JP4254265B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4254265B2
JP4254265B2 JP2003039619A JP2003039619A JP4254265B2 JP 4254265 B2 JP4254265 B2 JP 4254265B2 JP 2003039619 A JP2003039619 A JP 2003039619A JP 2003039619 A JP2003039619 A JP 2003039619A JP 4254265 B2 JP4254265 B2 JP 4254265B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
coupling agent
formula
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003039619A
Other languages
Japanese (ja)
Other versions
JP2004250476A (en
Inventor
敦准 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003039619A priority Critical patent/JP4254265B2/en
Publication of JP2004250476A publication Critical patent/JP2004250476A/en
Application granted granted Critical
Publication of JP4254265B2 publication Critical patent/JP4254265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子の封止方法として、エポキシ樹脂組成物のトランスファー成形が低コスト、大量生産に適しており、採用されて久しく、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により特性の向上が図られてきた。しかし、近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体の高集積化も年々進み、また半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。このため、従来からのエポキシ樹脂組成物では解決出来ない問題点も出てきている。
その最大の問題点は、表面実装の採用により半導体装置が半田浸漬或いは半田リフロー工程で急激に200℃以上の高温にさらされ、吸湿した水分が爆発的に気化する際の応力により、半導体装置内、特に半導体素子、リードフレーム、インナーリード上の金メッキや銀メッキ等の各種メッキされた各接合部分とエポキシ樹脂組成物の硬化物の界面で剥離が生じたりして、信頼性が著しく低下する現象である。
【0003】
半田処理による信頼性低下を改善するために、エポキシ樹脂組成物中の無機質充填材の充填量を増加させることで低吸湿化、高強度化、低熱膨張化を達成し耐半田性を向上させ、低溶融粘度の樹脂を使用して、成形時に低粘度で高流動性を維持させる手法がある(例えば、特許文献1参照。)。この手法を用いることにより耐半田性がかなり改良されるが、無機充填材の充填割合の増加と共に、流動性が犠牲になりパッケージ内に空隙が生じやすくなる欠点があった。またメッキ部分とエポキシ樹脂組成物の界面での剥離を防止する為、アミノシランやメルカプトシラン等の各種カップリング剤を添加して流動性と耐半田性の両立を図る手法も提案されている(例えば、特許文献2参照。)が、この方法でも十分に良好な半導体封止用エポキシ樹脂組成物は得られるには至らなかった。
【0004】
【特許文献1】
特開昭64−65116号公報(2〜7頁)
【特許文献2】
特開平9−255852号公報(2〜7頁)
【0005】
【発明が解決しようとする課題】
本発明は、流動性、耐半田性に優れた半導体封止用エポキシ樹脂組成物、及びこれを用いた半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
[1] (A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機充填材、(E)一般式(1)で表されるシランカップリング剤、及び(F)チアゾリン化合物を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物、
【化3】
【0007】
[2] (E)一般式(1)で表されるシランカップリング剤の構造が一般式(2)で表されるシランカップリング剤である第[1]項記載の半導体封止用エポキシ樹脂組成物、
【化4】
[3] 第[1]又は[2]項に記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0008】
【発明の実施の形態】
本発明に用いるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造は特に限定するものではないが、例えばビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0009】
本発明に用いるフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0010】
エポキシ樹脂とフェノール樹脂の配合量としては、全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の比が0.8〜1.3であることが好ましく、この範囲を外れると、エポキシ樹脂組成物の硬化性の低下、或いは硬化物のガラス転移温度の低下、耐湿信頼性の低下等が生じる可能性がある。
【0011】
本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用するものを用いることができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリフェニルホスフィン、2−メチルイミダゾール、テトラフェニルホスホニウム・テトラフェニルボレート等が挙げられ、これらは単独でも混合して用いても差し支えない。
【0012】
本発明に用いる無機充填材としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、最も好適に使用されるものとしては、球状の溶融シリカである。これらの無機充填剤は、単独でも混合して用いても差し支えない。無機充填材の配合量は、特に限定されないが、全エポキシ樹脂組成物中78〜96重量%が好ましい。下限値を下回ると十分な耐半田性が得られない可能性があり、上限値を超えると十分な流動性が得られない可能性がある。
【0013】
本発明において一般式(1)で表されるシランカップリング剤は必須であり、さらには一般式(2)で表されるシランカップリング剤を用いた場合、流動性及び耐半田性を改良する効果が大きく好ましい。一般式(1)で表されるシランカップリング剤は1種類を単独で使用しても2種類以上を併用してもよい。また配合量は、特に限定されないが、全エポキシ樹脂組成物中0.01〜3重量%が望ましく、より好ましくは0.05〜1重量%である。上記の下限値を下回ると十分な流動性が得られない可能性があり、上限値を超えると硬化性が低下する可能性がある。
【0014】
本発明において1分子中にS原子とN原子を各1個以上含む化合物は必須であり、その分子量、分子構造は特に限定されないが、化合物中にS−C−N構造を有する化合物である場合、メッキ部分との密着の効果が大きくなり好ましい。このような化合物として例えば、チアゾリン、チアゾール等がある。このような化合物の中では、密着強度が大きいことから、チアゾリン化合物がより好ましい。1分子中にS原子とN原子を各1個以上含む化合物は1種類を単独で使用しても2種類以上を併用してもよい。また、1分子中にS原子とN原子を各1個以上含む化合物の配合量は特に限定されないが、全エポキシ樹脂組成物中0.01〜3重量%が望ましく、より好ましくは0.05〜1重量%である。下限値を下回るとメッキ部分と十分な密着性が得られない可能性があり、上限値を超えると硬化性が低下する可能性がある。
【0015】
本発明において一般式(1)で表されるシランカップリング剤と、1分子中にS原子とN原子を各1個以上含む化合物は併用することが必須であり、どちらか一方だけ配合していても、流動性及び耐半田性が十分でない。
【0016】
(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機充填材、(E)一般式(1)で表されるシランカップリング剤、及び(F)1分子中にS原子とN原子を各1個以上含む化合物を必須成分とする
本発明のエポキシ樹脂組成物は、エポキシ樹脂、フェノール樹脂、硬化促進剤、無機充填材、一般式(1)で表されるシランカップリング剤、及び分子中にS原子とN原子を各1個以上含む化合物を必須成分とし、更にこれ以外に必要に応じて、一般式(1)で表される以外のアミノシラン、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等のカップリング剤、カーボンブラック等の着色剤、天然ワックス、合成ワックス等の離型剤及び、ゴム等の低応力添加剤、臭素化エポキシ樹脂や三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤等の添加剤を適宜配合しても差し支えない。
【0017】
また、本発明のエポキシ樹脂組成物は、ミキサー等を用いて原料を充分に均一に混合した後、更に熱ロール又はニーダー等で溶融混練し、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。
【0018】
【実施例】
以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
なお、実施例、及び比較例で用いたカップリング剤及び1分子中にS原子とN原子を各1個以上含む化合物について、以下に示す。
カップリング剤1:式(3)で示されるカップリング剤(信越化学(株)製、KBM−573)
【化5】
【0019】
カップリング剤2:式(4)で示されるカップリング剤(信越化学(株)製、X12−806)
【化6】
【0020】
カップリング剤3:式(5)で示されるカップリング剤(信越化学(株)製、KBM−403)
【化7】
【0021】
カップリング剤4:式(6)で示されるカップリング剤(信越化学(株)製、KBM−803)
【化8】
【0022】
カップリング剤5:式(7)で示されるカップリング剤(信越化学(株)製、KBE−903)
【化9】
【0023】
S、N含有化合物1:式(8)で示される化合物(関東化学、一級試薬)
【化10】
【0024】
S、N含有化合物2:式(9)で示される化合物(関東化学、一級試薬)
【化11】
【0026】
実施例1
エポキシ樹脂1:式(11)を主成分とするエポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000、エポキシ当量190g/eq、融点105℃、以下、E−1という) 49重量部
【化13】
【0027】
フェノール樹脂2:式(12)で示されるフェノール樹脂(三井化学(株)製、XLC−LL、水酸基当量165g/eq、軟化点79℃、以下H−1という) 42重量部
【化14】
【0028】
1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという) 5重量部
溶融球状シリカ(平均粒径21μm) 890重量部
カップリング剤1 3重量部
S、N含有化合物1 3重量部
カーボンブラック 3重量部
カルナバワックス 5重量部
をミキサーにて混合し、熱ロールを用いて、95℃で8分間混練して冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、以下の方法で評価した。結果を表1に示す。
【0029】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用金型を用いて、金型温度175℃、圧力6.9MPa、硬化時間120秒で測定した。単位はcm。
密着強度:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で、リードフレーム上に2mm×2mm×2mmの密着強度試験片を成形した。リードフレームには銅フレームに銀メッキしたもの(フレーム1)とNiPd合金フレームに金メッキしたもの(フレーム2)の2種類を用いた。その後、自動せん断強度測定装置(DAGE社製、PC2400)を用いて、エポキシ樹脂組成物の硬化物とフレームとのせん断強度を測定した。単位はN/mm2
耐半田クラック:低圧トランスファー成形機を用いて、成形温度175℃、圧力8.3MPa、硬化時間120秒で、80pQFP(NiPd合金フレームに金メッキしたフレーム、チップサイズ6.0mm×6.0mm)を成形し、アフターベークとして175℃、8時間加熱処理した後、85℃、相対湿度85%で120時間の加湿処理を行った後、260℃のIRリフロー処理をした。パッケージ内部の剥離とクラックを超音波探傷機で確認した。10個のパッケージ中の不良パッケージ数を示す。
【0030】
実施例2〜、比較例1〜5
表1の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価した。結果を表1に示す。
実施例1以外で用いた原材料を以下に示す。
エポキシ樹脂2:式(13)で示されるエポキシ樹脂(日本化薬(株)製、NC3000P、軟化点58℃、エポキシ当量273、以下、E−2という)
【化15】
【0031】
フェノール樹脂2:式(14)で示されるフェノール樹脂(明和化成(株)製、MEH−7851SS、軟化点107℃、水酸基当量204、以下、H−2という)
【化16】
【0032】
【表1】
【0033】
【発明の効果】
本発明に従うと、流動性、耐半田性に優れた半導体封止用エポキシ樹脂組成物、及び半導体装置を得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.
[0002]
[Prior art]
As a sealing method for semiconductor elements such as IC and LSI, transfer molding of an epoxy resin composition is suitable for mass production at low cost and has been adopted for a long time, and a phenol resin that is an epoxy resin or a curing agent in terms of reliability. Improvements have been made to improve the characteristics. However, due to the recent trend toward smaller, lighter, and higher performance electronic devices, semiconductors have been increasingly integrated and the surface mounting of semiconductor devices has been promoted. The demand for compositions has become increasingly severe. For this reason, the problem which cannot be solved with the conventional epoxy resin composition has also come out.
The biggest problem is that by adopting surface mounting, the semiconductor device is suddenly exposed to a high temperature of 200 ° C. or higher in the solder dipping or solder reflow process, and the moisture when moisture absorbed explosively evaporates. In particular, a phenomenon in which reliability is remarkably reduced due to peeling at the interface between various plated joints such as gold plating and silver plating on semiconductor elements, lead frames, and inner leads and the cured product of the epoxy resin composition. It is.
[0003]
In order to improve reliability degradation due to solder processing, increase the amount of inorganic filler in the epoxy resin composition to achieve low moisture absorption, high strength, low thermal expansion, improve solder resistance, There is a technique of using a low melt viscosity resin to maintain a high fluidity at a low viscosity during molding (see, for example, Patent Document 1). Although solder resistance is considerably improved by using this method, there is a drawback that fluidity is sacrificed and voids are easily generated in the package as the filling ratio of the inorganic filler increases. In addition, in order to prevent peeling at the interface between the plated portion and the epoxy resin composition, a method has been proposed in which various coupling agents such as aminosilane and mercaptosilane are added to achieve both fluidity and solder resistance (for example, However, even with this method, a sufficiently good epoxy resin composition for encapsulating a semiconductor could not be obtained.
[0004]
[Patent Document 1]
JP-A 64-65116 (pages 2 to 7)
[Patent Document 2]
Japanese Patent Laid-Open No. 9-255852 (pages 2 to 7)
[0005]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition for semiconductor encapsulation excellent in fluidity and solder resistance, and a semiconductor device using the same.
[0006]
[Means for Solving the Problems]
The present invention
[1] (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, (E) silane coupling agent represented by general formula (1), and (F) An epoxy resin composition for semiconductor encapsulation, comprising a thiazoline compound as an essential component;
[Chemical 3]
[0007]
[2] (E) Epoxy resin for semiconductor encapsulation according to item [1 ] , wherein the structure of the silane coupling agent represented by the general formula (1) is a silane coupling agent represented by the general formula (2) Composition,
[Formula 4]
[3] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to the item [1] or [2] ,
It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin used in the present invention refers to monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure are not particularly limited. For example, biphenyl type epoxy resin, bisphenol Type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy Examples thereof include resins, phenol aralkyl type epoxy resins (having a phenylene skeleton, a biphenylene skeleton, etc.), and these may be used alone or in combination.
[0009]
The phenol resin used in the present invention includes monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol Examples include novolak resins, dicyclopentadiene-modified phenol resins, terpene-modified phenol resins, triphenolmethane type resins, phenol aralkyl resins (having a phenylene skeleton, biphenylene skeleton, etc.), and these may be used alone or in combination. Absent.
[0010]
As a compounding quantity of an epoxy resin and a phenol resin, it is preferable that the ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins is 0.8 to 1.3. There is a possibility that the curability of the composition is lowered, the glass transition temperature of the cured product is lowered, and the moisture resistance reliability is lowered.
[0011]
As a hardening accelerator used for this invention, what is necessary is just to accelerate | stimulate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for a sealing material can be used. Examples thereof include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole, tetraphenylphosphonium / tetraphenylborate and the like, and these may be used alone or in combination. Absent.
[0012]
As an inorganic filler used for this invention, what is generally used for the epoxy resin composition for semiconductor sealing can be used. Examples thereof include fused silica, crystalline silica, talc, alumina, silicon nitride and the like, and the most preferably used is spherical fused silica. These inorganic fillers may be used alone or in combination. Although the compounding quantity of an inorganic filler is not specifically limited, 78 to 96 weight% is preferable in all the epoxy resin compositions. If the lower limit is not reached, sufficient solder resistance may not be obtained, and if the upper limit is exceeded, sufficient fluidity may not be obtained.
[0013]
In the present invention, the silane coupling agent represented by the general formula (1) is essential, and when the silane coupling agent represented by the general formula (2) is used, fluidity and solder resistance are improved. The effect is large and preferable. The silane coupling agent represented by the general formula (1) may be used alone or in combination of two or more. Moreover, although a compounding quantity is not specifically limited, 0.01 to 3 weight% is desirable in all the epoxy resin compositions, More preferably, it is 0.05 to 1 weight%. If the lower limit is not reached, sufficient fluidity may not be obtained, and if the upper limit is exceeded, curability may be reduced.
[0014]
In the present invention, a compound containing at least one S atom and one N atom in each molecule is essential, and the molecular weight and molecular structure are not particularly limited, but the compound has a S—C—N structure in the compound. It is preferable because the effect of adhesion with the plated portion is increased. Examples of such compounds include thiazoline and thiazole. Among these compounds, thiazoline compounds are more preferable because of their high adhesion strength. A compound containing one or more each of S and N atoms in one molecule may be used alone or in combination of two or more. Moreover, the compounding quantity of the compound which contains one or more each of S atom and N atom in 1 molecule is not specifically limited, However, 0.01-3 weight% is desirable in all the epoxy resin compositions, More preferably, it is 0.05-. 1% by weight. If the lower limit is not reached, sufficient adhesion to the plated portion may not be obtained, and if the upper limit is exceeded, the curability may be lowered.
[0015]
In the present invention, it is essential to use the silane coupling agent represented by the general formula (1) and the compound containing one or more S atoms and N atoms in one molecule, and only one of them is blended. However, fluidity and solder resistance are not sufficient.
[0016]
(A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, (E) silane coupling agent represented by general formula (1), and (F) in one molecule The epoxy resin composition of the present invention comprising a compound containing at least one S atom and at least one N atom as an essential component is represented by an epoxy resin, a phenol resin, a curing accelerator, an inorganic filler, and the general formula (1). A silane coupling agent and a compound containing at least one S atom and one N atom in the molecule are essential components, and in addition to this, aminosilanes and epoxysilanes other than those represented by the general formula (1) as necessary Silane coupling agents such as mercaptosilane, alkyl silane, ureido silane, vinyl silane, titanate coupling agent, aluminum coupling agent, aluminum / zirconium coupling agent, etc. Coloring agents such as pulling agents, carbon black, release agents such as natural wax and synthetic wax, and low stress additives such as rubber, brominated epoxy resins and antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, Additives such as flame retardants such as zinc molybdate and phosphazene may be appropriately blended.
[0017]
The epoxy resin composition of the present invention can be obtained by mixing the raw materials sufficiently uniformly using a mixer or the like, then melt-kneading with a hot roll or a kneader, cooling and pulverizing.
The epoxy resin composition of the present invention is used to encapsulate various electronic components such as semiconductor elements, and to manufacture semiconductor devices by conventional molding methods such as transfer molding, compression molding, and injection molding. do it.
[0018]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto. The blending ratio is parts by weight.
In addition, it shows below about the coupling agent used by the Example and the comparative example, and the compound which each contains one or more S atoms and N atoms in 1 molecule.
Coupling agent 1: Coupling agent represented by formula (3) (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)
[Chemical formula 5]
[0019]
Coupling agent 2: Coupling agent represented by formula (4) (Shin-Etsu Chemical Co., Ltd., X12-806)
[Chemical 6]
[0020]
Coupling agent 3: Coupling agent represented by formula (5) (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403)
[Chemical 7]
[0021]
Coupling agent 4: Coupling agent represented by formula (6) (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803)
[Chemical 8]
[0022]
Coupling agent 5: Coupling agent represented by formula (7) (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-903)
[Chemical 9]
[0023]
S, N-containing compound 1: compound represented by formula (8) (Kanto Chemical Co., Ltd., primary reagent)
[Chemical Formula 10]
[0024]
S, N-containing compound 2: Compound represented by formula (9) (Kanto Chemical, first grade reagent)
Embedded image
[0026]
Example 1
Epoxy resin 1: Epoxy resin mainly composed of formula (11) (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000, epoxy equivalent 190 g / eq, melting point 105 ° C., hereinafter referred to as E-1) 49 parts by weight 13]
[0027]
Phenolic resin 2: phenolic resin represented by formula (12) (Mitsui Chemicals, XLC-LL, hydroxyl group equivalent 165 g / eq, softening point 79 ° C., hereinafter referred to as H-1) 42 parts by weight
[0028]
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 5 parts by weight fused spherical silica (average particle size 21 μm) 890 parts by weight coupling agent 1 3 parts by weight S, N-containing compound 1 3 Part by weight Carbon black 3 parts by weight Carnauba wax 5 parts by weight were mixed in a mixer, kneaded at 95 ° C. for 8 minutes using a hot roll, cooled and ground to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0029]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Adhesion strength: Using a transfer molding machine, a 2 mm × 2 mm × 2 mm adhesion strength test piece was molded on a lead frame under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. Two types of lead frames were used: a silver plated copper frame (frame 1) and a gold plated NiPd alloy frame (frame 2). Thereafter, the shear strength between the cured product of the epoxy resin composition and the frame was measured using an automatic shear strength measuring apparatus (manufactured by DAGE, PC2400). The unit is N / mm 2 .
Solder crack resistance: Molding 80pQFP (NiPd alloy frame gold-plated, chip size 6.0mm x 6.0mm) at a molding temperature of 175 ° C, a pressure of 8.3MPa, and a curing time of 120 seconds using a low-pressure transfer molding machine. Then, after heat treatment at 175 ° C. for 8 hours as an after bake, a humidification treatment was performed at 85 ° C. and a relative humidity of 85% for 120 hours, followed by an IR reflow treatment at 260 ° C. Peeling and cracks inside the package were confirmed with an ultrasonic flaw detector. The number of defective packages among the 10 packages is shown.
[0030]
Example 2-6, Comparative Examples 1-5
According to the composition of Table 1, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Table 1.
The raw materials used other than Example 1 are shown below.
Epoxy resin 2: Epoxy resin represented by formula (13) (manufactured by Nippon Kayaku Co., Ltd., NC3000P, softening point 58 ° C., epoxy equivalent 273, hereinafter referred to as E-2)
Embedded image
[0031]
Phenol resin 2: Phenol resin represented by formula (14) (Maywa Kasei Co., Ltd., MEH-7851SS, softening point 107 ° C., hydroxyl equivalent 204, hereinafter referred to as H-2)
Embedded image
[0032]
[Table 1]
[0033]
【The invention's effect】
According to the present invention, an epoxy resin composition for semiconductor encapsulation and a semiconductor device excellent in fluidity and solder resistance can be obtained.

Claims (3)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)無機充填材、(E)一般式(1)で表されるシランカップリング剤、及び(F)チアゾリン化合物を必須成分とすることを特徴とする半導体封止用エポキシ樹脂組成物。
(A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) inorganic filler, (E) silane coupling agent represented by general formula (1), and (F) thiazoline compound An epoxy resin composition for semiconductor encapsulation, which is an essential component.
(E)一般式(1)で表されるシランカップリング剤の構造が一般式(2)で表されるシランカップリング剤である請求項1記載の半導体封止用エポキシ樹脂組成物。
(E) the formula (1) the structure of the silane coupling agent represented by the general formula (2) is a silane coupling agent represented by claim 1 Symbol mounting semiconductor encapsulating epoxy resin composition.
請求項1又は2に記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。Wherein a obtained by encapsulating a semiconductor element using the epoxy resin composition for semiconductor encapsulation according to claim 1 or 2.
JP2003039619A 2003-02-18 2003-02-18 Epoxy resin composition and semiconductor device Expired - Fee Related JP4254265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039619A JP4254265B2 (en) 2003-02-18 2003-02-18 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039619A JP4254265B2 (en) 2003-02-18 2003-02-18 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004250476A JP2004250476A (en) 2004-09-09
JP4254265B2 true JP4254265B2 (en) 2009-04-15

Family

ID=33023742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039619A Expired - Fee Related JP4254265B2 (en) 2003-02-18 2003-02-18 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4254265B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894147B2 (en) * 2005-01-31 2012-03-14 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2004250476A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP5119798B2 (en) Epoxy resin composition and semiconductor device
JP4894147B2 (en) Semiconductor sealing resin composition and semiconductor device
JPH07268186A (en) Epoxy resin composition
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4561227B2 (en) Semiconductor sealing resin composition and semiconductor device
JP4400124B2 (en) Epoxy resin composition and semiconductor device
JP4691886B2 (en) Epoxy resin composition and semiconductor device
JP4539118B2 (en) Epoxy resin composition and semiconductor device
JP5153050B2 (en) Epoxy resin composition and semiconductor device
JP4254265B2 (en) Epoxy resin composition and semiconductor device
JP2003105059A (en) Epoxy resin composition and semiconductor device
JP3821218B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2002241581A (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP4296820B2 (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2002241585A (en) Epoxy resin composition and semiconductor device
JP2001247653A (en) Epoxy resin composition and semiconductor device
JP4635360B2 (en) Semiconductor device
JP3973137B2 (en) Epoxy resin composition and semiconductor device
JPH0625385A (en) Epoxy resin composition and semiconductor device
JP2005264042A (en) Epoxy resin composition and semiconductor device
JP2003277583A (en) Epoxy resin composition and semiconductor device
JP4321234B2 (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees