフェノール樹脂と併用してもよいが、低吸湿性や難燃性を最大限に引き出すためには、一般式(2)で示されるフェノール樹脂を全フェノール樹脂中に30重量%以上含むことが好ましく、特に50重量%以上が好ましい。30重量%未満だと、低吸湿化や難燃性の向上といった一般式(2)で示されるフェノール樹脂の特徴が得られない可能性がある。併用するフェノール樹脂としては、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ジシクロペンタジエン変性フェノール樹脂、ナフトールアラルキル樹脂、テルペン変性フェノール樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。更に、半導体装置の長期信頼性の点から、不純物として含有される塩素イオン、ナトリウムイオン、その他フリーのイオンは極力少ないことが望ましい。
全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数との当量比は、0.5〜2.0が好ましく、この範囲を外れると、エポキシ樹脂組成物の硬化性の低下、或いは硬化物のTgの低下等の可能性がある。
【0009】
本発明で用いる硬化促進剤は、エポキシ基とフェノール性水酸基の反応を促進するものであれば特に限定はしないが、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
【0010】
本発明で用いる無機充填材の種類については特に制限はなく、一般に封止材に用いられているものを使用することができる。例えば、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカが好ましい。粒子の形状は限りなく真球状であることが好ましく、又、粒子の大きさの異なるものを混合することによって、充填量を多くできる。
又、本発明でいう全無機物とは、前記無機充填材、必要によって添加される難燃剤として用いられるアンチモン化合物、及びイオン捕捉剤としての無機イオン交換体等を合計したものである。全無機物の含有量としては、全エポキシ樹脂組成物中に87〜94重量%が好ましい。87重量%未満だと、低吸湿性が得られず耐半田ストレス性が不十分となり、又、熱容量の小さい硬化物となるため、臭素含有有機化合物及びアンチモン化合物を添加しないと難燃性が不足するので好ましくない。94重量%を越えると、流動性が低下し、成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じるおそれがあるので好ましくない。
【0011】
本発明のエポキシ樹脂組成物において、半導体装置の150〜200℃の高温下での電気特性の安定性が要求される用途では、臭素原子及びアンチモン原子がそれぞれ全エポキシ樹脂組成物中に0.05重量%以下であることが好ましく、完全に含まれない方がより好ましい。臭素原子及びアンチモン原子のいずれかが0.05重量%を越えると、高温下に放置したとき半導体装置の抵抗値が時間と共に増大し、最終的には半導体装置の金線が断線する不良が発生する可能性がある。又、環境保護の観点からも、臭素原子及びアンチモン原子がそれぞれ全エポキシ樹脂組成物中に0.05重量%以下で、極力含有されていないことがより望ましい。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分を必須成分とするが、これ以外に必要に応じてシランカップリング剤、カーボンブラック等の着色剤、天然ワックス、合成ワックス等の離型剤、及びポリシロキサン化合物、ゴム等の低応力剤等の種々の添加剤を適宜配合しても差し支えない。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分、及びその他の添加剤等を、ミキサー等を用いて常温混合し、ロール、押出機等の混練機で加熱混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。本発明のエポキシ樹脂組成物が適用される半導体装置としては、QFP、SOP、TSOP、BGA、その他特に限定はしない。
【0012】
【実施例】
以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。配合単位は重量部とする。
実施例1
式(3)で示されるエポキシ樹脂(融点90℃、エポキシ当量255。以下、エポキシ樹脂(E−1)という) 4.45重量部
【化7】
Figure 0004660973
【0013】
式(4)で示されるフェノール樹脂(水酸基当量203) 3.55重量部
【化8】
Figure 0004660973
Figure 0004660973
を常温でミキサーを用いて混合した後、二軸ロールを用いて混練し、冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0014】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.8MPa、硬化時間120秒で測定した。単位はcm。
硬化トルク:キュラストメータ((株)オリエンテック・製、JSRキュラストメータIVPS型)を用いて、振幅角1度、金型温度175℃、加熱開始90秒後のトルクを求めた。キュラストメータにおけるトルクは硬化性のパラメータであり、数値の大きい方が硬化性が良好である。単位はN・m。
難燃性:トランスファー成形機を用いて、金型温度175℃、注入圧力7.4MPa、硬化時間120秒で、長さ127mm、幅12.7mm、厚さ3.2mm又は厚さ1.6mmに成形し、UL−94に準じて難燃性試験を行った。
耐半田ストレス性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒で、80pQFP(パッケージサイズ14×20×2.0mm、チップサイズ6.0×6.0mm)を成形した。ポストキュアとして175℃で8時間処理したパッケージ10個を、85℃、相対湿度85%の環境下で168時間処理した後、IRリフロー処理(260℃)を行った。処理後の内部の剥離、及びクラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるとき、n/10と表示する。
臭素原子、アンチモン原子含有量:圧力5.9MPaで直径40mm、厚さ5〜7mmに圧縮成形し、蛍光X線分析装置を用いて、全エポキシ樹脂組成物中の臭素原子、アンチモン原子の含有量を定量した。単位は重量%。
【0015】
実施例2〜3、比較例1〜4
表1の処方に従って配合し、実施例1と同様にしてエポキシ樹脂組成物を得、実施例1と同様にして評価した。結果を表1に示す。
実施例2、比較例4では4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニルのグリシジルエーテル化物を主成分とするエポキシ樹脂(融点105℃、エポキシ当量197。以下、エポキシ樹脂(E−2)という)を用いた。
比較例3ではパラキシリレン変性フェノール樹脂(水酸基当量175)を用いた。
【表1】
Figure 0004660973
【0016】
【発明の効果】
本発明の半導体封止用エポキシ樹脂組成物は成形性に優れ、これを用いた半導体装置は難燃性及び耐半田ストレス性に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition excellent in flame retardancy and a semiconductor device.
[0002]
[Prior art]
Conventionally, semiconductor devices such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition, but these epoxy resin compositions usually contain bromine in order to impart flame retardancy. An organic compound and an antimony compound are blended. However, development of an epoxy resin composition excellent in flame retardancy is desired without using bromine-containing organic compounds and antimony compounds from the viewpoint of environment and hygiene.
Furthermore, it is known that when the semiconductor device is stored at a high temperature of 150 to 200 ° C. for a long time, the bromine-containing organic compound or antimony compound, which is a flame retardant component, causes an increase in the resistance value of the semiconductor device or a disconnection of the gold wire. ing. Also from this viewpoint, development of an epoxy resin composition excellent in high-temperature storage characteristics without using a bromine-containing organic compound or antimony compound has been awaited.
In addition, solder containing lead (tin-lead alloy) is used when mounting a semiconductor device on a printed circuit board. Similarly, in terms of environment and hygiene, solder containing lead (tin-lead alloy) is used. ) Is not desired. However, the solder containing lead (tin-lead alloy) has a melting point of 183 ° C., and therefore the temperature during solder processing is 220-240 ° C. In contrast, lead represented by a tin-silver alloy is used. The solder that does not contain solder has a high melting point, and the temperature during the soldering process is about 260 ° C. Therefore, it is desired to develop an epoxy resin composition having more excellent resistance to solder stress.
In order to improve flame resistance and solder stress resistance, it is necessary to increase the filling of the inorganic filler and reduce the content of the resin component. One of these methods is to use a low-viscosity crystalline epoxy resin. There is a way. Currently, there are proposed epoxy resin compositions in which inorganic fillers are highly filled using a low-viscosity crystalline epoxy resin without using a flame retardant, and epoxy resin compositions using a highly flame-retardant resin. However, an epoxy resin composition that completely satisfies good moldability and solder stress resistance has not been proposed yet.
[0003]
[Problems to be solved by the invention]
The present invention substantially does not contain a bromine-containing organic compound and an antimony compound, and has an excellent resin moldability, flame retardancy, and solder stress resistance, and a semiconductor device using the same Is to provide.
[0004]
[Means for Solving the Problems]
The present invention
[1] (A) An epoxy resin represented by the general formula (3) , (B) a phenol resin represented by the general formula (2), (C) an inorganic filler, and (D) a curing accelerator as essential components, (A) The epoxy resin represented by the general formula (3) is contained in 30% by weight or more in all epoxy resins, and (B) the phenol resin represented by the general formula (2) is contained in 30% by weight or more in all phenol resins. In addition, the bromine atom and antimony atom contained in the total epoxy resin composition, containing no flame retardant, are each 0.05% by weight or less, and the total inorganic material is 87 to 94% by weight in the total epoxy resin composition. An epoxy resin composition for semiconductor encapsulation, characterized in that
[Chemical 6]
Figure 0004660973
(Where n is an average value and a positive number of 1 to 10)
[0005]
[Chemical formula 5]
Figure 0004660973
(Where n is an average value and a positive number of 1 to 10)
[0006]
[ 2 ] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to item [1] ,
It is.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin represented by the general formula (3) used in the present invention is a crystalline solid at room temperature, but has a property of rapidly melting into a liquid with a very low viscosity in a temperature range above the melting point. . This makes it possible to increase the filling of the inorganic filler, and thus to reduce the moisture absorption of the cured product of the epoxy resin composition. Moreover, it has excellent curability, has a low elastic modulus at a high temperature exceeding the glass transition temperature of the cured product of the epoxy resin composition, and has excellent adhesion to metals such as a lead frame. formula (3) semiconductor device encapsulated with the epoxy resin composition using the epoxy resin represented by, it is possible to obtain a high reliability in soldering of a mounting. Moreover, since it is excellent in flame retardancy, depending on the combination with the curing agent, good flame retardancy can be expressed without blending the flame retardant.
N in the general formula (3) is a positive number of 1 to 10 on average, but when n exceeds 10, the viscosity of the epoxy resin increases, the fluidity of the epoxy resin composition at the time of molding is inferior, This is not preferable because the inorganic filler cannot be highly filled to reduce moisture absorption. Among these, an epoxy resin represented by the general formula (3) is preferable from the viewpoint of curability.
As melting | fusing point of the epoxy resin shown by General formula (3) of this invention, 60-120 degreeC is preferable and 80-110 degreeC is especially preferable. If it is less than 60 ° C., it is liquid or semi-solid at room temperature, so there is a possibility that the problem of workability and the storage stability at room temperature of the epoxy resin composition using the same may decrease. If it exceeds 120 ° C., it will not melt sufficiently during melt kneading and cannot be uniformly dispersed, so the moldability and curability will be reduced, resulting in a non-uniform molded product, and the strength will vary depending on each part, so the performance of the semiconductor device will be reduced there is a possibility.
The melting point of the epoxy resin in the present invention is the temperature at the top of the melting peak when the temperature is raised from room temperature at a heating rate of 5 ° C./min using a differential scanning calorimeter (Seiko Electronics Co., Ltd., SSC / 5200). Indicates.
Furthermore, from the viewpoint of long-term reliability of the semiconductor device, it is desirable that chlorine ions, sodium ions, and other free ions contained as impurities are as small as possible. It may be used in combination with other epoxy resins as long as the properties of the epoxy resin represented by the general formula (3) are not impaired. However, in order to maximize the resistance to solder stress, the general formula (3) The epoxy resin is preferably contained in the total epoxy resin in an amount of 30% by weight or more, particularly preferably 50% by weight or more. If it is less than 30% by weight, the solder stress resistance may be insufficient. Examples of the epoxy resin used in combination include a biphenyl type epoxy resin, a dicyclopentadiene-modified phenol type epoxy resin, a triphenol type epoxy resin, etc., and these may be used alone or in combination of two or more types. Also good.
[0008]
The phenol resin represented by the general formula (2) used in the present invention has a methylene-biphenyl skeleton-methylene structure, and a cured product of an epoxy resin composition using the phenol resin has a low elastic modulus, and also absorbs moisture. Since the amount is suppressed, the adhesiveness with metals such as lead frames and semiconductor elements such as silicon chips is excellent. Moreover, it is excellent in flame retardancy and, depending on the combination with the epoxy resin, good flame retardancy can be expressed without blending a flame retardant.
The phenolic resin of the present invention may be used in combination with other phenolic resins as long as the characteristics of the phenolic resin are not impaired. In order to maximize the low hygroscopicity and flame retardancy, the phenol represented by the general formula (2) is used. The resin is preferably contained in the total phenolic resin in an amount of 30% by weight or more, particularly preferably 50% by weight or more. If it is less than 30% by weight, the characteristics of the phenol resin represented by the general formula (2) such as low moisture absorption and improved flame retardancy may not be obtained. Examples of the phenol resin used in combination include a phenol novolak resin, a phenol aralkyl resin, a dicyclopentadiene-modified phenol resin, a naphthol aralkyl resin, and a terpene-modified phenol resin. These can be used alone or in combination of two or more. May be used in combination. Further, from the viewpoint of long-term reliability of the semiconductor device, it is desirable that chlorine ions, sodium ions, and other free ions contained as impurities are as small as possible.
The equivalent ratio of the number of epoxy groups in the total epoxy resin and the number of phenolic hydroxyl groups in the total phenol resin is preferably 0.5 to 2.0, and if it is out of this range, the curability of the epoxy resin composition is reduced or cured. There is a possibility of a decrease in Tg.
[0009]
The curing accelerator used in the present invention is not particularly limited as long as it promotes the reaction between an epoxy group and a phenolic hydroxyl group. For example, a diamine such as 1,8-diazabicyclo (5,4,0) undecene-7 is used. Zabicycloalkene and its derivatives, organic phosphines such as triphenylphosphine and methyldiphenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetrabenzoic acid borate, tetraphenylphosphonium / tetranaphthoic acid borate, tetraphenylphosphonium・ Tetra-substituted phosphonium and tetra-substituted borates such as tetranaphthoyloxyborate, tetraphenylphosphonium and tetranaphthyloxyborate, etc., and these may be used alone or in combination of two or more. It may be.
[0010]
There is no restriction | limiting in particular about the kind of inorganic filler used by this invention, What is generally used for the sealing material can be used. Examples thereof include fused crushed silica, fused spherical silica, crystalline silica, secondary agglomerated silica, alumina, titanium white, aluminum hydroxide, and the like, and fused spherical silica is particularly preferable. The shape of the particles is preferably infinitely spherical, and the filling amount can be increased by mixing particles having different particle sizes.
The total inorganic substance referred to in the present invention is a total of the inorganic filler, an antimony compound used as a flame retardant added as necessary, an inorganic ion exchanger as an ion scavenger, and the like. The total inorganic content is preferably 87 to 94% by weight in the total epoxy resin composition. If it is less than 87% by weight, low hygroscopicity cannot be obtained and solder stress resistance becomes insufficient, and the cured product has a small heat capacity. Therefore, the flame retardancy is insufficient unless a bromine-containing organic compound and antimony compound are added. This is not preferable. If it exceeds 94% by weight, the fluidity is lowered, and filling failure or the like may occur at the time of molding, or inconvenience such as deformation of the gold wire in the semiconductor device due to high viscosity may occur, which is not preferable.
[0011]
In the epoxy resin composition of the present invention, bromine atoms and antimony atoms are each 0.05% in the total epoxy resin composition in applications where the stability of the electrical characteristics of the semiconductor device at a high temperature of 150 to 200 ° C. is required. The content is preferably not more than% by weight, and more preferably not completely contained. If either bromine atom or antimony atom exceeds 0.05% by weight, the resistance value of the semiconductor device increases with time when it is left at high temperature, and finally the defect that the gold wire of the semiconductor device is broken occurs. there's a possibility that. Also, from the viewpoint of environmental protection, it is more desirable that bromine atoms and antimony atoms are 0.05% by weight or less and not contained as much as possible in the total epoxy resin composition.
The epoxy resin composition of the present invention has components (A) to (D) as essential components, but in addition to this, a silane coupling agent, a colorant such as carbon black, natural wax, synthetic wax, etc. Various additives such as a release agent and a low stress agent such as a polysiloxane compound and rubber may be appropriately blended.
In the epoxy resin composition of the present invention, the components (A) to (D) and other additives are mixed at room temperature using a mixer or the like, heated and kneaded with a kneader such as a roll or an extruder, and then cooled. It is obtained by grinding.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it can be cured by a conventional molding method such as transfer molding, compression molding, injection molding, etc. Good. The semiconductor device to which the epoxy resin composition of the present invention is applied is not particularly limited, such as QFP, SOP, TSOP, BGA.
[0012]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The blending unit is parts by weight.
Example 1
Epoxy resin represented by formula (3) (melting point: 90 ° C., epoxy equivalent: 255, hereinafter referred to as epoxy resin (E-1)) 4.45 parts by weight
Figure 0004660973
[0013]
Phenol resin represented by formula (4) (hydroxyl equivalent: 203) 3.55 parts by weight
Figure 0004660973
Figure 0004660973
Were mixed using a mixer at room temperature, then kneaded using a biaxial roll, cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0014]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.8 MPa, and a curing time of 120 seconds. The unit is cm.
Curing torque: Using a curast meter (manufactured by Orientec Co., Ltd., JSR curast meter IVPS type), an angle of amplitude of 1 degree, a mold temperature of 175 ° C., and a torque after 90 seconds from the start of heating were determined. The torque in the curast meter is a curability parameter, and the larger the value, the better the curability. The unit is N · m.
Flame retardancy: Using a transfer molding machine, the mold temperature is 175 ° C., the injection pressure is 7.4 MPa, the curing time is 120 seconds, the length is 127 mm, the width is 12.7 mm, the thickness is 3.2 mm, or the thickness is 1.6 mm. It shape | molded and the flame retardance test was done according to UL-94.
Resistance to solder stress: Using a transfer molding machine, a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 120 seconds, and 80 pQFP (package size 14 × 20 × 2.0 mm, chip size 6.0 × 6. 0 mm). Ten packages treated as post-cure at 175 ° C. for 8 hours were treated in an environment of 85 ° C. and 85% relative humidity for 168 hours, followed by IR reflow treatment (260 ° C.). The internal peeling after processing and the presence or absence of cracks were observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.
Bromine atom and antimony atom content: compression molding to a diameter of 40 mm and a thickness of 5 to 7 mm at a pressure of 5.9 MPa, and the content of bromine atom and antimony atom in the total epoxy resin composition using a fluorescent X-ray analyzer Was quantified. The unit is% by weight.
[0015]
Examples 2-3 and Comparative Examples 1-4
It compounded according to prescription of Table 1, and obtained the epoxy resin composition like Example 1, and evaluated it like Example 1. FIG. The results are shown in Table 1.
In Example 2 and Comparative Example 4, an epoxy resin (melting point: 105 ° C., epoxy equivalent: 197, whose main component is glycidyl etherified product of 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylbiphenyl; Epoxy resin (E-2) was used.
In Comparative Example 3, paraxylylene-modified phenol resin (hydroxyl equivalent 175) was used.
[Table 1]
Figure 0004660973
[0016]
【The invention's effect】
The epoxy resin composition for semiconductor encapsulation of the present invention is excellent in moldability, and a semiconductor device using the epoxy resin composition is excellent in flame retardancy and solder stress resistance.

Claims (2)

(A)一般式(3)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)無機充填材、及び(D)硬化促進剤を必須成分とし、(A)一般式(3)で示されるエポキシ樹脂を全エポキシ樹脂中に30重量%以上含有し、(B)一般式(2)で示されるフェノール樹脂を全フェノール樹脂中に30重量%以上含有し、難燃剤を含有せず、全エポキシ樹脂組成物中に含有される臭素原子及びアンチモン原子が、それぞれ0.05重量%以下であり、全無機物が全エポキシ樹脂組成物中に87〜94重量%であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 0004660973
(式中、nは平均値で、1〜10の正数)
Figure 0004660973
(式中、nは平均値で、1〜10の正数)
(A) the general formula (3) Epoxy resins represented by, and (B) the general formula (2) a phenolic resin represented by the (C) inorganic filler, and (D) a curing accelerator as essential components, (A) 30 wt% or more of the epoxy resin represented by the general formula (3) is contained in all epoxy resins, and (B) 30 wt% or more of the phenolic resin represented by the general formula (2) is contained in all phenol resins. The bromine atom and the antimony atom contained in the total epoxy resin composition are 0.05% by weight or less, and the total inorganic material is 87 to 94% by weight in the total epoxy resin composition. An epoxy resin composition for semiconductor encapsulation characterized by the above-mentioned.
Figure 0004660973
(Where n is an average value and a positive number of 1 to 10)
Figure 0004660973
(Where n is an average value and a positive number of 1 to 10)
請求項1記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1 .
JP2001177860A 2000-08-28 2001-06-13 Epoxy resin composition and semiconductor device Expired - Fee Related JP4660973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177860A JP4660973B2 (en) 2000-08-28 2001-06-13 Epoxy resin composition and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000256948 2000-08-28
JP2000-256948 2000-08-28
JP2001177860A JP4660973B2 (en) 2000-08-28 2001-06-13 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2002145995A JP2002145995A (en) 2002-05-22
JP4660973B2 true JP4660973B2 (en) 2011-03-30

Family

ID=26598563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177860A Expired - Fee Related JP4660973B2 (en) 2000-08-28 2001-06-13 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4660973B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007692A (en) * 2006-06-30 2008-01-17 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing and electronic part device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848753A (en) * 1994-08-03 1996-02-20 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH08217956A (en) * 1995-02-16 1996-08-27 Toshiba Chem Corp Epoxy resin composition and sealed semiconductor device
JPH09143345A (en) * 1995-11-27 1997-06-03 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH11140166A (en) * 1997-11-11 1999-05-25 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and semiconductor device
JP2000034393A (en) * 1998-05-15 2000-02-02 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP2001049088A (en) * 1999-08-11 2001-02-20 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848753A (en) * 1994-08-03 1996-02-20 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH08217956A (en) * 1995-02-16 1996-08-27 Toshiba Chem Corp Epoxy resin composition and sealed semiconductor device
JPH09143345A (en) * 1995-11-27 1997-06-03 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH11140166A (en) * 1997-11-11 1999-05-25 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and semiconductor device
JP2000034393A (en) * 1998-05-15 2000-02-02 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP2001049088A (en) * 1999-08-11 2001-02-20 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing device

Also Published As

Publication number Publication date
JP2002145995A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP5162833B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4660973B2 (en) Epoxy resin composition and semiconductor device
JP2000169671A (en) Epoxy resin composition and semiconductor device
JP2003213084A (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2002080694A (en) Epoxy resin composition and semiconductor device
JPH1135797A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2003040981A (en) Epoxy resin composition and semiconductor device
JP2862777B2 (en) Epoxy resin composition
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JP5191072B2 (en) Epoxy resin composition and semiconductor device
JP2000186183A (en) Epoxy resin composition for sealing and semiconductor device
JP4686935B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2001253999A (en) Epoxy resin molding material and semiconductor device
JP2003238660A (en) Epoxy resin composition and semiconductor device
JP5162835B2 (en) Epoxy resin composition and semiconductor device
JP5059582B2 (en) Manufacturing method of semiconductor device
JP2003096159A (en) Epoxy resin composition and semiconductor device
JP2001302763A (en) Epoxy resin composition and semiconductor device
JP2000103836A (en) Epoxy resin composition and semiconductor device sealed therewith
JP2001233933A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4660973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees