JPH11158351A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JPH11158351A
JPH11158351A JP9327595A JP32759597A JPH11158351A JP H11158351 A JPH11158351 A JP H11158351A JP 9327595 A JP9327595 A JP 9327595A JP 32759597 A JP32759597 A JP 32759597A JP H11158351 A JPH11158351 A JP H11158351A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
weight
formula
phenolic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9327595A
Other languages
Japanese (ja)
Inventor
Naoko Toyosawa
尚子 豊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP9327595A priority Critical patent/JPH11158351A/en
Publication of JPH11158351A publication Critical patent/JPH11158351A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject composition having excellent storage property at a high temperature and excellent resistance to cracking induced by soldering and useful for sealing a semiconductor by using a crystalline epoxy resin, a specific phenolic resin hardener and a zeolite having a specific structure. SOLUTION: This epoxy resin composition comprises (A) a crystalline epoxy resin having 50-150 deg.C melting point, (B) a phenolic resin hardener containing >=50 wt.% of a phenolic resin (e.g. biphenyl type) selected from formulae I and II R1 is formula III or IV; R2 is formula III, (m) is 1-10}, (C) a hardening accelerator (e.g. triphenylphosphine, (D) an inorganic filler (preferably a spherical silica powder having extremely true sphere shape and a broad granular size distribution) in an amount of 75-92 wt.% based on the weight of the whole composition and (E) a compound of the formula: XM2/n O.Al2 O3 .YSiO2 .ZH2 O X=0.1-2; Y=1-200; Z=0-100; M is an alkaline (earth) metal; (n) is atomic valence} as essential components. Preferably, a maximum granular diameter of the component E is 150 μm and an average granular diameter of the same is 5-30 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温保管特性に優
れ、かつ耐半田クラック性が良好な半導体封止用エポキ
シ樹脂組成物、及びこれを用いた半導体装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent high-temperature storage characteristics and good solder crack resistance, and a semiconductor device using the same.

【0002】[0002]

【従来の技術】半導体を機械的、化学的作用から保護す
るために、エポキシ樹脂組成物が開発、生産されてき
た。この樹脂組成物に要求される項目としては、封止さ
れる半導体装置の構造によって変化する。半導体パッケ
ージの表面実装化に伴って封止材料に求められる特性と
して耐半田クラック性がある。耐半田クラック性向上に
は、例えば結晶性のビフェニル型エポキシ樹脂を使用し
無機充填材であるシリカを高充填する手法が用いられて
いる。更に、高速化に伴う半導体素子の発熱や車載部品
を代表としての過酷な環境下での使用等により耐半田ク
ラック性と並んで高温保管特性の向上が要求されてい
る。
2. Description of the Related Art Epoxy resin compositions have been developed and manufactured to protect semiconductors from mechanical and chemical actions. Items required for the resin composition vary depending on the structure of the semiconductor device to be sealed. As a property required for a sealing material with the surface mounting of a semiconductor package, there is solder crack resistance. In order to improve the solder crack resistance, for example, a method of using a crystalline biphenyl type epoxy resin and highly filling silica as an inorganic filler is used. Further, due to the heat generation of the semiconductor element due to the increase in the speed and the use in a severe environment such as a vehicle-mounted component, it is required to improve the high-temperature storage characteristics as well as the solder crack resistance.

【0003】ところが前記エポキシ樹脂組成物には難燃
性も要求されており、難燃性付与のため、通常臭素化合
物と酸化アンチモンが配合されている。しかしながら、
これらの難燃性の成分からは熱分解した臭素化合物が遊
離し半導体素子の接合部の信頼性を損なうことが知られ
ている。ここで言う信頼性とは、前記エポキシ樹脂組成
物を用いて半導体素子を封止して得られる半導体装置を
高温(例えば185℃)下に放置した後の半導体素子の
接合部(ボンディングパッド部)の信頼性のことである
(以下、高温保管特性という)。この高温保管特性を改
善する手法として、五酸化二アンチモンを配合する方法
(特開昭61−53321号公報)や酸化アンチモンと
有機ホスフィンを組み合わせる方法(特開昭61−53
321号公報)等が提案されているが、昨今の半導体装
置の信頼性の要求レベルには到達していないのが現状で
ある。
[0003] However, the epoxy resin composition is also required to be flame-retardant, and usually a bromine compound and antimony oxide are blended for imparting flame retardancy. However,
It is known that thermally decomposed bromine compounds are liberated from these flame-retardant components, thereby impairing the reliability of the junctions of semiconductor elements. The term “reliability” as used herein refers to a junction (bonding pad portion) of a semiconductor element obtained by leaving a semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition at a high temperature (for example, 185 ° C.). (Hereinafter referred to as high-temperature storage characteristics). As a method for improving the high-temperature storage characteristics, a method of blending diantimony pentoxide (JP-A-61-53321) or a method of combining antimony oxide with an organic phosphine (JP-A-61-53).
321) has been proposed, but at present it has not yet reached the required level of reliability of semiconductor devices.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記した問
題点を解決すべくなされたものであり、結晶性エポキシ
樹脂、式(1)、式(2)の群から選ばれる一種以上の
フェノール樹脂及び式(3)の化合物を用いることによ
り、高温保管特性に優れ、かつ耐半田クラック性が良好
な半導体封止用エポキシ樹脂組成物、及びこれを用いた
半導体装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and comprises a crystalline epoxy resin, one or more phenols selected from the group of formulas (1) and (2). An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation having excellent high-temperature storage characteristics and good solder crack resistance by using a resin and a compound of the formula (3), and a semiconductor device using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、(A)融点5
0〜150℃の結晶性エポキシ樹脂、(B)全フェノー
ル樹脂硬化剤中に式(1)、式(2)の群から選ばれる
一種以上のフェノール樹脂を50重量%以上含む樹脂硬
化剤、(C)硬化促進剤、(D)全樹脂組成物中に75
〜92重量%含む無機充填材、及び(E)式(3)の化
合物を必須成分とすることを特徴とする半導体封止用エ
ポキシ樹脂組成物である。
According to the present invention, (A) a melting point of 5
A crystalline epoxy resin at 0 to 150 ° C., (B) a resin curing agent containing 50% by weight or more of one or more phenolic resins selected from the group of formulas (1) and (2) in the total phenolic resin curing agent, C) a curing accelerator, (D) 75 in the total resin composition
An epoxy resin composition for semiconductor encapsulation comprising, as essential components, an inorganic filler containing up to 92% by weight and (E) a compound of the formula (3).

【化3】 Embedded image

【0006】[0006]

【化4】 Embedded image

【0007】 XM2/nO・Al23・YSiO2・ZH2O (3) (ここで、X=0.1〜2.0、Y=1.0〜200、
Z=0〜100、Mはアルカリ金属又はアルカリ土類金
属で、nはその原子価である。)
XM 2 / n O.Al 2 O 3 .YSiO 2 .ZH 2 O (3) (where X = 0.1 to 2.0, Y = 1.0 to 200,
Z = 0 to 100, M is an alkali metal or an alkaline earth metal, and n is its valence. )

【0008】[0008]

【発明の実施の形態】本発明で用いられるエポキシ樹脂
は、融点50〜150℃の結晶性エポキシ樹脂である。
結晶性エポキシ樹脂は、分子構造的には低分子で平面的
な構造の骨格を有し、常温では結晶化している固体であ
るが昇温することにより、融点以上の温度域で急速に融
解して低粘度(約0.1〜10ポイズ/150〜175
℃)の液状に変化するものである。本発明で言う結晶性
エポキシ樹脂の融点とは、示差走査熱量計で昇温速度5
℃/分で測定した時の融解ピークである。融点は、50
〜150℃であり、50℃未満だと常温で融解してお
り、作業性の問題やエポキシ樹脂組成物とした時の常温
保存性の低下のおそれがある。150℃を越えると混練
時に充分融解せず、均一分散できないので硬化性が低下
して成形性が低下し、更に不均一な成形品となり、強度
が各部によって異なるために半導体装置としての性能が
低下する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The epoxy resin used in the present invention is a crystalline epoxy resin having a melting point of 50 to 150 ° C.
Crystalline epoxy resin has a low molecular weight and planar structure skeleton in molecular structure.It is a solid that crystallizes at room temperature, but it rapidly melts in the temperature range above its melting point when the temperature rises. And low viscosity (about 0.1-10 poise / 150-175
(° C). The melting point of the crystalline epoxy resin referred to in the present invention is defined by a differential scanning calorimeter at a heating rate
It is a melting peak measured at ° C./min. Melting point is 50
If it is lower than 50 ° C., it melts at room temperature, and there is a possibility that workability may be deteriorated and the room temperature storage property of the epoxy resin composition may be lowered. If the temperature exceeds 150 ° C., it does not melt sufficiently during kneading and cannot be uniformly dispersed, so that the curability is reduced and the moldability is reduced. Further, a nonuniform molded product is obtained. I do.

【0009】これらの条件を満たすエポキシ樹脂として
は、例えば、ビフェニル型、ハイドロキノン型、スチル
ベン型、ビスフェノールF型、ナフタレン型等が挙げら
れ、これらは単独でも混合して用いても良い。耐湿信頼
性向上のために、これらのエポキシ樹脂中に含有される
塩素イオン、ナトリウムイオン、その他フリーのイオン
は極力少ないことが望ましい。又、エポキシ当量は10
0〜350が好ましい。100未満だと、反応点が増え
ることにより、樹脂組成物の硬化物の吸水率が高くな
り、耐半田クラック性が低下する。350を越えると、
反応性が低下して成形性が悪化する。結晶性エポキシ樹
脂の具体的な構造としては、以下のものが例示できる
が、これらに限定されるものではない。
Epoxy resins satisfying these conditions include, for example, biphenyl type, hydroquinone type, stilbene type, bisphenol F type, and naphthalene type, and these may be used alone or as a mixture. In order to improve the moisture resistance reliability, it is desirable that chlorine ions, sodium ions and other free ions contained in these epoxy resins are as small as possible. The epoxy equivalent is 10
0 to 350 is preferred. If it is less than 100, the number of reaction points increases, so that the water absorption of the cured product of the resin composition increases, and the solder crack resistance decreases. When it exceeds 350,
Reactivity decreases and moldability deteriorates. Specific examples of the structure of the crystalline epoxy resin include, but are not limited to, the following.

【化5】 Embedded image

【0010】[0010]

【化6】 Embedded image

【0011】[0011]

【化7】 なお、結晶性エポキシ樹脂の特徴である無機充填材の高
充填化を損なわない範囲で、他のエポキシ樹脂、例えば
オルソクレゾールノボラック型エポキシ樹脂、ジシクロ
ペンタジエン変性エポキシ樹脂、複素環型エポキシ樹脂
等を併用してもよい。
Embedded image In addition, other epoxy resins, such as an ortho-cresol novolak-type epoxy resin, a dicyclopentadiene-modified epoxy resin, a heterocyclic epoxy resin, etc., within a range that does not impair the high filling of the inorganic filler which is a characteristic of the crystalline epoxy resin. You may use together.

【0012】本発明で用いられる式(1)及び式(2)
のフェノール樹脂は、全フェノール樹脂硬化剤中に50
重量%以上含まれていればよい。式(1)及び式(2)
のフェノール樹脂は、従来のフェノールノボラック樹脂
と比べて、樹脂組成物の硬化物の吸水率を顕著に低下さ
せるので、硬化物の耐半田クラック性が向上する。50
重量%未満だと、樹脂組成物の硬化物の吸水率が増加
し、硬化物の耐半田クラック性が低下するので好ましく
ない。又、mの値は1〜10が好ましい。mが10を越
えると、粘度が高くなり樹脂組成物の流動性が低下する
ので好ましくない。更に、耐湿信頼性向上のため、不純
物として含有される塩素イオン、ナトリウムイオン、そ
の他フリーのイオンは極力少ないことが望ましい。更
に、式(1)、式(2)のフェノール樹脂と併用できる
他のフェノール樹脂としては、例えば、フェノールノボ
ラック樹脂、クレゾールノボラック樹脂、ジシクロペン
タジエン変性フェノール樹脂、ポリビニルフェノール樹
脂等のポリフェノール化合物が挙げられるが、これらに
限定されるものではない。
Formulas (1) and (2) used in the present invention
Of phenolic resin in all phenolic resin curing agents
What is necessary is just to contain by weight% or more. Equation (1) and Equation (2)
The phenol resin significantly reduces the water absorption of the cured product of the resin composition as compared with the conventional phenol novolak resin, and thus improves the solder crack resistance of the cured product. 50
When the amount is less than the weight percentage, the water absorption of the cured product of the resin composition increases, and the solder crack resistance of the cured product is undesirably reduced. The value of m is preferably 1 to 10. If m exceeds 10, the viscosity increases and the fluidity of the resin composition decreases, which is not preferable. Further, in order to improve the moisture resistance reliability, it is desirable that chlorine ions, sodium ions, and other free ions contained as impurities be as small as possible. Furthermore, examples of other phenol resins that can be used in combination with the phenol resins of the formulas (1) and (2) include polyphenol compounds such as a phenol novolak resin, a cresol novolak resin, a dicyclopentadiene-modified phenol resin, and a polyvinyl phenol resin. However, the present invention is not limited to these.

【0013】本発明で用いられる硬化促進剤は、エポキ
シ基とフェノール性水酸基の化学反応を促進させるもの
であれば特に限定しない。一般に封止材料によく使用さ
れるものとしては、トリフェニルホスフィン、1,8−
ジアザビシクロ(5,4,0)ウンデセン−7、テトラ
フェニルホスホニウム・テトラボレート塩、2−メチル
イミダゾール等が挙げられる。樹脂組成物の耐湿性向上
のために、イオン性不純物が極力低いことが望ましい。
又、潜在的触媒作用をする硬化促進剤であれば、更に好
ましい。
The curing accelerator used in the present invention is not particularly limited as long as it promotes a chemical reaction between an epoxy group and a phenolic hydroxyl group. Generally, triphenylphosphine, 1,8-
Diazabicyclo (5,4,0) undecene-7, tetraphenylphosphonium tetraborate salt, 2-methylimidazole and the like. In order to improve the moisture resistance of the resin composition, it is desirable that ionic impurities be as low as possible.
Further, a curing accelerator having a latent catalytic action is more preferable.

【0014】本発明で用いられる無機充填材としては、
溶融シリカ粉末、球状シリカ粉末、結晶シリカ粉末、2
次凝集シリカ粉末、アルミナ等が挙げられ、特にエポキ
シ樹脂組成物の流動性の向上という観点から球状シリカ
粉末が望ましい。球状シリカ粉末の形状としては、流動
性改善のため粒子自体の形状は限りなく真球状で、更に
粒度分布がブロードであるものが望ましい。又、耐湿性
の向上のためにアルカリ金属、アルカリ土類金属、ハロ
ゲン等のイオン性不純物をできるだけ含まないことが望
まれる。無機充填材の配合量としては、全エポキシ樹脂
組成物中に75〜92重量%が好ましい。75重量%未
満だと樹脂組成物の硬化物の吸水率が高くなって耐半田
クラック性が低下する。92重量%を越えると球状シリ
カを利用しても樹脂組成物の溶融粘度が高くなりすぎ成
形できない。又、無機充填材は、不飽和二重結合含有の
シランカップリング剤やその他のシラン系、チタン系、
その他の表面処理剤によって予め表面処理されていても
なんら問題はない。
The inorganic filler used in the present invention includes:
Fused silica powder, spherical silica powder, crystalline silica powder, 2
Sub-agglomerated silica powder, alumina and the like are mentioned, and spherical silica powder is particularly desirable from the viewpoint of improving the fluidity of the epoxy resin composition. As the shape of the spherical silica powder, it is desirable that the shape of the particles themselves is infinitely spherical and the particle size distribution is broad in order to improve fluidity. Further, in order to improve moisture resistance, it is desired that ionic impurities such as alkali metals, alkaline earth metals, and halogens are contained as little as possible. The blending amount of the inorganic filler is preferably from 75 to 92% by weight based on the entire epoxy resin composition. If it is less than 75% by weight, the water absorption of the cured product of the resin composition will increase, and the solder crack resistance will decrease. If the content exceeds 92% by weight, the melt viscosity of the resin composition becomes too high even when spherical silica is used, and molding cannot be performed. The inorganic filler is an unsaturated double bond-containing silane coupling agent and other silane-based, titanium-based,
There is no problem even if the surface is previously treated with another surface treating agent.

【0015】本発明で用いられる式(3)の化合物は、
一般にゼオライトと呼称されており、結晶構造を有し、
結晶粒子内に直径3〜20オングストロームの無数の空
孔があり、水、アンモニア、炭酸ガス等の物質を吸着保
持する機能がある。本発明者は、結晶性エポキシ樹脂、
式(1)、式(2)のフェノール樹脂及び式(3)の化
合物を配合した樹脂組成物について鋭意検討した結果、
この樹脂組成物で封止された半導体装置は優れた高温保
管特性と耐半田クラック性を有していることを見いだし
た。式(3)の化合物の最大粒径としては、200μm
以下、より好ましくは150μmである。200μmを
越えると成形時に未充填の原因となるので好ましくな
い。平均粒径としては、特に限定しないが、5〜30μ
mの範囲が好ましい。全樹脂組成物中の配合量として
は、0.1〜10重量%、より好ましくは0.1〜5重
量%である。0.1重量%未満だと吸着性能が低く、十
分な高温保管特性が得られない。10重量%を越えると
樹脂組成物の硬化物の吸水率が上昇し耐半田クラック性
が低下する。又、粒子の形状としては破砕状、球状等が
あるが、特に限定しない。
The compound of the formula (3) used in the present invention is
Generally called zeolite, has a crystal structure,
There are countless vacancies having a diameter of 3 to 20 angstroms in the crystal grains, which have a function of adsorbing and holding substances such as water, ammonia, and carbon dioxide. The inventor has proposed a crystalline epoxy resin,
As a result of earnestly studying a resin composition containing the phenolic resin of the formula (1) and the formula (2) and the compound of the formula (3),
It has been found that a semiconductor device sealed with this resin composition has excellent high-temperature storage characteristics and solder crack resistance. The maximum particle size of the compound of the formula (3) is 200 μm
Hereinafter, it is more preferably 150 μm. If it exceeds 200 μm, it is not preferable because it causes unfilling during molding. The average particle size is not particularly limited.
The range of m is preferred. The compounding amount in the whole resin composition is 0.1 to 10% by weight, more preferably 0.1 to 5% by weight. If it is less than 0.1% by weight, the adsorption performance is low and sufficient high-temperature storage characteristics cannot be obtained. If it exceeds 10% by weight, the water absorption of the cured product of the resin composition increases, and the solder crack resistance decreases. The shape of the particles may be crushed or spherical, but is not particularly limited.

【0016】本発明の樹脂組成物は、(A)〜(E)成
分の他、必要に応じてカーボンブラック等の着色剤、天
然ワックス、合成ワックス等の離型剤及びシリコーンオ
イル、ゴム等の低応力成分、酸化アンチモン及び臭素化
合物等の難燃剤を添加することができる。本発明の樹脂
組成物は、(A)〜(E)成分、及びその他添加剤をミ
キサーで常温混合し、ロール、押し出し機等の一般混練
機で混練し、冷却後粉砕して得られる。本発明の樹脂組
成物を用いて、半導体等の電子部品を封止し、半導体装
置を製造するには、トランスファーモールド、コンプレ
ッションモールド、インジェクションモールド等の従来
からの成形方法で硬化成形すればよい。
The resin composition of the present invention comprises, in addition to the components (A) to (E), if necessary, a coloring agent such as carbon black, a release agent such as natural wax and synthetic wax, and a silicone oil, rubber and the like. Flame retardants such as low stress components, antimony oxide and bromine compounds can be added. The resin composition of the present invention is obtained by mixing the components (A) to (E) and other additives at room temperature with a mixer, kneading with a general kneading machine such as a roll or an extruder, cooling, and pulverizing. In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor using the resin composition of the present invention, it is only necessary to cure and mold by a conventional molding method such as transfer molding, compression molding and injection molding.

【0017】[0017]

【実施例】以下、本発明を実施例で具体的に説明する。
配合単位は重量部とする。 実施例1 エポキシ樹脂1(油化シェルエポキシ(株)・製、YX4000、融点105 ℃、エポキシ当量195) 5.10重量部 フェノール樹脂1(三井化学(株)・製、XL−225−LL、軟化点100 ℃、水酸基当量175) 5.10重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 0.2重量部 球状シリカ(平均粒径15μm) 85.0重量部 式(3)の化合物(平均粒径6μm、最大粒径40μm) 2.0重量部 カーボンブラック 0.3重量部 カルナバワックス 0.3重量部 三酸化アンチモン 1.0重量部 臭素化フェノールノボラック型エポキシ樹脂 1.0重量部 をミキサーで常温混合し、100℃で二軸ロールを用い
て混練し、冷却後粉砕し樹脂組成物を得た。得られた樹
脂組成物を以下の方法で評価した。結果を表1に示す。
The present invention will be specifically described below with reference to examples.
The mixing unit is parts by weight. Example 1 5.10 parts by weight of epoxy resin 1 (manufactured by Yuka Shell Epoxy Co., Ltd., YX4000, melting point 105 ° C., epoxy equivalent: 195) 5.10 parts by weight Phenol resin 1 (manufactured by Mitsui Chemicals, Inc., XL-225-LL, Softening point 100 ° C, hydroxyl equivalent 175) 5.10 parts by weight 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.2 part by weight Spherical silica (average particle diameter 15 μm) 0 parts by weight Compound of formula (3) (average particle diameter 6 μm, maximum particle diameter 40 μm) 2.0 parts by weight Carbon black 0.3 parts by weight Carnauba wax 0.3 parts by weight Antimony trioxide 1.0 part by weight Brominated phenol 1.0 part by weight of novolak type epoxy resin was mixed at room temperature with a mixer, kneaded at 100 ° C. using a biaxial roll, cooled, and ground to obtain a resin composition. The obtained resin composition was evaluated by the following method. Table 1 shows the results.

【0018】評価方法 スパイラルフロー:EMMI−I−66に準じたスパイ
ラルフロー測定用の金型を用い、金型温度175℃、注
入圧力70kg/cm2、硬化時間2分で測定した。単
位はcm。 高温保管特性:前記樹脂組成物をトランスファー成形機
を用いて、成形温度175℃、圧力70kg/cm2
硬化時間2分で16pDIPを成形し、ポストキュアを
175℃で8時間行った。このパッケージ5個を185
℃の雰囲気中に放置し、模擬素子の回路抵抗を測定し、
測定値が初期値より20%以上増加した時点を不良と判
定して、高温保管時の回路抵抗不良率とした。不良数が
全パッケージ数の50%に達した時間を不良時間とし5
00時間以上のものを合格とした。 耐半田クラック性:前記樹脂組成物をトランスファー成
形機を用いて、成形温度175℃、圧力70kg/cm
2、硬化時間2分で80pQFP(厚み2mm、素子サ
イズ9mm×9mm)を成形し、ポストキュアを175
℃で8時間行った。パッケージ6個を85℃、相対湿度
85%の雰囲気中で168時間吸水させた後、IRリフ
ロー処理(240℃、10秒)を行った。処理後、顕微
鏡で外部クラックを観察した。クラックの生じたパッケ
ージがn個であるときn/6と表示した。
Evaluation method Spiral flow: Spiral flow was measured using a mold for measuring spiral flow according to EMMI-I-66 at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The unit is cm. High-temperature storage characteristics: The resin composition was molded using a transfer molding machine at a molding temperature of 175 ° C., a pressure of 70 kg / cm 2 ,
A 16 pDIP was molded with a curing time of 2 minutes and post-cured at 175 ° C. for 8 hours. 185 of these packages
Leave in an atmosphere of ℃, measure the circuit resistance of the simulated element,
The point at which the measured value increased by 20% or more from the initial value was determined to be defective, and was taken as the circuit resistance defective rate during high-temperature storage. The time when the number of defects reaches 50% of the total number of packages is defined as the defect time.
Those with a time of 00 hours or more were accepted. Solder crack resistance: The above resin composition was molded using a transfer molding machine at a molding temperature of 175 ° C. and a pressure of 70 kg / cm.
2. Form 80pQFP (thickness 2mm, element size 9mm x 9mm) with curing time of 2 minutes, post cure 175
C. for 8 hours. After six packages were absorbed for 168 hours in an atmosphere of 85 ° C. and 85% relative humidity, IR reflow treatment (240 ° C., 10 seconds) was performed. After the treatment, external cracks were observed with a microscope. When the number of cracked packages was n, it was indicated as n / 6.

【0019】実施例2〜7 表1の処方に従って配合し、実施例1と同様にして樹脂
組成物を得、実施例1と同様にして評価した。結果を表
1に示す。 比較例1〜4 表1の処方に従って配合し、実施例1と同様にして樹脂
組成物を得、実施例1と同様にして評価した。結果を表
1に示す。なお、実施例、及び比較例で用いた材料を以
下に示す。エポキシ樹脂2は、4,4'-ビス(2,3-エポキ
シプロポキシ)-3,3',5,5'-テトラメチルスチルベンを
主成分とする樹脂60重量%と、4,4'-ビス(2,3-エポ
キシプロポキシ)-5-ターシャリブチル-2,3',5'-トリメ
チルスチルベンを主成分とする樹脂40重量%との混合
物(融点130℃、エポキシ当量210)である。 フェノール樹脂2(式(4)、水酸基当量105)
Examples 2 to 7 Compounded according to the formulation shown in Table 1, a resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. Comparative Examples 1 to 4 Resins were blended in accordance with the formulation shown in Table 1 to obtain a resin composition in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. The materials used in the examples and comparative examples are shown below. The epoxy resin 2 is composed of 60% by weight of a resin containing 4,4'-bis (2,3-epoxypropoxy) -3,3 ', 5,5'-tetramethylstilbene as a main component and 4,4'-bis It is a mixture of (2,3-epoxypropoxy) -5-tert-butyl-2,3 ', 5'-trimethylstilbene and a resin having a main component of 40% by weight (melting point: 130 ° C., epoxy equivalent: 210). Phenol resin 2 (Formula (4), hydroxyl equivalent 105)

【化8】 Embedded image

【0020】フェノール樹脂3(式(5)、水酸基当量
210)
Phenol resin 3 (formula (5), hydroxyl equivalent 210)

【化9】 Embedded image

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明の樹脂組成物で封止された半導体
装置は、高温保管特性及び耐半田クラック性に優れてい
る。
The semiconductor device sealed with the resin composition of the present invention is excellent in high-temperature storage characteristics and solder crack resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 23/31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)融点50〜150℃の結晶性エポ
キシ樹脂、(B)全フェノール樹脂硬化剤中に式
(1)、式(2)の群から選ばれる一種以上のフェノー
ル樹脂を50重量%以上含む樹脂硬化剤、(C)硬化促
進剤、(D)全樹脂組成物中に75〜92重量%含む無
機充填材、及び(E)式(3)の化合物を必須成分とす
ることを特徴とする半導体封止用エポキシ樹脂組成物。 【化1】 【化2】 XM2/nO・Al23・YSiO2・ZH2O (3) (ここで、X=0.1〜2.0、Y=1.0〜200、
Z=0〜100、Mはアルカリ金属又はアルカリ土類金
属で、nはその原子価である。)
1. One or more phenolic resins selected from the group of formulas (1) and (2) are added to (A) a crystalline epoxy resin having a melting point of 50 to 150 ° C. and (B) a total phenolic resin curing agent. (C) a curing accelerator containing not less than 75% by weight, (D) an inorganic filler containing 75 to 92% by weight in the total resin composition, and (E) a compound of the formula (3) as essential components. An epoxy resin composition for semiconductor encapsulation characterized by the following. Embedded image Embedded image XM 2 / n O · Al 2 O 3 · YSiO 2 · ZH 2 O (3) ( where, X = 0.1~2.0, Y = 1.0~200 ,
Z = 0 to 100, M is an alkali metal or an alkaline earth metal, and n is its valence. )
【請求項2】 請求項1記載のエポキシ樹脂組成物で封
止されてなることを特徴とする半導体装置。
2. A semiconductor device sealed with the epoxy resin composition according to claim 1.
JP9327595A 1997-11-28 1997-11-28 Epoxy resin composition and semiconductor device Withdrawn JPH11158351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9327595A JPH11158351A (en) 1997-11-28 1997-11-28 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9327595A JPH11158351A (en) 1997-11-28 1997-11-28 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JPH11158351A true JPH11158351A (en) 1999-06-15

Family

ID=18200822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9327595A Withdrawn JPH11158351A (en) 1997-11-28 1997-11-28 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JPH11158351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040981A (en) * 2001-07-30 2003-02-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006274186A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2012214813A (en) * 2012-06-27 2012-11-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995527A (en) * 1995-09-29 1997-04-08 Sumitomo Bakelite Co Ltd Resin composition for sealing electronic component
JPH09165498A (en) * 1995-12-14 1997-06-24 Sumitomo Bakelite Co Ltd Resin composition for sealing of electronic component part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995527A (en) * 1995-09-29 1997-04-08 Sumitomo Bakelite Co Ltd Resin composition for sealing electronic component
JPH09165498A (en) * 1995-12-14 1997-06-24 Sumitomo Bakelite Co Ltd Resin composition for sealing of electronic component part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040981A (en) * 2001-07-30 2003-02-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006274186A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2012214813A (en) * 2012-06-27 2012-11-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Similar Documents

Publication Publication Date Title
EP0926196B1 (en) Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
JPH11310688A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP3537082B2 (en) Epoxy resin composition and semiconductor device
JP3714399B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP3389095B2 (en) Epoxy resin composition and semiconductor device
JPH11158351A (en) Epoxy resin composition and semiconductor device
JPH10152599A (en) Epoxy resin composition
JPH1121423A (en) Epoxy resin composition and semiconductor device using the same
JP2000273281A (en) Epoxy resin composition and semiconductor device
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JP2626377B2 (en) Epoxy resin composition and semiconductor device
JPH11166073A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP5067994B2 (en) Epoxy resin composition and semiconductor device
JPH1135797A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2003040981A (en) Epoxy resin composition and semiconductor device
JP4794706B2 (en) Epoxy resin composition and semiconductor device
JP2002053732A (en) Epoxy resin composition and semiconductor device
JPH10287794A (en) Epoxy resin composition for semiconductor sealing
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JP2001335679A (en) Epoxy resin composition and semi-conductor device
JPH10147628A (en) Epoxy resin composition for sealing semiconductor
JP2000063627A (en) Epoxy resin composition and semiconductor device
JPH07107123B2 (en) Epoxy resin composition
JP2005281597A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060519

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060718