JPH1121423A - Epoxy resin composition and semiconductor device using the same - Google Patents

Epoxy resin composition and semiconductor device using the same

Info

Publication number
JPH1121423A
JPH1121423A JP17716797A JP17716797A JPH1121423A JP H1121423 A JPH1121423 A JP H1121423A JP 17716797 A JP17716797 A JP 17716797A JP 17716797 A JP17716797 A JP 17716797A JP H1121423 A JPH1121423 A JP H1121423A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
component
epoxy
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17716797A
Other languages
Japanese (ja)
Other versions
JP3377933B2 (en
Inventor
Masakatsu Maeda
将克 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP17716797A priority Critical patent/JP3377933B2/en
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to US09/242,938 priority patent/US6190787B1/en
Priority to EP98929800A priority patent/EP0926196B1/en
Priority to DE69803267T priority patent/DE69803267T2/en
Priority to CN98801110A priority patent/CN1099441C/en
Priority to PCT/JP1998/002980 priority patent/WO1999001507A1/en
Publication of JPH1121423A publication Critical patent/JPH1121423A/en
Priority to KR1019997001735A priority patent/KR100307197B1/en
Application granted granted Critical
Publication of JP3377933B2 publication Critical patent/JP3377933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject composition excellent in high-temperature storability without deteriorating flame retardance even if a halogen and an antimony compound are not contained and useful for sealing semiconductors by including zinc molybdate therein. SOLUTION: This composition is obtained by including (A) an epoxy resin such as a crystalline epoxy compound having two or more epoxy groups in one molecule (e.g. a compound represented by the formula), (B) a phenol resin curing agent having two or more phenolic hydroxyl groups in one molecule such as a phenolic novolak resin, (C) a curing accelerator such as 1,8- diazabicyclo[5.4.0]undecene-7, (D) an inorganic filler such as fused silica and (E) zinc molybdate. The component B is contained in an amount so as to provide preferably 0.8-1.3 ratio of the number of the epoxy groups in the component A to the number of the phenolic hydroxyl groups in the component B. The component D is contained in an amount of preferably 60-95 wt.% and the component E is contained in an amount of preferably 0.05-0.8 wt.%. The component E is preferably used in a state thereof applied onto the surface of an inorganic material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハロゲン化合物、
アンチモン化合物を含まず、高温保管性に優れた半導体
封止用エポキシ樹脂組成物及びこれを用いた半導体装置
に関するものである。
The present invention relates to a halogen compound,
The present invention relates to an epoxy resin composition for semiconductor encapsulation which does not contain an antimony compound and has excellent high-temperature storage properties, and a semiconductor device using the same.

【0002】[0002]

【従来の技術】従来、ダイオード、トランジスタ、集積
回路等の電子部品は、主にエポキシ樹脂組成物で封止さ
れている。このエポキシ樹脂組成物(以下、樹脂組成物
という)中には、難燃剤としてハロゲン系難燃剤、或い
はハロゲン系難燃剤と三酸化アンチモンを併用し配合さ
れており、高温においてハロゲンガス或いはハロゲン化
アンチモンガスを発生させ難燃化を図っている。しか
し、これらの方法では、ハロゲン化合物或いはハロゲン
化合物とアンチモン化合物の併用系を使用するため、電
子部品が高温にさらされている間に、ハロゲンガス或い
はハロゲン化アンチモンガスによるアルミニウム配線の
腐食や、チップのアルミパッドと金線の結合部の切断等
の不良を招き、大きな問題となっている。この様な問題
に対して、使用環境より高いガラス転移温度を有するエ
ポキシ樹脂とフェノール樹脂硬化剤の組み合わせの樹脂
組成物等を使用し、高温保管中のハロゲンガスやハロゲ
ン化アンチモンガスの拡散を低減させて高温保管性を改
善する方法、イオン捕捉剤を添加し、高温保管中のハロ
ゲンガスやハロゲン化アンチモンガスを捕捉する方法、
更にこれら2種を組み合わせた方法が使われている。と
ころが、近年、電子部品の表面実装化、小型化、薄型化
が進み、回路基板への実装時の耐半田性向上の要求が厳
しくなってきており、耐半田クラック性と高温保管性の
両方を満足するものが望まれている。しかしながら、ハ
ロゲン化合物又はハロゲン化合物とアンチモン化合物を
併用した難燃剤系を配合した耐半田クラック性に優れた
樹脂組成物でも、ガラス転移温度が低いと、イオン捕捉
剤を添加しても高温保管性が不十分で、一方、ガラス転
移温度が高い樹脂組成物では、耐半田クラック性が不十
分である。そのため、ガラス転移温度が低くても、高温
保管性に優れたエポキシ樹脂組成物を提供できるまでに
至っていない。
2. Description of the Related Art Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition. This epoxy resin composition (hereinafter, referred to as a resin composition) contains a halogen-based flame retardant as a flame retardant, or a combination of a halogen-based flame retardant and antimony trioxide. Gas is generated to achieve flame retardancy. However, these methods use a halogen compound or a combination system of a halogen compound and an antimony compound, so that while the electronic parts are exposed to high temperatures, corrosion of aluminum wiring by a halogen gas or an antimony halide gas or chip This causes a problem such as disconnection of the joint between the aluminum pad and the gold wire, which is a major problem. To solve such problems, use a resin composition such as a combination of epoxy resin and phenolic resin curing agent that has a higher glass transition temperature than the operating environment to reduce the diffusion of halogen gas and antimony halide gas during high-temperature storage. Method to improve high-temperature storage by adding an ion scavenger to trap halogen gas or antimony halide gas during high-temperature storage,
Further, a method combining these two types is used. However, in recent years, the surface mounting, miniaturization, and thinning of electronic components have been progressing, and the demand for improved solder resistance during mounting on circuit boards has become strict. Satisfaction is desired. However, even with a resin composition excellent in solder crack resistance containing a flame retardant system in which a halogen compound or a halogen compound and an antimony compound are used in combination, if the glass transition temperature is low, even if an ion scavenger is added, the high-temperature storability is low. On the other hand, a resin composition having a high glass transition temperature has insufficient solder crack resistance. For this reason, even if the glass transition temperature is low, an epoxy resin composition excellent in high-temperature storage property has not yet been provided.

【0003】[0003]

【発明が解決しようとする課題】本発明は、この様な問
題に対して、難燃性を低下させることなくハロゲン化合
物及びアンチモン化合物を含まない、高温保管性に優れ
た半導体封止用エポキシ樹脂組成物及びそれを用いた半
導体装置を提供するものである。
SUMMARY OF THE INVENTION The present invention is directed to an epoxy resin for semiconductor encapsulation which does not contain a halogen compound and an antimony compound without deteriorating flame retardancy and which has excellent high-temperature storage properties. A composition and a semiconductor device using the same are provided.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決すべく鋭意研究を重ねた結果、モリブデン酸亜鉛を
用いることにより、難燃性を低下させることなく、高温
下での長期信頼性を著しく向できる半導体封止用エポキ
シ樹脂組成物が得られることを見出し、本発明を完成す
るに至った。即ち、本発明は、(A)エポキシ樹脂、
(B)フェノール樹脂硬化剤、(C)硬化促進剤、
(D)無機充填材、及び(E)モリブデン酸亜鉛を必須
成分とする半導体封止用樹脂組成物で、特にエポキシ樹
脂としては、式(1)〜(3)で示される結晶性エポキ
シ化合物が最適である。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present invention has shown that by using zinc molybdate, long-term reliability at high temperatures can be achieved without reducing flame retardancy. The present inventors have found that an epoxy resin composition for semiconductor encapsulation that can significantly improve the properties can be obtained, and have completed the present invention. That is, the present invention provides (A) an epoxy resin,
(B) a phenolic resin curing agent, (C) a curing accelerator,
(D) An inorganic filler, and (E) a resin composition for semiconductor encapsulation containing zinc molybdate as an essential component. Particularly, as an epoxy resin, a crystalline epoxy compound represented by the formulas (1) to (3) is used. Optimal.

【化2】 (式(1)〜(3)中のRは、ハロゲン原子又は炭素数
1〜12のアルキル基を示し、互いに同一であっても異
なっていてもよい)
Embedded image (R in the formulas (1) to (3) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different.)

【0005】本発明で用いるモリブデン酸亜鉛は、難燃
剤として作用し、これを配合した樹脂組成物で封止され
た半導体装置の難燃性の維持、高温下での長期信頼性を
著しく向上させる。モリブデン酸亜鉛は単独で用いても
よいが、吸湿性の傾向があり、配合量が多くなると吸湿
率が高くなり、耐半田クラック性が低下するおそれがあ
る。従って、遷移金属、シリカ、アルミナクレー、炭酸
カルシウム、窒化アルミニウム、窒化珪素、珪酸アルミ
ニウム、珪酸マグネシウム等の無機系物質をモリブデン
酸亜鉛で被覆し、難燃剤として表面のモリブデン酸亜鉛
のみが作用するようにすることにより、モリブデン酸亜
鉛の配合量の増加による吸湿率の上昇を抑えることがで
きる。全樹脂組成物中のモリブデン酸亜鉛の配合量は、
0.05〜0.8重量%が好ましい。この範囲を外れる
と不純物抽出量の増加が見られプレッシャークッカーテ
スト等の環境試験における信頼性が低下する。モリブデ
ン酸亜鉛で被覆された物質としては、例えば、Sher
win Williams等から市販されている。
[0005] Zinc molybdate used in the present invention acts as a flame retardant, and maintains the flame retardancy of a semiconductor device sealed with a resin composition containing the same, and significantly improves long-term reliability at high temperatures. . Although zinc molybdate may be used alone, it tends to absorb moisture, and when the amount is too large, the moisture absorption rate increases, and the solder crack resistance may decrease. Therefore, inorganic materials such as transition metals, silica, alumina clay, calcium carbonate, aluminum nitride, silicon nitride, aluminum silicate and magnesium silicate are coated with zinc molybdate so that only zinc molybdate on the surface acts as a flame retardant. By doing so, it is possible to suppress an increase in the moisture absorption rate due to an increase in the amount of zinc molybdate. The amount of zinc molybdate in the total resin composition is
0.05 to 0.8% by weight is preferred. Outside of this range, the amount of extracted impurities increases, and the reliability in environmental tests such as a pressure cooker test decreases. Examples of the substance coated with zinc molybdate include Sher.
It is commercially available from win Williams and the like.

【0006】本発明に用いるエポキシ樹脂としては、1
分子中にエポキシ基を2個以上有するモノマー、オリゴ
マー、ポリマー全般を言い、例えば、ビフェニル型エポ
キシ化合物、ヒドロキノン型エポキシ化合物、スチルベ
ン型エポキシ化合物、ビスフェノール型エポキシ化合
物、フェノールノボラック型エポキシ樹脂、クレゾール
ノボラック型エポキシ樹脂、トリフェノールメタン型エ
ポキシ樹脂、アルキル変性トリフェノールメタン型エポ
キシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペ
ンタジエン変性フェノール型エポキシ樹脂等が挙げら
れ、これらは単独でも混合して用いても差し支えない。
本発明では、式(1)〜(3)で示される結晶性エポキ
シ化合物を用いた樹脂組成物の様に、低粘度でシリカを
多く配合し、耐半田クラック性には優れているが、硬化
物のガラス転移温度が低く、高温保管性に難点のある樹
脂組成物に、特に有効である。
The epoxy resin used in the present invention includes 1
Refers to all monomers, oligomers and polymers having two or more epoxy groups in the molecule, such as biphenyl type epoxy compounds, hydroquinone type epoxy compounds, stilbene type epoxy compounds, bisphenol type epoxy compounds, phenol novolak type epoxy resins, cresol novolak type Epoxy resins, triphenolmethane-type epoxy resins, alkyl-modified triphenolmethane-type epoxy resins, triazine nucleus-containing epoxy resins, dicyclopentadiene-modified phenol-type epoxy resins, and the like may be used alone or in combination. .
In the present invention, as in the resin composition using the crystalline epoxy compounds represented by the formulas (1) to (3), a low viscosity and a large amount of silica are blended, and the solder crack resistance is excellent, It is particularly effective for a resin composition having a low glass transition temperature of a product and having difficulty in storing at high temperatures.

【0007】本発明に用いるフェノール樹脂硬化剤とし
ては、1分子中にフェノール性水酸基を2個以上有する
モノマー、オリゴマー、ポリマー全般を言い、例えば、
フェノールノボラック樹脂、クレゾールノボラック樹
脂、ジシクロペンタジエン変性フェノール樹脂、キシリ
レン変性フェノール樹脂、テルペン変性フェノール樹
脂、トリフェノールメタン型ノボラック樹脂等が挙げら
れ、これらは単独でも混合して用いても差し支えない。
特に、フェノールノボラック樹脂、ジシクロペンタジエ
ン変性フェノール樹脂、キシリレン変性フェノール樹
脂、テルペン変性フェノール樹脂等が好ましい。これら
の配合量としては、エポキシ樹脂のエポキシ基数とフェ
ノール樹脂のフェノール性水酸基数の比が0.8〜1.
3が好ましい。
The phenolic resin curing agent used in the present invention refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule.
Phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin, xylylene-modified phenol resin, terpene-modified phenol resin, triphenolmethane-type novolak resin, and the like may be used, and these may be used alone or in combination.
Particularly, a phenol novolak resin, a dicyclopentadiene-modified phenol resin, a xylylene-modified phenol resin, a terpene-modified phenol resin, and the like are preferable. The ratio of the number of epoxy groups in the epoxy resin to the number of phenolic hydroxyl groups in the phenol resin is 0.8 to 1.
3 is preferred.

【0008】本発明に用いる硬化促進剤としては、エポ
キシ基とフェノール性水酸基との硬化反応を促進させる
ものであればよく、一般に封止材料に使用されているも
のを広く使用することができる。例えば、1,8−ジア
ザビシクロ(5,4,0)ウンデセン−7、トリフェニ
ルホスフィン、2−メチルイミダゾール等が挙げられ、
これらは単独でも混合して用いても差し支えない。
As the curing accelerator used in the present invention, any one can be used as long as it promotes the curing reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for a sealing material can be widely used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole, and the like,
These may be used alone or as a mixture.

【0009】本発明に用いる無機充填材としては、一般
に封止材料に使用されているものを広く使用することが
でき、例えば、溶融シリカ粉末、結晶シリカ粉末、アル
ミナ、窒化珪素等が挙げられ、これらは単独でも混合し
て用いても差し支えない。配合量としては、成形性と耐
半田クラック性のバランスから、全樹脂組成物中に60
〜95重量%含有することが好ましい。60重量%未満
だと吸水率上昇に伴う耐半田クラック性の低下、95重
量%を越えると、ワイヤースィープ及びパッドシフト等
の成形時における問題が生じ好ましくない。
As the inorganic filler used in the present invention, those generally used for a sealing material can be widely used, and examples thereof include fused silica powder, crystalline silica powder, alumina, and silicon nitride. These may be used alone or as a mixture. The blending amount is 60% in the total resin composition from the balance between moldability and solder crack resistance.
Preferably, it is contained in an amount of up to 95% by weight. If the amount is less than 60% by weight, the solder crack resistance is reduced due to an increase in the water absorption. If the amount exceeds 95% by weight, problems such as wire sweep and pad shift during molding are undesirable.

【0010】本発明に用いるイオン捕捉剤は、ハロゲン
アニオン、有機酸アニオン等を捕捉することにより樹脂
成分等に含まれるイオン性不純物を減少させるものであ
る。これらのイオン性不純物は、アルミニウムの配線や
パッドを腐食することが知られており、本発明のイオン
捕捉剤を使用することにより、イオン性不純物を捕捉
し、アルミニウムの腐食を防止するものである。イオン
捕捉剤としては、式(4)〜式(6)が挙げられ、これ
らは単独でも混合して用いてもよい。配合量としては、
全樹脂組成物中に0.1〜5重量%が好ましい。0.1
重量%未満だと不純物抽出量の増加が見られプレッシャ
ークッカーテスト等の環境試験における信頼性が不足
し、5重量%を越えると難燃性が低下するので好ましく
ない。 BiOa(OH)b(NO3c (4) (式中、a=0.9〜1.1、b=0.6〜0.8、c=0〜0.4) BiOa(OH)b(NO3c(HSiO3d (5) (式中、a=0.9〜1.1、b=0.6〜0.8、c+d=0.2〜0.4 ) MgxAly(OH)2x+3y-2z(CO3z・mH2O (6) (式中、0<y/x≦1、0≦z/y<1.5、mは正数)
The ion scavenger used in the present invention reduces ionic impurities contained in resin components and the like by trapping halogen anions, organic acid anions and the like. These ionic impurities are known to corrode aluminum wirings and pads. By using the ion trapping agent of the present invention, the ionic impurities are trapped and corrosion of aluminum is prevented. . Formulas (4) to (6) are given as examples of the ion scavenger, and these may be used alone or as a mixture. As the compounding amount,
It is preferably 0.1 to 5% by weight in the whole resin composition. 0.1
If the content is less than 5% by weight, the amount of extracted impurities is increased, and the reliability in environmental tests such as a pressure cooker test is insufficient. BiO a (OH) b (NO 3) c (4) ( wherein, a = 0.9~1.1, b = 0.6~0.8 , c = 0~0.4) BiO a (OH ) B (NO 3 ) c (HSiO 3 ) d (5) (where a = 0.9 to 1.1, b = 0.6 to 0.8, c + d = 0.2 to 0.4) Mg x Al y (OH) 2x + 3y-2z (CO 3 ) z · mH 2 O (6) (where 0 <y / x ≦ 1, 0 ≦ z / y <1.5, and m is a positive number)

【0011】本発明の樹脂組成物は、(A)〜(E)成
分、又は(A)〜(F)成分を必須成分とするが、これ
以外に必要に応じてシランカップリング剤、カーボンブ
ラック、ベンガラ等の着色剤、天然ワックス、合成ワッ
クス等の離型剤、及びシリコーンオイル、ゴム等の低応
力添加剤等の種々の添加剤を適宜配合しても差し支えな
い。又、本発明の樹脂組成物は、(A)〜(E)成分、
又は(A)〜(F)成分、及びその他の添加剤等をミキ
サー等を用いて充分に均一に混合した後、更に熱ロール
又はニーダー等で溶融混練し、冷却後粉砕して得られ
る。これらの樹脂組成物は、電気部品或いは電子部品で
あるトランジスタ、集積回路等の被覆、絶縁、封止等に
適用することができる。
The resin composition of the present invention comprises the components (A) to (E) or the components (A) to (F) as essential components. In addition, if necessary, a silane coupling agent and carbon black may be used. And various additives such as a releasing agent such as natural wax and synthetic wax, and a low stress additive such as silicone oil and rubber. Further, the resin composition of the present invention comprises components (A) to (E),
Alternatively, after the components (A) to (F) and other additives are sufficiently and uniformly mixed using a mixer or the like, the mixture is further melt-kneaded with a hot roll or a kneader, cooled, and pulverized after cooling. These resin compositions can be applied to covering, insulating, sealing, and the like of transistors and integrated circuits, which are electric or electronic components.

【0012】[0012]

【実施例】以下に本発明を実施例で具体的に説明する。 実施例1 下記組成物。配合単位は重量部とする。 ビフェニル型エポキシ化合物(油化シェルエポキシ(株)製・YX4000K :融点105℃、エポキシ当量185g/eq) 23.2重量部 モリブデン酸亜鉛 1.0重量部 (3MgO・4SiO2をモリブデン酸亜鉛で被覆したもので、被覆したモリブ デン酸亜鉛の量を配合量として表す。) フェノールノボラック樹脂(軟化点95℃、水酸基当量104g/eq) 13.0重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBU) 0.8重量部 溶融球状シリカ粉末(平均粒径15μm) 696重量部 カーボンブラック 2.4重量部 カルナバワックス 2.4重量部 を常温でスーパーミキサーを用いて混合し、70〜10
0℃でロール混練し、冷却後粉砕して樹脂組成物とし
た。得られた樹脂組成物をタブレット化し、以下に示す
方法で評価した。評価結果を表1に示す。
The present invention will be specifically described below with reference to examples. Example 1 The following composition. The mixing unit is parts by weight. Biphenyl type epoxy compound (YX4000K, manufactured by Yuka Shell Epoxy Co., Ltd .: melting point 105 ° C., epoxy equivalent 185 g / eq) 23.2 parts by weight Zinc molybdate 1.0 part by weight (3MgO · 4SiO 2 is coated with zinc molybdate) The phenol novolak resin (softening point: 95 ° C., hydroxyl equivalent: 104 g / eq) 13.0 parts by weight 1,8-diazabicyclo (5,4,0) ) Undecene-7 (hereinafter referred to as DBU) 0.8 parts by weight Fused spherical silica powder (average particle size 15 μm) 696 parts by weight Carbon black 2.4 parts by weight Carnauba wax 2.4 parts by weight using a super mixer at room temperature And 70 to 10
Roll kneading was performed at 0 ° C., followed by cooling and pulverization to obtain a resin composition. The obtained resin composition was tableted and evaluated by the following method. Table 1 shows the evaluation results.

【0013】評価方法 ガラス転移温度:低圧トランスファー成形機を用いて1
75℃、70kg/cm2、120秒の条件で難燃性測定
用サンプルを成形した。その後175℃、8時間ポスト
キュアーを行った。サンプルの寸法は15mm×6mm
×3mmとした。測定は熱機械分析装置を用いて、試験
片の温度上昇に伴う熱膨張を測定し、ガラス転移温度を
求めた。 難燃性:低圧トランスファー成形機を用いて175℃、
70kg/cm2、120秒の条件で難燃性測定用サンプ
ルを成形した。その後23℃,湿度50%で48時間処
理を行った。サンプルの寸法は、127mm×12.7
mm×1.6mmとした。測定方法は、UL94垂直法
に準じた。 高温保管性:低圧トランスファー成形機を用いて175
℃、70kg/cm2、120秒の条件で、3.0mm
×3.2mmのテスト用チップ素子を16pDIPに封
止した。その後175℃、8時間ポストキュアーを行っ
た。このテスト用半導体装置を、185℃の大気雰囲気
中に保管し、一定時間毎に常温で電気抵抗値を測定し
た。テスト用半導体装置の総数は10個とし、電気抵抗
値が初期値の2倍となったものを不良とみなし、不良個
数が総数の半分を越えた時間を、不良発生時間とした。 耐半田クラック性:低圧トランスファー成形機を用いて
175℃、70kg/cm2、120秒の条件で、0.
9mm×0.9mmのテスト用チップ素子を80pQF
Pに封止した。その後175℃、8時間ポストキュアー
を行った。85℃、湿度85%で処理しIRリフロー2
40℃で表面クラック観察を行った。
Evaluation method Glass transition temperature: 1 using a low pressure transfer molding machine
A sample for measuring flame retardancy was molded under the conditions of 75 ° C., 70 kg / cm 2 , and 120 seconds. Thereafter, post cure was performed at 175 ° C. for 8 hours. Sample size is 15mm x 6mm
× 3 mm. The measurement was performed using a thermomechanical analyzer to measure the thermal expansion of the test piece with the temperature rise, and the glass transition temperature was determined. Flame retardancy: 175 ° C using low pressure transfer molding machine
A sample for measuring flame retardancy was molded under the conditions of 70 kg / cm 2 and 120 seconds. Thereafter, treatment was performed at 23 ° C. and 50% humidity for 48 hours. The sample size is 127 mm x 12.7
mm × 1.6 mm. The measuring method followed the UL94 vertical method. High temperature storage: 175 using low pressure transfer molding machine
3.0 ° C. under the conditions of 70 ° C., 70 kg / cm 2 and 120 seconds.
A test chip element of × 3.2 mm was sealed in 16 pDIP. Thereafter, post cure was performed at 175 ° C. for 8 hours. The test semiconductor device was stored in an air atmosphere at 185 ° C., and the electrical resistance was measured at regular temperature at regular intervals. The total number of the test semiconductor devices was set to 10, and a device whose electric resistance value was twice as large as the initial value was regarded as a defect. Solder crack resistance: 0.1% at 175 ° C., 70 kg / cm 2 , 120 seconds using a low pressure transfer molding machine.
A 9mm x 0.9mm test chip element is 80pQF
P sealed. Thereafter, post cure was performed at 175 ° C. for 8 hours. Processing at 85 ° C and 85% humidity, IR reflow 2
Surface cracks were observed at 40 ° C.

【0014】実施例2〜7、比較例1,2 表1の配合に従い、実施例1と同様にして樹脂組成物を
作製し、実施例1と同様に評価した。評価結果を表1に
示す。実施例4のエポキシ樹脂は式(7)のヒドロキノ
ン型エポキシ化合物を用いた。実施例5のエポキシ樹脂
は式(8)のスチルベン型エポキシ化合物を用いた。実
施例6のイオン捕捉剤1は、BiOa(OH)b(N
3c(HSiO3d(式中、a=1、b=0.7、c
+d=0.3)。実施例7のイオン捕捉剤2は、協和化
学工業(株)製・DHT−4H(ハイドロタルサイト系
化合物)である。
Examples 2 to 7 and Comparative Examples 1 and 2 Resin compositions were prepared in the same manner as in Example 1 according to the formulations shown in Table 1, and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results. The epoxy resin of Example 4 used the hydroquinone type epoxy compound of the formula (7). The stilbene type epoxy compound of the formula (8) was used as the epoxy resin of Example 5. The ion scavenger 1 of Example 6 was obtained from BiO a (OH) b (N
O 3 ) c (HSiO 3 ) d (where a = 1, b = 0.7, c
+ D = 0.3). The ion scavenger 2 of Example 7 is DHT-4H (hydrotalcite-based compound) manufactured by Kyowa Chemical Industry Co., Ltd.

【0015】[0015]

【化3】 Embedded image

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明の樹脂組成物を用いて半導体素子
を封止することにより、高温保管性に優れた半導体装置
を得ることが出来る。
As described above, by encapsulating a semiconductor element with the resin composition of the present invention, a semiconductor device excellent in high-temperature storage property can be obtained.

フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 3/22 C08K 3/22 3/24 3/24 3/26 3/26 9/02 9/02 H01L 23/29 H01L 23/30 R 23/31 Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 3/22 C08K 3/22 3/24 3/24 3/26 3/26 9/02 9/02 H01L 23/29 H01L 23/30 R 23/31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂硬化剤、(C)硬化促進剤、(D)無機充填材、及
び(E)モリブデン酸亜鉛を必須成分とすることを特徴
とする半導体封止用エポキシ樹脂組成物。
1. An epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, (D) an inorganic filler, and (E) zinc molybdate as essential components. Epoxy resin composition for semiconductor encapsulation.
【請求項2】 モリブデン酸亜鉛が、無機系物質を被覆
してなる請求項1記載の半導体封止用エポキシ樹脂組成
物。
2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the zinc molybdate is coated with an inorganic material.
【請求項3】 エポキシ樹脂が式(1)〜(3)で示さ
れる結晶性エポキシ化合物である請求項1又は2記載の
半導体封止用エポキシ樹脂組成物。 【化1】 (式(1)〜(3)中のRは、ハロゲン原子又は炭素数
1〜12のアルキル基を示し、互いに同一であっても異
なっていてもよい)
3. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the epoxy resin is a crystalline epoxy compound represented by formulas (1) to (3). Embedded image (R in the formulas (1) to (3) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different.)
【請求項4】 請求項1、2又は3記載の半導体封止用
エポキシ樹脂組成物が、更に式(4)〜(6)で示され
るイオン捕捉剤を含むことを特徴とする半導体封止用エ
ポキシ樹脂組成物。 BiOa(OH)b(NO3c (4) (式中、a=0.9〜1.1、b=0.6〜0.8、c=0〜0.4) BiOa(OH)b(NO3c(HSiO3d (5) (式中、a=0.9〜1.1、b=0.6〜0.8、c+d=0.2〜0.4 ) MgxAly(OH)2x+3y-2z(CO3z・mH2O (6) (式中、0<y/x≦1、0≦z/y<1.5、mは正数)
4. The semiconductor sealing epoxy resin composition according to claim 1, further comprising an ion scavenger represented by the formulas (4) to (6). Epoxy resin composition. BiO a (OH) b (NO 3) c (4) ( wherein, a = 0.9~1.1, b = 0.6~0.8 , c = 0~0.4) BiO a (OH ) B (NO 3 ) c (HSiO 3 ) d (5) (where a = 0.9 to 1.1, b = 0.6 to 0.8, c + d = 0.2 to 0.4) Mg x Al y (OH) 2x + 3y-2z (CO 3 ) z · mH 2 O (6) (where 0 <y / x ≦ 1, 0 ≦ z / y <1.5, and m is a positive number)
【請求項5】 請求項1、2、3又は4記載の半導体封
止用エポキシ樹脂組成物を用いて封止してなることを特
徴とする半導体装置。
5. A semiconductor device encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1, 2, 3, or 4.
JP17716797A 1997-07-02 1997-07-02 Epoxy resin composition and semiconductor device using the same Expired - Fee Related JP3377933B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP17716797A JP3377933B2 (en) 1997-07-02 1997-07-02 Epoxy resin composition and semiconductor device using the same
EP98929800A EP0926196B1 (en) 1997-07-02 1998-07-02 Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
DE69803267T DE69803267T2 (en) 1997-07-02 1998-07-02 EPOXY RESIN COMPOSITIONS FOR SEMICONDUCTOR SEALING AND SEMICONDUCTOR DEVICE
CN98801110A CN1099441C (en) 1997-07-02 1998-07-02 Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
US09/242,938 US6190787B1 (en) 1997-07-02 1998-07-02 Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
PCT/JP1998/002980 WO1999001507A1 (en) 1997-07-02 1998-07-02 Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
KR1019997001735A KR100307197B1 (en) 1997-07-02 1999-03-02 Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17716797A JP3377933B2 (en) 1997-07-02 1997-07-02 Epoxy resin composition and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JPH1121423A true JPH1121423A (en) 1999-01-26
JP3377933B2 JP3377933B2 (en) 2003-02-17

Family

ID=16026367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17716797A Expired - Fee Related JP3377933B2 (en) 1997-07-02 1997-07-02 Epoxy resin composition and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3377933B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1049152A2 (en) * 1999-04-26 2000-11-02 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
JP2001213943A (en) * 2000-02-07 2001-08-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001288338A (en) * 2000-04-10 2001-10-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002121264A (en) * 2000-10-17 2002-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002179773A (en) * 2000-12-15 2002-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002327105A (en) * 2001-05-07 2002-11-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor apparatus
WO2011118584A1 (en) * 2010-03-26 2011-09-29 パナソニック電工株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP2012167225A (en) * 2011-02-16 2012-09-06 Shin-Etsu Chemical Co Ltd Thermosetting epoxy resin composition, reflective member for optical semiconductor device, and optical semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095125B2 (en) 1999-04-26 2006-08-22 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
EP1049152A3 (en) * 1999-04-26 2001-02-07 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
EP1049152A2 (en) * 1999-04-26 2000-11-02 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
US6630745B1 (en) 1999-04-26 2003-10-07 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
JP2001213943A (en) * 2000-02-07 2001-08-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2001288338A (en) * 2000-04-10 2001-10-16 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002121264A (en) * 2000-10-17 2002-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002179773A (en) * 2000-12-15 2002-06-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002327105A (en) * 2001-05-07 2002-11-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor apparatus
WO2011118584A1 (en) * 2010-03-26 2011-09-29 パナソニック電工株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
CN102822228A (en) * 2010-03-26 2012-12-12 松下电器产业株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP5576930B2 (en) * 2010-03-26 2014-08-20 パナソニック株式会社 Epoxy resin composition for prepreg, prepreg, and multilayer printed wiring board
EP2554561A4 (en) * 2010-03-26 2017-02-22 Panasonic Intellectual Property Management Co., Ltd. Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP2012167225A (en) * 2011-02-16 2012-09-06 Shin-Etsu Chemical Co Ltd Thermosetting epoxy resin composition, reflective member for optical semiconductor device, and optical semiconductor device

Also Published As

Publication number Publication date
JP3377933B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
EP0926196B1 (en) Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
JP3537082B2 (en) Epoxy resin composition and semiconductor device
JP4774784B2 (en) Epoxy resin composition and semiconductor device
JP3377933B2 (en) Epoxy resin composition and semiconductor device using the same
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP3389095B2 (en) Epoxy resin composition and semiconductor device
JP2000273281A (en) Epoxy resin composition and semiconductor device
JP2002179773A (en) Epoxy resin composition and semiconductor device
JP4345174B2 (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2001354839A (en) Epoxy resin composition and semiconductor device
JP2001158852A (en) Epoxy resin composition and semiconductor device
JP3235798B2 (en) Epoxy resin composition
JP2002053732A (en) Epoxy resin composition and semiconductor device
JP2001354840A (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JP2001226561A (en) Epoxy resin composition and semiconductor device
JP4792629B2 (en) Epoxy resin composition and semiconductor device
JP3235799B2 (en) Epoxy resin composition
JPH10147628A (en) Epoxy resin composition for sealing semiconductor
JP2001335679A (en) Epoxy resin composition and semi-conductor device
JP2002012741A (en) Epoxy resin composition and semiconductor device
JP2002053735A (en) Epoxy resin composition and semiconductor device
JPH11158351A (en) Epoxy resin composition and semiconductor device
JP2654376B2 (en) Epoxy resin composition for encapsulation and resin-encapsulated semiconductor device using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees