JP2008231242A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2008231242A
JP2008231242A JP2007072453A JP2007072453A JP2008231242A JP 2008231242 A JP2008231242 A JP 2008231242A JP 2007072453 A JP2007072453 A JP 2007072453A JP 2007072453 A JP2007072453 A JP 2007072453A JP 2008231242 A JP2008231242 A JP 2008231242A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
compound
weight
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007072453A
Other languages
Japanese (ja)
Inventor
Naoki Tomita
直樹 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2007072453A priority Critical patent/JP2008231242A/en
Publication of JP2008231242A publication Critical patent/JP2008231242A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition having excellent soldering resistance, and a semiconductor device. <P>SOLUTION: The epoxy resin composition for semiconductor sealing is produced by using (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, (D) one or more tetra-substituted organic phosphorus compounds selected from (d1) a tetra-substituted phosphonium salt, (d2) a phosphobetaine compound and (d3) an addition product of a phosphine compound and a quinone compound, and (E) water. The semiconductor device of the invention is produced by sealing a semiconductor element with a cured material of the epoxy resin composition described above. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エポキシ樹脂組成物及び半導体装置に関するものである。   The present invention relates to an epoxy resin composition and a semiconductor device.

IC、LSI等の半導体素子の封止方法として、エポキシ樹脂組成物のトランスファー成形が低コスト、大量生産に適しており、採用されて久しく、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により特性の向上が図られてきた。
しかし、近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。このため、従来からのエポキシ樹脂組成物では解決出来ない問題点も出てきている。
その最大の問題点は、表面実装の採用により半導体装置が半田浸漬、あるいはリフロー工程で急激に200℃以上の高温にさらされ、吸湿した水分が爆発的に気化する際の応力により、半導体装置にクラックが発生し、半導体素子、リードフレーム、インナーリード上の各種メッキされた各接合部分とエポキシ樹脂組成物の硬化物との界面で剥離が生じ信頼性が著しく低下する現象である。
As a sealing method for semiconductor elements such as IC and LSI, transfer molding of an epoxy resin composition is suitable for mass production at low cost and has been adopted for a long time, and a phenol resin that is an epoxy resin or a curing agent in terms of reliability. Improvements have been made to improve the characteristics.
However, due to the recent trend of downsizing, weight reduction, and higher performance of electronic devices, semiconductor devices have been increasingly integrated and the surface mounting of semiconductor devices has been promoted. The demand for resin compositions has become increasingly severe. For this reason, the problem which cannot be solved with the conventional epoxy resin composition has also come out.
The biggest problem is that the semiconductor device is exposed to a high temperature of 200 ° C. or higher in the solder dipping or reflow process due to the use of surface mounting, and the moisture when moisture absorbed explosively vaporizes the semiconductor device. This is a phenomenon in which cracks are generated and peeling occurs at the interface between various plated joint portions on the semiconductor element, lead frame, and inner lead and the cured product of the epoxy resin composition, and the reliability is significantly reduced.

半田処理による信頼性低下を改善するために、エポキシ樹脂組成物中の無機充填材の充填量を増加させることで低吸湿化、高強度化、低熱膨張化を達成し耐半田性を向上させるとともに、低溶融粘度の樹脂を使用して、成形時に低粘度で高流動性を維持させる手法が一般的となりつつある。
一方、半田処理後の信頼性において、エポキシ樹脂組成物の硬化物と半導体装置内部に存在する半導体素子やリードフレーム等の基材との界面の接着性は非常に重要になってきている。界面での接着力が弱いと半田処理後の基材との界面で剥離が生じ、更にはこの剥離に起因し半導体装置にクラックが発生する。
従来から耐半田性の向上を目的として、γ−グリシドキシプロピルトリメトキシシランやγ−(メタクリロキシプロピル)トリメトキシシラン等のシランカップリング剤がエポキシ樹脂組成物中に添加されてきた。しかし近年、実装時のリフロー温度の上昇や、無鉛半田に対応したNi、Ni−Pd、Ni−Pd−Au等のエポキシ樹脂との密着性が相対的に低いプリプレーティングフレームの出現等、益々厳しくなっている耐半田性に対する要求に対して、これらのシランカップリング剤だけでは充分に対応できなくなっている。
その対処法として、アルコキシシランカップリング剤によるリードフレームの表面処理をする方法(例えば、特許文献1参照。)やチアゾール系、スルフェンアミド系、及びチウラム系化合物を添加した樹脂組成物及び樹脂封止型半導体装置(例えば、特許文献2参照。)などが提案されている。しかしながら、前者のシランカップリング剤は、熱時安定性が悪く半田浸漬や半田リフロー等の半田処理時において密着向上効果が低下する欠点があり、また、後者の化合物は分子量が大きく、また不安定な結合(窒素―硫黄結合)を数多く含んでいるため、成形後の封止樹脂中において密着性の低下を招く可能性が指摘されている。
In order to improve reliability reduction due to solder processing, increase the amount of inorganic filler in the epoxy resin composition to achieve low moisture absorption, high strength, low thermal expansion, and improve solder resistance. A technique of maintaining low fluidity and high fluidity during molding using a low melt viscosity resin is becoming common.
On the other hand, in terms of reliability after soldering, the adhesiveness at the interface between a cured product of the epoxy resin composition and a substrate such as a semiconductor element or a lead frame existing inside the semiconductor device has become very important. If the adhesive strength at the interface is weak, peeling occurs at the interface with the base material after the solder treatment, and further, cracks occur in the semiconductor device due to this peeling.
Conventionally, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and γ- (methacryloxypropyl) trimethoxysilane have been added to epoxy resin compositions for the purpose of improving solder resistance. In recent years, however, the reflow temperature during mounting has risen and the appearance of preplating frames with relatively low adhesion to epoxy resins such as Ni, Ni-Pd, and Ni-Pd-Au that are compatible with lead-free solder has become increasingly severe. These silane coupling agents alone cannot sufficiently meet the demand for solder resistance.
As a countermeasure, a lead frame surface treatment with an alkoxysilane coupling agent (see, for example, Patent Document 1), a resin composition containing a thiazole-based, sulfenamide-based, or thiuram-based compound, and a resin seal A stationary semiconductor device (see, for example, Patent Document 2) has been proposed. However, the former silane coupling agent has poor heat stability and has a drawback that the effect of improving adhesion during solder treatment such as solder dipping and solder reflow is reduced. The latter compound has a large molecular weight and is unstable. Since many bonds (nitrogen-sulfur bonds) are included, it has been pointed out that adhesion may be reduced in the molded sealing resin.

特開平6−350000号公報JP-A-6-350,000 特開平11−181240号公報Japanese Patent Laid-Open No. 11-181240

本発明の目的は、耐半田性に優れたエポキシ樹脂組成物及び半導体装置を提供することにある。   An object of the present invention is to provide an epoxy resin composition and a semiconductor device excellent in solder resistance.

このような目的は、下記[1]〜[7]に記載の本発明により達成される。
[1]半導体封止に用いるエポキシ樹脂組成物であって、(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填材と、(D)テトラ置換ホスホニウム塩(d1)、ホスホベタイン化合物(d2)、及びホスフィン化合物とキノン化合物との付加物(d3)から選ばれる1種、又は2種以上のテトラ置換有機リン化合物と、(E)水と、を含むことを特徴とするエポキシ樹脂組成物。
Such an object is achieved by the present invention described in the following [1] to [7].
[1] An epoxy resin composition used for semiconductor encapsulation, wherein (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, (D) a tetra-substituted phosphonium salt (d1), phospho It contains one or two or more tetra-substituted organophosphorus compounds selected from betaine compounds (d2) and adducts (d3) of phosphine compounds and quinone compounds, and (E) water. Epoxy resin composition.

[2]前記テトラ置換ホスホニウム塩(d1)が下記一般式(1)で表される化合物である前記[1]に記載のエポキシ樹脂組成物。

Figure 2008231242
[2] The epoxy resin composition according to [1], wherein the tetra-substituted phosphonium salt (d1) is a compound represented by the following general formula (1).
Figure 2008231242

[3]前記ホスホベタイン化合物(d2)が下記一般式(2)で表される化合物である前記[1]に記載のエポキシ樹脂組成物。

Figure 2008231242
[3] The epoxy resin composition according to [1], wherein the phosphobetaine compound (d2) is a compound represented by the following general formula (2).
Figure 2008231242

[4]上記ホスフィン化合物とキノン化合物との付加物(d3)が下記一般式(3)で表される化合物である前記[1]に記載のエポキシ樹脂組成物。

Figure 2008231242
[4] The epoxy resin composition according to [1], wherein the adduct (d3) of the phosphine compound and the quinone compound is a compound represented by the following general formula (3).
Figure 2008231242

[5]前記(E)水の配合量が全エポキシ樹脂組成物に対して、0.02重量%以上、0.3重量%以下である前記[1]ないし[4]のいずれかに記載のエポキシ樹脂組成物。 [5] The amount of (E) water according to any one of [1] to [4], wherein the amount of water is 0.02 wt% or more and 0.3 wt% or less based on the total epoxy resin composition. Epoxy resin composition.

[6]前記(A)エポキシ樹脂が、下記一般式(4)で表されるエポキシ樹脂である前記[1]ないし[5]のいずれかに記載のエポキシ樹脂組成物。

Figure 2008231242
[6] The epoxy resin composition according to any one of [1] to [5], wherein the (A) epoxy resin is an epoxy resin represented by the following general formula (4).
Figure 2008231242

[7]前記(B)硬化剤が、下記一般式(5)で表されるフェノール樹脂である前記[1]ないし[6]のいずれかに記載のエポキシ樹脂組成物。

Figure 2008231242
[7] The epoxy resin composition according to any one of [1] to [6], wherein the (B) curing agent is a phenol resin represented by the following general formula (5).
Figure 2008231242

[8]前記[1]ないし[7]のいずれかに記載のエポキシ樹脂組成物の硬化物で、半導体素子が封止されていることを特徴とする半導体装置。 [8] A semiconductor device, wherein a semiconductor element is sealed with a cured product of the epoxy resin composition according to any one of [1] to [7].

本発明によると、耐半田性に優れたエポキシ樹脂組成物及び半導体装置を得ることができる。   According to the present invention, an epoxy resin composition and a semiconductor device excellent in solder resistance can be obtained.

以下、本発明のエポキシ樹脂組成物及び半導体装置について詳細に説明する。
本発明のエポキシ樹脂組成物は、半導体封止に用いるエポキシ樹脂組成物であって、(A)エポキシ樹脂と、(B)硬化剤と、(C)無機充填材と、(D)テトラ置換ホスホニウム塩(d1)、ホスホベタイン化合物(d2)、及びホスフィン化合物とキノン化合物との付加物(d3)から選ばれる1種、又は2種以上のテトラ置換有機リン化合物と、(E)水と、を用いることを特徴とする。
また、本発明の半導体装置は、上記に記載のエポキシ樹脂組成物の硬化物で、半導体素子が封止されていることを特徴とする。
Hereinafter, the epoxy resin composition and semiconductor device of the present invention will be described in detail.
The epoxy resin composition of the present invention is an epoxy resin composition used for semiconductor encapsulation, wherein (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, and (D) a tetra-substituted phosphonium. One or more tetra-substituted organophosphorus compounds selected from a salt (d1), a phosphobetaine compound (d2), and an adduct (d3) of a phosphine compound and a quinone compound, and (E) water. It is characterized by using.
A semiconductor device of the present invention is characterized in that a semiconductor element is sealed with a cured product of the epoxy resin composition described above.

まず、エポキシ樹脂組成物について説明する。
本発明のエポキシ樹脂組成物は、エポキシ樹脂(A)を含む。本発明で用いられるエポキシ樹脂(A)は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。このようなエポキシ樹脂の中でも下記一般式(4)で表されるビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂が好ましい。これにより、耐燃性、耐半田性を特に向上することができる。
First, the epoxy resin composition will be described.
The epoxy resin composition of the present invention contains an epoxy resin (A). The epoxy resin (A) used in the present invention is a monomer, oligomer, or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited. Epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene Examples thereof include modified phenol type epoxy resins, phenol aralkyl type epoxy resins (having a phenylene skeleton, biphenylene skeleton, etc.), and these may be used alone or in combination of two or more. Among such epoxy resins, a phenol aralkyl type epoxy resin having a biphenylene skeleton represented by the following general formula (4) is preferable. Thereby, especially flame resistance and solder resistance can be improved.

Figure 2008231242
Figure 2008231242

本発明で用いられるエポキシ樹脂(A)全体の配合割合としては、特に限定されないが、全エポキシ樹脂組成物中に、2重量%以上、10重量%以下であることが好ましく、2.5重量%以上、8重量%以下であることがより好ましい。エポキシ樹脂(A)全体の配合割合が上記範囲内であると、耐半田性の低下、流動性の低下等を引き起こす恐れが少ない。   The blending ratio of the entire epoxy resin (A) used in the present invention is not particularly limited, but is preferably 2% by weight or more and 10% by weight or less in the total epoxy resin composition, and is 2.5% by weight. As mentioned above, it is more preferable that it is 8 weight% or less. When the blending ratio of the entire epoxy resin (A) is within the above range, there is little risk of causing a decrease in solder resistance, a decrease in fluidity, and the like.


本発明のエポキシ樹脂組成物は、硬化剤(B)を含む。本発明で用いられる硬化剤(B)は、エポキシ樹脂と反応して硬化させるものであれば特に限定されず、それらの具体例としてはフェノール系樹脂、ビスフェノールAなどのビスフェノール化合物、無水マレイン酸、無水フタル酸、無水ピロメリット酸などの酸無水物及びメタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどの芳香族アミンなどが挙げられこれらを単独で用いても、2種以上の硬化剤を併用しても良い。

The epoxy resin composition of the present invention contains a curing agent (B). The curing agent (B) used in the present invention is not particularly limited as long as it is cured by reacting with an epoxy resin. Specific examples thereof include phenolic resins, bisphenol compounds such as bisphenol A, maleic anhydride, Examples include acid anhydrides such as phthalic anhydride and pyromellitic anhydride, and aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone. These may be used alone or in combination with two or more curing agents. May be.

これらの硬化剤の中でも特にフェノール系樹脂を用いることが好ましい。本発明に用いるフェノール系樹脂は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。このようなフェノール系樹脂の中でも下記一般式(5)で表されるビフェニレン骨格を有するフェノールアラルキル樹脂が好ましい。これにより、耐燃性、耐半田性を特に向上することができる。   Among these curing agents, it is particularly preferable to use a phenolic resin. The phenolic resin used in the present invention is a monomer, oligomer or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol Examples include novolak resin, dicyclopentadiene-modified phenol resin, terpene-modified phenol resin, triphenolmethane type resin, phenol aralkyl resin (having a phenylene skeleton, biphenylene skeleton, etc.), etc. You can use more than one species together. Among such phenol resins, a phenol aralkyl resin having a biphenylene skeleton represented by the following general formula (5) is preferable. Thereby, especially flame resistance and solder resistance can be improved.

Figure 2008231242
Figure 2008231242

本発明で用いられる硬化剤(B)の配合割合は、特に限定されないが、全エポキシ樹脂組成物中に、1重量%以上、8重量%以下であることが好ましく、2重量%以上、6重量%以下であることがより好ましい。硬化剤(B)の配合割合が上記範囲内であると、耐半田性の低下、流動性の低下等を引き起こす恐れが少ない。   The blending ratio of the curing agent (B) used in the present invention is not particularly limited, but is preferably 1% by weight or more and 8% by weight or less in the total epoxy resin composition, and 2% by weight or more and 6% by weight. % Or less is more preferable. When the blending ratio of the curing agent (B) is within the above range, there is little possibility of causing a decrease in solder resistance, a decrease in fluidity, and the like.

エポキシ樹脂と硬化剤であるフェノール系樹脂の配合割合としては、全エポキシ樹脂のエポキシ基数(Ep)と全フェノール系樹脂のフェノール性水酸基数(Ph)との当量比(Ep/Ph)が0.8以上、1.3以下であることが好ましく、特に0.9以上、1.25以下であることが好ましい。当量比が上記範囲内であると、エポキシ樹脂組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等を引き起こす可能性が低い。   As the blending ratio of the epoxy resin and the phenolic resin as the curing agent, the equivalent ratio (Ep / Ph) of the number of epoxy groups (Ep) of all epoxy resins and the number of phenolic hydroxyl groups (Ph) of all phenolic resins is 0. It is preferably 8 or more and 1.3 or less, and particularly preferably 0.9 or more and 1.25 or less. When the equivalence ratio is within the above range, it is less likely to cause a decrease in the curability of the epoxy resin composition, a decrease in the glass transition temperature of the cured product, a decrease in moisture resistance reliability, or the like.

本発明のエポキシ樹脂組成物は、無機充填材(C)を含む。本発明で用いられる無機充填材(C)としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、最も好適に使用されるものとしては、球状の溶融シリカである。これらの無機充填材は、1種類を単独で用いても2種以上を併用しても差し支えない。   The epoxy resin composition of the present invention contains an inorganic filler (C). As an inorganic filler (C) used by this invention, what is generally used for the epoxy resin composition for semiconductor sealing can be used. Examples thereof include fused silica, crystalline silica, talc, alumina, silicon nitride and the like, and the most preferably used is spherical fused silica. These inorganic fillers may be used alone or in combination of two or more.

本発明で用いられる無機充填材(C)の平均粒子径は、特に限定されないが、5μm以上、50μm以下が好ましく、特に10μm以上、45μm以下が好ましい。平均粒子径が上記範囲内であると、流動性は良好で、下限値を下回ると十分な流動性が得られず、上限値を上回ると成形時の充填性が悪くなり、空隙が多く生じる恐れがある。   The average particle diameter of the inorganic filler (C) used in the present invention is not particularly limited, but is preferably 5 μm or more and 50 μm or less, and particularly preferably 10 μm or more and 45 μm or less. When the average particle size is within the above range, the fluidity is good, and when the average particle size is below the lower limit, sufficient fluidity cannot be obtained. There is.

本発明で用いられる無機充填材(C)の含有量は、特に限定されないが、エポキシ樹脂組成物全体の75重量%以上、94重量%以下が好ましく、特に80重量%以上、92重量%以下が好ましい。含有量が上記範囲内であると、耐半田性の低下や流動性の低下を引き起こす可能性が低い。   The content of the inorganic filler (C) used in the present invention is not particularly limited, but is preferably 75% by weight or more and 94% by weight or less, particularly 80% by weight or more and 92% by weight or less of the entire epoxy resin composition. preferable. When the content is within the above range, there is a low possibility of causing a decrease in solder resistance and a decrease in fluidity.

本発明では、硬化促進剤として、テトラ置換ホスホニウム塩(d1)、ホスホベタイン化合物(d2)、及びホスフィン化合物とキノン化合物との付加物(d3)から選ばれる1種、又は2種以上のテトラ置換有機リン化合物を用いる。   In the present invention, as the curing accelerator, one or more tetra-substituted phosphonium salts (d1), a phosphobetaine compound (d2), and an adduct (d3) of a phosphine compound and a quinone compound are selected. An organophosphorus compound is used.

テトラ置換ホスホニウム塩(d1)としては、例えば、一般式(1)で表される化合物が挙げられる。

Figure 2008231242
Examples of the tetra-substituted phosphonium salt (d1) include a compound represented by the general formula (1).
Figure 2008231242

上記一般式(1)で表される化合物は、例えば以下のようにして得られる。まず、テトラ置換ホスホニウムブロマイドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加える。すると、上記一般式(1)で表される化合物を沈殿させることができる。上記一般式(1)で表される化合物としては、例えば、リン原子に結合するR1、R2、R3及びR4がフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。   The compound represented by the general formula (1) is obtained, for example, as follows. First, a tetra-substituted phosphonium bromide, an aromatic organic acid, and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Then add water. Then, the compound represented by the general formula (1) can be precipitated. As the compound represented by the general formula (1), for example, R1, R2, R3 and R4 bonded to a phosphorus atom are phenyl groups, and AH is a compound having a hydroxyl group in an aromatic ring, that is, phenols. And A is preferably an anion of the phenol.

ホスホベタイン化合物(d2)としては、下記一般式(2)で表される化合物が挙げられる。

Figure 2008231242
Examples of the phosphobetaine compound (d2) include compounds represented by the following general formula (2).
Figure 2008231242

上記一般式(2)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、前記トリ芳香族置換ホスフィンと前記ジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。一般式(2)で表される化合物としては、例えば、Xが水素又はメチル基であり、かつYが水素又はヒドロキシル基であるものが好ましい。   The compound represented by the general formula (2) is obtained, for example, as follows. First, it is obtained through a step of bringing a triaromatic substituted phosphine, which is a third phosphine, into contact with a diazonium salt and replacing the triaromatic substituted phosphine with a diazonium group of the diazonium salt. However, the present invention is not limited to this. As the compound represented by the general formula (2), for example, those in which X is hydrogen or a methyl group and Y is hydrogen or a hydroxyl group are preferable.

ホスフィン化合物とキノン化合物との付加物(d3)としては、下記一般式(3)で表される化合物等が挙げられる。

Figure 2008231242
Examples of the adduct (d3) of the phosphine compound and the quinone compound include compounds represented by the following general formula (3).
Figure 2008231242

上記ホスフィン化合物とキノン化合物との付加物(d3)に用いるホスフィン化合物としては、例えば、トリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換あるいはアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基の有機基としては1〜6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
また上記ホスフィン化合物とキノン化合物との付加物(d3)に用いるキノン化合物としては、例えば、o−ベンゾキノン、p−ベンゾキノン、1,4−ベンゾキノン、アントラキノン類が挙げられ、中でもp−ベンゾキノンが保存安定性の点から好ましい。
Examples of the phosphine compound used for the adduct (d3) of the phosphine compound and the quinone compound include triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, tris (benzyl) phosphine, and the like. The aromatic ring is preferably unsubstituted or has a substituent such as an alkyl group or alkoxyl group, and examples of the organic group of the alkyl group and alkoxyl group include those having 1 to 6 carbon atoms. From the viewpoint of availability, triphenylphosphine is preferable.
Examples of the quinone compound used in the adduct (d3) of the phosphine compound and the quinone compound include o-benzoquinone, p-benzoquinone, 1,4-benzoquinone, and anthraquinones. Among them, p-benzoquinone is storage stable. From the viewpoint of sex.

上記ホスフィン化合物とキノン化合物との付加物(d3)の製造方法としては、ホスフィン化合物とキノン化合物との両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
上記一般式(3)で表される化合物において、リン原子に結合するR1、R2及びR3がフェニル基であり、かつR3、R4及びR5が水素原子である化合物、すなわち1,4−ベンゾキノンとトリフェニルホスフィンを付加させた化合物が好ましい。
As a method for producing the adduct (d3) of the phosphine compound and the quinone compound, the adduct can be obtained by contacting and mixing in a solvent capable of dissolving both the phosphine compound and the quinone compound. The solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct. However, the present invention is not limited to this.
In the compound represented by the general formula (3), R1, R2 and R3 bonded to the phosphorus atom are phenyl groups, and R3, R4 and R5 are hydrogen atoms, that is, 1,4-benzoquinone and tri A compound to which phenylphosphine is added is preferable.

本発明では、テトラ置換有機リン化合物による効果を阻害しない範囲で、従来公知の硬化促進剤、例えば、具体例としては、有機ホスフィン類等のリン原子含有化合物、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン、2−メチルイミダゾール等の窒素原子含有化合物を用いることが出来る。   In the present invention, a conventionally known curing accelerator, for example, a phosphorus atom-containing compound such as organic phosphines, 1,8-diazabicyclo (5,4), is a range that does not inhibit the effect of the tetra-substituted organophosphorus compound. , 0) Nidecone-containing compounds such as undecene-7, benzyldimethylamine, 2-methylimidazole and the like can be used.

本発明に用いるテトラ置換有機リン化合物(D)の配合量は、全エポキシ樹脂組成物中0.05重量%以上、1重量%以下が好ましく、0.1重量%以上、0.6重量%以下がより好ましい配合量が上記範囲内であると、流動性を損なうことなく、良好な硬化性を得ることができる。   The compounding amount of the tetra-substituted organophosphorus compound (D) used in the present invention is preferably 0.05% by weight or more and 1% by weight or less, and 0.1% by weight or more and 0.6% by weight or less in the total epoxy resin composition. When the more preferable blending amount is within the above range, good curability can be obtained without impairing fluidity.

本発明のエポキシ樹脂組成物には、水(E)を配合する。本発明で用いる水(E)としては、耐湿信頼性の観点からイオン性不純物を極力含まないイオン交換水や、蒸留水が好ましい。水(E)の添加方法としては、原料を混合する工程で他の原料と共に混合する方法、他の原料を混合、加熱混練、冷却粉砕した後の粒状物に水を混合する方法などが挙げられるが、特にこれらに限定されるものではない。水(E)の配合量は、全エポキシ樹脂組成物中0.02重量%以上、0.3重量%以下が好ましく、0.03重量%以上、0.2重量%以下がより好ましい。配合量が上記範囲内であると、硬化性を損なうことなく、良好な耐半田性を得ることができる。   Water (E) is mix | blended with the epoxy resin composition of this invention. The water (E) used in the present invention is preferably ion-exchanged water or distilled water containing as little ionic impurities as possible from the viewpoint of moisture resistance reliability. Examples of the method of adding water (E) include a method of mixing with other raw materials in the step of mixing the raw materials, a method of mixing water with the granular material after mixing, heating and kneading, cooling and pulverizing the other raw materials. However, it is not particularly limited to these. The blending amount of water (E) is preferably 0.02% by weight or more and 0.3% by weight or less, and more preferably 0.03% by weight or more and 0.2% by weight or less in the total epoxy resin composition. When the blending amount is within the above range, good solder resistance can be obtained without impairing curability.

本発明では、テトラ置換有機リン化合物(D)と水(E)とを併用することが必須である。これらを併用することにより、テトラ置換有機リン化合物の金属に対する活性が高くなるため、エポキシ樹脂組成物と銅等の金属との密着性が顕著に向上し、良好な耐半田性を得ることができるものである。   In the present invention, it is essential to use a tetra-substituted organophosphorus compound (D) and water (E) in combination. By using these in combination, the activity of the tetra-substituted organophosphorus compound on the metal is increased, so that the adhesion between the epoxy resin composition and the metal such as copper is remarkably improved, and good solder resistance can be obtained. Is.

また、本発明のエポキシ樹脂組成物には、必要に応じてエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤を用いることが出来る。具体的な化合物としては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−(6−アミノヘキシル)−3−アミノプロピルトリメトキシシラン、N−(3−トリメトキシシリルプロピル)−1,3−ベンゼンジメタナミン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、ビニルトリエトキシシランなどが挙げられる。これらのうちエポキシシラン、メルカプトシラン、アミノシランが好ましく、アミノシランとしては、1級アミノシラン又はアニリノシランが好ましい。またこれらは2種以上併用した方がより効果が高く、特にアニリノシランとエポキシシラン又はメルカプトシラン又は1級アミノシランを併用するのがより好ましく、エポキシシラン、メルカプトシラン、1級アミノシラン、アニリノシランの4種類を併用するのが最も好ましい。   In addition, a silane coupling agent such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane can be used in the epoxy resin composition of the present invention as necessary. Specific examples of the compound include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, and N- (β-aminoethyl). -Γ-aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltriethoxysilane, N-phenylγ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, N -(6-Aminohexyl) -3-aminopropyltrimethoxysilane, N- (3-trimethoxysilylpropyl) -1,3-benzenedimethanamine, γ-glycidoxypropyltriethoxysilane, γ-glycid Xylpropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysila , Beta-(3,4-epoxycyclohexyl) ethyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, .gamma.-ureidopropyltriethoxysilane, and vinyl triethoxysilane. Of these, epoxy silane, mercapto silane, and amino silane are preferable. As the amino silane, primary amino silane or anilino silane is preferable. Also, these two or more types are more effective when used in combination, and it is particularly preferable to use anilinosilane in combination with epoxy silane, mercaptosilane, or primary amino silane. Most preferably, it is used in combination.

このようなシランカップリング剤の配合量は、特に限定されないが、エポキシ樹脂組成物全体の0.01重量%以上、1.5重量%以下が好ましく、特に0.03重量%以上、1重量%以下が好ましい。シランカップリング剤の配合量が上記範囲内であると、さらなる低粘度化と流動性向上効果が期待できる。また、上記範囲内であれば、硬化性の低下を引き起こす可能性が低い。また、これらシランカップリング剤は、予め加水分解に必要な化学量論量以下の水、或いは必要に応じて酸又はアルカリを添加して、加水分解処理して用いてもよく、また予め無機充填材に処理されていてもよい。   The amount of such a silane coupling agent is not particularly limited, but is preferably 0.01% by weight or more and 1.5% by weight or less, particularly 0.03% by weight or more and 1% by weight based on the entire epoxy resin composition. The following is preferred. When the blending amount of the silane coupling agent is within the above range, further lowering of viscosity and improvement in fluidity can be expected. Moreover, if it is in the said range, possibility that a curability fall will be low is low. These silane coupling agents may be used after hydrolyzing by adding water below the stoichiometric amount necessary for hydrolysis, or by adding an acid or alkali as necessary. The material may be processed.

本発明のエポキシ樹脂組成物には、必要に応じて離型剤が用いられる。離型剤としては、従来公知のものを用いることができるが、例えば、高級脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリエチレン系ワックス等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても構わない。これらのうちポリエチレン系ワックスが好ましく、ポリエチレン系ワックスとモンタン酸エステル系ワックスを併用した方がより好ましい。離型剤の配合量は、特に制限されないが、エポキシ樹脂組成物全体の0.05重量%以上、3重量%以下が好ましく、より好ましくは0.1重量%以上、1重量%以下である。配合量が上記下限値を下回ると離型性が低下する場合があり、上記上限値を上回ると密着性及び耐半田性が低下する場合がある。   A release agent is used in the epoxy resin composition of the present invention as necessary. As the mold release agent, conventionally known ones can be used, and examples thereof include higher fatty acids, higher fatty acid metal salts, ester waxes, polyethylene waxes, and the like. You may use together a seed or more. Of these, polyethylene waxes are preferable, and it is more preferable to use polyethylene wax and montanic acid ester wax in combination. The compounding amount of the release agent is not particularly limited, but is preferably 0.05% by weight or more and 3% by weight or less, more preferably 0.1% by weight or more and 1% by weight or less of the entire epoxy resin composition. If the blending amount is less than the above lower limit value, the releasability may be lowered, and if it exceeds the upper limit value, the adhesion and solder resistance may be lowered.

本発明のエポキシ樹脂組成物には、必要に応じてイオントラップ剤が用いられる。イオントラップ剤としては従来公知のものを用いることができるが、例えば、ハイドロタルサイト類やマグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても構わない。これらのうちハイドロタルサイト類が好ましい。イオントラップ剤の配合量は、特に制限されないが、エポキシ樹脂組成物全体の0.05重量%以上、3重量%以下が好ましく、より好ましくは0.1重量%以上、1重量%以下である。配合量が前記範囲内であると、充分なイオン補足作用を発揮し、他の材料特性に対する悪影響も少ない。   In the epoxy resin composition of the present invention, an ion trap agent is used as necessary. As the ion trapping agent, conventionally known ones can be used. Examples thereof include hydrotalcites and hydrated oxides of elements selected from magnesium, aluminum, bismuth, titanium, and zirconium. It may be used alone or in combination of two or more. Of these, hydrotalcites are preferred. The compounding amount of the ion trapping agent is not particularly limited, but is preferably 0.05% by weight or more and 3% by weight or less, more preferably 0.1% by weight or more and 1% by weight or less of the entire epoxy resin composition. When the blending amount is within the above range, sufficient ion scavenging action is exhibited and there is little adverse effect on other material properties.

本発明のエポキシ樹脂組成物は、エポキシ樹脂、フェノール樹脂、無機充填材、テトラ置換有機リン化合物を主成分とし、更に必要に応じて、シランカップリング剤、離型剤、イオントラップ剤を用いるが、更にカーボンブラック等の着色剤、シリコーンオイル、ゴム等の低応力添加剤、臭素化エポキシ樹脂や三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤等の添加剤を適宜配合しても差し支えない。   The epoxy resin composition of the present invention is mainly composed of an epoxy resin, a phenol resin, an inorganic filler, and a tetra-substituted organophosphorus compound, and further uses a silane coupling agent, a release agent, and an ion trap agent as necessary. In addition, colorants such as carbon black, low stress additives such as silicone oil and rubber, flame retardants such as brominated epoxy resin, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, etc. These additives may be appropriately blended.

なお、本発明のエポキシ樹脂組成物は、ミキサー等を用いて原料を充分に均一に混合したもの、更にその後、熱ロール又はニーダー等で溶融混練し、冷却後粉砕したものなど、必要に応じて適宜分散度等を調整したものを用いることができる。   In addition, the epoxy resin composition of the present invention is obtained by mixing the raw materials sufficiently uniformly using a mixer or the like, and then melt-kneading with a hot roll or a kneader, pulverizing after cooling, etc. as necessary. What adjusted the dispersion degree etc. suitably can be used.

次に、半導体装置について説明する。
上述のエポキシ樹脂組成物を用いて、半導体素子等の各種の電子部品を封止し、本発明の半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形して半導体装置を得ることができる。
Next, a semiconductor device will be described.
In order to manufacture the semiconductor device of the present invention by sealing various electronic components such as semiconductor elements using the epoxy resin composition described above, a conventional molding method such as transfer molding, compression molding, injection molding or the like is used. A semiconductor device can be obtained by curing.

本発明で封止を行う半導体素子としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられる。
本発明の半導体装置の形態としては、特に限定されないが、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)等が挙げられる。
トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま、或いは80℃〜200℃程度の温度で、10分〜10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。
The semiconductor element that performs sealing in the present invention is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
The form of the semiconductor device of the present invention is not particularly limited. For example, the dual in-line package (DIP), the plastic lead chip carrier (PLCC), the quad flat package (QFP), the small outline, and the like. Package (SOP), Small Outline J Lead Package (SOJ), Thin Small Outline Package (TSOP), Thin Quad Flat Package (TQFP), Tape Carrier Package (TCP), Ball Grid Examples include an array (BGA), a chip size package (CSP), and the like.
A semiconductor device sealed by a molding method such as a transfer mold is mounted on an electronic device or the like as it is or after being completely cured at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours. Is done.

図1は、本発明に係る半導体封止用エポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドとリードフレーム5との間は金線4によって接続されている。半導体素子1は、封止用樹脂組成物の硬化体6によって封止されている。   FIG. 1 is a view showing a cross-sectional structure of an example of a semiconductor device using the epoxy resin composition for semiconductor encapsulation according to the present invention. The semiconductor element 1 is fixed on the die pad 3 via the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the lead frame 5 are connected by a gold wire 4. The semiconductor element 1 is sealed with a cured body 6 of a sealing resin composition.

以下に本発明を実施例及び比較例に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とした。
(実施例1)
エポキシ樹脂1:一般式(4)で表されるエポキシ樹脂(ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂:日本化薬(株)製、商品名NC3000P、軟化点58℃、エポキシ当量273、式(4)においてn=2.3。) 6.40重量部
フェノール樹脂1:一般式(5)で表されるビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成(株)製、商品名MEH−7851SS、軟化点65℃、水酸基当量204、式(5)においてm=1.6。) 4.30重量部
溶融球状シリカ(平均粒径30μm) 88.00重量部
硬化促進剤1:トリフェニルホスフィンと1,4−ベンゾキノンとの付加物
0.20重量部
イオン交換水 0.10重量部
カップリング剤1:N−フェニル−γ−アミノプロピルトリメトキシシラン
0.10重量部
カップリング剤2:γ−メルカプトプロピルトリメトキシシラン 0.10重量部
離型剤:モンタン酸エステル系ワックス(クラリアントジャパン(株)製、商品名リコルブWE4) 0.30重量部
イオントラップ剤:ハイドロタルサイト(協和化学工業(株)製、商品名DHT−4H) 0.20重量部
着色剤:カーボンブラック 0.30重量部
をミキサーにて常温混合し、80から100℃の加熱ロールで溶融混練し、冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を用いて、以下の方法で評価を行った。評価結果を表1に示す。
Hereinafter, the present invention will be described in detail based on Examples and Comparative Examples, but the present invention is not limited thereto. The blending ratio was parts by weight.
(Example 1)
Epoxy resin 1: epoxy resin represented by general formula (4) (phenol aralkyl type epoxy resin having a biphenylene skeleton: Nippon Kayaku Co., Ltd., trade name NC3000P, softening point 58 ° C., epoxy equivalent 273, formula (4 ) N = 2.3.) 6.40 parts by weight Phenol resin 1: phenol aralkyl resin having a biphenylene skeleton represented by the general formula (5) (trade name MEH-7851SS manufactured by Meiwa Kasei Co., Ltd., softening point) 65 ° C., hydroxyl group equivalent 204, m = 1.6 in formula (5)) 4.30 parts by weight Fused spherical silica (average particle size 30 μm) 88.00 parts by weight Curing accelerator 1: Triphenylphosphine and 1,4 -Adducts with benzoquinone
0.20 parts by weight Deionized water 0.10 parts by weight Coupling agent 1: N-phenyl-γ-aminopropyltrimethoxysilane
0.10 parts by weight Coupling agent 2: γ-mercaptopropyltrimethoxysilane 0.10 parts by weight Release agent: Montanate ester wax (manufactured by Clariant Japan Co., Ltd., trade name Recolve WE4) 0.30 parts by weight Ion Trapping agent: Hydrotalcite (manufactured by Kyowa Chemical Industry Co., Ltd., trade name DHT-4H) 0.20 part by weight Colorant: Carbon black 0.30 part by weight is mixed at room temperature with a mixer and heated at 80 to 100 ° C. The mixture was melt-kneaded with a roll, cooled and pulverized to obtain an epoxy resin composition. Evaluation was performed by the following method using the obtained epoxy resin composition. The evaluation results are shown in Table 1.

1.スパイラルフロー
低圧トランスファー成形機(コータキ精機(株)製、KTS−15)を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件でエポキシ樹脂組成物を注入し、流動長を測定した。単位をcmとした。
1. Spiral flow Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement conforming to EMMI-1-66, a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, The epoxy resin composition was injected under a pressure holding time of 120 seconds, and the flow length was measured. The unit was cm.

2.硬化性(硬化トルク比)
キュラストメーター(オリエンテック(株)製、JSRキュラストメーターIVPS型)を用いて、175℃、60秒後のトルク値を300秒後のトルク値で除した値で示した。この値の大きい方が硬化性は良好である。単位は%とした。
2. Curability (curing torque ratio)
Using a curast meter (Orientec Co., Ltd., JSR curast meter IVPS type), the torque value after 60 seconds at 175 ° C. was divided by the torque value after 300 seconds. The larger this value, the better the curability. The unit is%.

3.耐湿信頼性
低圧トランスファー成形機(コータキ精機(株)製、KTS125−5E)を用いて、金型温度175℃、注入圧力8.3MPa、硬化時間105秒の条件で、チップ(チップサイズ3.0mm×3.5mm、厚さ0.48mm。配線部とメタルパッド部がアルミニウム層(純度:99.99%、1.0μm厚)で構成されている。保護膜は無し。陽極配線と陰極配線の1対を1評価回路とし、3評価回路(総回路面積4.8mm)が1チップ上に形成されている。各々の陽極配線及び陰極配線は配線幅10μmで両端がそれぞれ120μm角のメタルパッドに接続されている。対となる陽極配線と陰極配線の間隔は10μm。評価回路の各々のメタルパッドは金ワイヤ(純度:99.99%、25μm径)で対応する各々のリードに接続されている。)を搭載したリードフレームがインサートされた金型キャビティ内にエポキシ組成物を注入、硬化させ、16ピンSOP(Small Outline Package、パッケージサイズ7.2mm×11.5mm、厚さ1.95mm)を作製した。アフターベークとして175℃、4時間加熱処理した後、125℃、相対湿度100%の水蒸気中で、20Vの電圧を、16ピンSOPの陽極陰極間に印加し、断線不良を調べた。1パッケージ中の3評価回路の陽極判定回路、陰極判定回路のうち、1つでも断線のあるものを不良と判定し、15個のパッケージのうち、8個以上に不良が出るまでの時間を、不良時間とした。単位は時間とした。なお、測定時間は、最長で500時間とし、その時点で不良パッケージ数が8個未満であったものは、不良時間を500時間以上と示した。不良時間が長いほど、耐湿信頼性に優れる。
3. Moisture resistance reliability Using a low-pressure transfer molding machine (KTS125-5E, manufactured by Kotaki Seiki Co., Ltd.), with a die temperature of 175 ° C., an injection pressure of 8.3 MPa, and a curing time of 105 seconds, a chip (chip size: 3.0 mm) × 3.5 mm, thickness 0.48 mm Wiring part and metal pad part are composed of aluminum layer (purity: 99.99%, 1.0 μm thickness) No protective film, anode wiring and cathode wiring One evaluation circuit is used as one pair, and three evaluation circuits (total circuit area: 4.8 mm 2 ) are formed on one chip.Each anode wiring and cathode wiring are 10 μm wiring width and 120 μm square metal pads at both ends. The distance between the pair of anode wiring and cathode wiring is 10 μm, and each metal pad of the evaluation circuit is gold wire (purity: 99.99%, 25 μm diameter) corresponding to each lead. An epoxy composition is injected into a mold cavity in which a lead frame having a lead frame mounted thereon is inserted and cured, and a 16-pin SOP (Small Outline Package, package size 7.2 mm × 11.5 mm, thickness) 1.95 mm) was produced. After heat treatment at 175 ° C. for 4 hours as an afterbake, a voltage of 20 V was applied between the anode and cathode of the 16-pin SOP in water vapor at 125 ° C. and a relative humidity of 100%, and the disconnection failure was examined. Of the three evaluation circuits in one package, the anode judgment circuit and the cathode judgment circuit are judged to be defective if at least one of them is broken, and the time required for the defect to appear in eight or more of the 15 packages, It was a defective time. The unit was time. Note that the measurement time was 500 hours at the longest, and when the number of defective packages was less than 8 at that time, the defective time was 500 hours or more. The longer the defect time, the better the moisture resistance reliability.

4.耐半田性
低圧トランスファー成形機(第一精工(株)製、GP−ELF)を用いて、成形温度175℃、注入圧力8.3MPa、硬化時間120秒の条件で、チップ(チップサイズ6.0mm×6.0mm×0.35mm厚)を搭載した銅製リードフレームがインサートされた金型キャビティ内にエポキシ樹脂組成物を注入、硬化させ、80ピンQFP(Quad Flat Package、パッケージサイズ:14mm×20mm×2mm厚)を作製し、アフターベークとして175℃、8時間加熱処理した。その後、85℃、相対湿度85%で120時間の加湿処理を行った後、260℃のIRリフロー処理をした。パッケージ内部の剥離とクラックを超音波探傷機(日立建機ファインテック(株)製、mi−scope hyper II)で確認し、剥離、クラックのいずれか一方でもあったものを不良とした。評価した10個のパッケージ中の不良パッケージ数を示す。
4). Solder resistance Using a low-pressure transfer molding machine (Daiichi Seiko Co., Ltd., GP-ELF), a chip (chip size 6.0 mm) under the conditions of a molding temperature of 175 ° C., an injection pressure of 8.3 MPa, and a curing time of 120 seconds. An epoxy resin composition is injected into a mold cavity in which a copper lead frame having a thickness of 6.0 mm × 0.35 mm is inserted and cured, and then 80-pin QFP (Quad Flat Package, package size: 14 mm × 20 mm ×) 2 mm thick) and heat-treated as an after bake at 175 ° C. for 8 hours. Then, after performing the humidification process for 120 hours at 85 degreeC and 85% of relative humidity, IR reflow process of 260 degreeC was performed. Peeling and cracks inside the package were confirmed with an ultrasonic flaw detector (manufactured by Hitachi Construction Machinery Finetech Co., Ltd., mi-scope hyper II), and any one of either peeling or cracking was regarded as defective. The number of defective packages among the 10 packages evaluated is shown.

実施例2〜10、比較例1〜3
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を製造し、実施例1と同様にして評価した。評価結果を表1に示す。
実施例1以外で用いた成分について、以下に示す。
エポキシ樹脂2:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名YX−4000、エポキシ当量190、融点105℃)
フェノール樹脂2:フェノールアラルキル樹脂(三井化学(株)製、商品名XLC−LL、水酸基当量165、軟化点79℃)
硬化促進剤2:一般式(2)で示される硬化促進剤(式(2)において、d、eは0)
硬化促進剤3:下記式(6)で示される硬化促進剤

Figure 2008231242
硬化促進剤4:トリフェニルホスフィン
硬化促進剤5:1,8−ジアザビシクロ(5,4,0)ウンデセン−7 Examples 2-10, Comparative Examples 1-3
According to the composition of Table 1, an epoxy resin composition was produced in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
Components used in Examples other than Example 1 are shown below.
Epoxy resin 2: biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., trade name YX-4000, epoxy equivalent 190, melting point 105 ° C.)
Phenol resin 2: Phenol aralkyl resin (Mitsui Chemicals, trade name XLC-LL, hydroxyl group equivalent 165, softening point 79 ° C.)
Curing accelerator 2: Curing accelerator represented by general formula (2) (d and e are 0 in formula (2))
Curing accelerator 3: Curing accelerator represented by the following formula (6)
Figure 2008231242
Curing accelerator 4: Triphenylphosphine Curing accelerator 5: 1,8-diazabicyclo (5,4,0) undecene-7

Figure 2008231242
Figure 2008231242

表1から明らかなように実施例1〜10で得られたエポキシ組成物を用いて成形した半導体パッケージは、耐半田性及び耐湿信頼性に優れていた。
上記のように本発明に従う実施例はいずれも、無鉛半田に対応する高温の半田処理によっても剥離やクラックが発生しない良好な耐半田性を有するとともに、耐湿信頼性に優れた半導体封止用エポキシ樹脂組成物が得られるものである。
As is apparent from Table 1, the semiconductor package molded using the epoxy compositions obtained in Examples 1 to 10 was excellent in solder resistance and moisture resistance reliability.
As described above, all of the embodiments according to the present invention have excellent solder resistance that does not cause peeling or cracking even by high-temperature solder processing corresponding to lead-free solder, and also has excellent moisture resistance and reliability for semiconductor encapsulation. A resin composition is obtained.

本発明に従うと、無鉛半田に対応する高温の半田処理によっても剥離やクラックが発生しない良好な耐半田性を有する半導体封止用エポキシ樹脂組成物が得られるので、特に表面実装型の半導体装置の製造用として好適に用いることができる。   According to the present invention, since an epoxy resin composition for semiconductor encapsulation having good solder resistance that does not cause peeling or cracking even by a high-temperature soldering process corresponding to lead-free solder can be obtained, particularly in a surface-mounted semiconductor device It can be suitably used for production.

本発明に係るエポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-section about an example of the semiconductor device using the epoxy resin composition which concerns on this invention.

符号の説明Explanation of symbols

1 半導体素子
2 ダイボンド材硬化体
3 ダイパッド
4 金線
5 リードフレーム
6 封止用樹脂組成物の硬化体
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Die pad 4 Gold wire 5 Lead frame 6 Hardening body of resin composition for sealing

Claims (8)

半導体封止に用いるエポキシ樹脂組成物であって、
(A)エポキシ樹脂と、
(B)硬化剤と、
(C)無機充填材と、
(D)テトラ置換ホスホニウム塩(d1)、ホスホベタイン化合物(d2)、及びホスフィン化合物とキノン化合物との付加物(d3)から選ばれる1種、又は2種以上のテトラ置換有機リン化合物と、
(E)水と、
を含むことを特徴とするエポキシ樹脂組成物。
An epoxy resin composition used for semiconductor encapsulation,
(A) an epoxy resin;
(B) a curing agent;
(C) an inorganic filler;
(D) one or two or more tetra-substituted organophosphorus compounds selected from a tetra-substituted phosphonium salt (d1), a phosphobetaine compound (d2), and an adduct (d3) of a phosphine compound and a quinone compound;
(E) water and
An epoxy resin composition comprising:
上記テトラ置換ホスホニウム塩(d1)が下記一般式(1)で表される化合物である請求項1に記載のエポキシ樹脂組成物。
Figure 2008231242
The epoxy resin composition according to claim 1, wherein the tetra-substituted phosphonium salt (d1) is a compound represented by the following general formula (1).
Figure 2008231242
上記ホスホベタイン化合物(d2)が下記一般式(2)で表される化合物である請求項1に記載のエポキシ樹脂組成物。
Figure 2008231242
The epoxy resin composition according to claim 1, wherein the phosphobetaine compound (d2) is a compound represented by the following general formula (2).
Figure 2008231242
上記ホスフィン化合物とキノン化合物との付加物(d3)が下記一般式(3)で表される化合物である請求項1に記載のエポキシ樹脂組成物。
Figure 2008231242
The epoxy resin composition according to claim 1, wherein the adduct (d3) of the phosphine compound and the quinone compound is a compound represented by the following general formula (3).
Figure 2008231242
前記(E)水の配合量が全エポキシ樹脂組成物に対して、0.02重量%以上、0.3重量%以下である請求項1ないし4のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to any one of claims 1 to 4, wherein a blending amount of the water (E) is 0.02 wt% or more and 0.3 wt% or less with respect to the total epoxy resin composition. 前記(A)エポキシ樹脂が、下記一般式(4)で表されるエポキシ樹脂である請求項1ないし5のいずれかに記載のエポキシ樹脂組成物。
Figure 2008231242
The epoxy resin composition according to any one of claims 1 to 5, wherein the (A) epoxy resin is an epoxy resin represented by the following general formula (4).
Figure 2008231242
前記(B)硬化剤が、下記一般式(5)で表されるフェノール樹脂である請求項1ないし6のいずれかに記載のエポキシ樹脂組成物。
Figure 2008231242
The epoxy resin composition according to claim 1, wherein the (B) curing agent is a phenol resin represented by the following general formula (5).
Figure 2008231242
請求項1ないし7のいずれかに記載のエポキシ樹脂組成物の硬化物で、半導体素子が封止されていることを特徴とする半導体装置。   A semiconductor device, wherein a semiconductor element is sealed with a cured product of the epoxy resin composition according to claim 1.
JP2007072453A 2007-03-20 2007-03-20 Epoxy resin composition and semiconductor device Pending JP2008231242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072453A JP2008231242A (en) 2007-03-20 2007-03-20 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072453A JP2008231242A (en) 2007-03-20 2007-03-20 Epoxy resin composition and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011270801A Division JP2012062483A (en) 2011-12-12 2011-12-12 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2008231242A true JP2008231242A (en) 2008-10-02

Family

ID=39904442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072453A Pending JP2008231242A (en) 2007-03-20 2007-03-20 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2008231242A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013326A1 (en) * 2009-07-31 2011-02-03 住友ベークライト株式会社 Liquid resin composition and semiconductor device formed using same
WO2012102336A1 (en) * 2011-01-28 2012-08-02 住友ベークライト株式会社 Epoxy resin composition for sealing, and electronic component device
JP2014025042A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Curing accelerator, epoxy resin composition and electronic component device
JP2014062173A (en) * 2012-09-21 2014-04-10 Sumitomo Bakelite Co Ltd Resin composition and electronic component device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333411A (en) * 1986-07-28 1988-02-13 Sumitomo Bakelite Co Ltd Epoxy resin molding material for sealing semiconductor
JPH0258530A (en) * 1988-08-23 1990-02-27 Toshiba Corp Epoxy resin composition
JPH06244321A (en) * 1994-01-31 1994-09-02 Sumitomo Bakelite Co Ltd Semiconductor sealing epoxy resin molding material
JP2004002574A (en) * 2002-06-03 2004-01-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006008956A (en) * 2004-06-29 2006-01-12 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device using the same
WO2006075599A1 (en) * 2005-01-13 2006-07-20 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333411A (en) * 1986-07-28 1988-02-13 Sumitomo Bakelite Co Ltd Epoxy resin molding material for sealing semiconductor
JPH0258530A (en) * 1988-08-23 1990-02-27 Toshiba Corp Epoxy resin composition
JPH06244321A (en) * 1994-01-31 1994-09-02 Sumitomo Bakelite Co Ltd Semiconductor sealing epoxy resin molding material
JP2004002574A (en) * 2002-06-03 2004-01-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006008956A (en) * 2004-06-29 2006-01-12 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device using the same
WO2006075599A1 (en) * 2005-01-13 2006-07-20 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013326A1 (en) * 2009-07-31 2011-02-03 住友ベークライト株式会社 Liquid resin composition and semiconductor device formed using same
WO2012102336A1 (en) * 2011-01-28 2012-08-02 住友ベークライト株式会社 Epoxy resin composition for sealing, and electronic component device
US20130277867A1 (en) * 2011-01-28 2013-10-24 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for sealing, and electronic component device
JPWO2012102336A1 (en) * 2011-01-28 2014-06-30 住友ベークライト株式会社 Epoxy resin composition for sealing and electronic component device
US8987355B2 (en) 2011-01-28 2015-03-24 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for sealing, and electronic component device
KR101847673B1 (en) * 2011-01-28 2018-04-10 스미또모 베이크라이트 가부시키가이샤 Epoxy resin composition for sealing, and electronic component device
JP2014025042A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Curing accelerator, epoxy resin composition and electronic component device
JP2014062173A (en) * 2012-09-21 2014-04-10 Sumitomo Bakelite Co Ltd Resin composition and electronic component device

Similar Documents

Publication Publication Date Title
JP5124808B2 (en) Epoxy resin composition and semiconductor device
JP5119798B2 (en) Epoxy resin composition and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4404051B2 (en) Semiconductor sealing resin composition and semiconductor device using the same
JP2008231242A (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP5272973B2 (en) Epoxy resin composition and semiconductor device
JP2012007086A (en) Resin composition for sealing and electronic part device
JP4561227B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5206643B2 (en) Epoxy resin composition and semiconductor device
JP4984722B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP4400124B2 (en) Epoxy resin composition and semiconductor device
JP4951954B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5526963B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2008045075A (en) Epoxy resin composition for sealing and electronic component device
JP5092676B2 (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP4951953B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5115098B2 (en) Resin composition and semiconductor device
JP2012062483A (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2006111672A (en) Semiconductor sealing resin composition and semiconductor device
JP2011144235A (en) Semiconductor sealing epoxy resin composition and semiconductor device
JP2006143784A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228