JP5407767B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP5407767B2
JP5407767B2 JP2009253085A JP2009253085A JP5407767B2 JP 5407767 B2 JP5407767 B2 JP 5407767B2 JP 2009253085 A JP2009253085 A JP 2009253085A JP 2009253085 A JP2009253085 A JP 2009253085A JP 5407767 B2 JP5407767 B2 JP 5407767B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
carbon atoms
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009253085A
Other languages
Japanese (ja)
Other versions
JP2010024464A (en
Inventor
重之 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2009253085A priority Critical patent/JP5407767B2/en
Publication of JP2010024464A publication Critical patent/JP2010024464A/en
Application granted granted Critical
Publication of JP5407767B2 publication Critical patent/JP5407767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、半導体封止用エポキシ樹脂組成物及び半導体装置に関するものであり、特に、プリント配線板や金属リードフレームの片面に半導体素子を搭載し、その搭載面側の実質的に片面のみが樹脂封止されたエリア実装型半導体装置に好適に用いられるものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device, and in particular, a semiconductor element is mounted on one side of a printed wiring board or a metal lead frame, and only one side of the mounting side is a resin. It is preferably used for a sealed area mounting type semiconductor device.

近年の電子機器の高機能化、高速化に伴い、その発熱量が増大傾向にある。そのため封止用エポキシ樹脂組成物に対しても高熱放散性の要求が高まっており、それを構成する無機充填材においても様々な検討が進められている。これまで高熱伝導性の無機充填材としては窒化アルミニウム、窒化ケイ素及びアルミナが主として使用されているが、いずれもエポキシ樹脂組成物としての要求特性を満足させるレベルには至っていない。窒化アルミニウム、窒化ケイ素は、アルミナよりも高い熱伝導率を有するが、エポキシ樹脂組成物の流動性が極端に低下する、成形時の金型磨耗が著しいなどの問題が懸念され、本格的に普及するまでには至っていない。これに対し、アルミナは熱伝導率こそ窒化アルミニウム、窒化ケイ素に比べて劣るものの、球状化して用いることにより流動性と金型磨耗性の観点からは比較的良好である。流動性を向上させるために粒度分布に着目した方法が提案されており、0.4〜0.7μm、12〜18μm、30〜38μmに粒度分布の極大ピークをもたせる方法(たとえば、特許文献1参照。)、ロジン・ラムラー線図の回帰式の回帰係数に着目する方法(たとえば、特許文献2参照。)などがある。   With the recent increase in functionality and speed of electronic devices, the amount of generated heat tends to increase. For this reason, there is an increasing demand for high heat dissipating properties for the epoxy resin composition for sealing, and various studies are being conducted on the inorganic filler constituting the epoxy resin composition. Until now, aluminum nitride, silicon nitride, and alumina have been mainly used as inorganic fillers with high thermal conductivity, but none of them has reached a level that satisfies the required characteristics as an epoxy resin composition. Aluminum nitride and silicon nitride have higher thermal conductivity than alumina. However, due to concerns about problems such as extremely low fluidity of the epoxy resin composition and significant wear of the mold during molding, they are widely spread. It hasn't been done yet. In contrast, alumina has a thermal conductivity that is inferior to that of aluminum nitride or silicon nitride, but it is relatively good in terms of fluidity and mold wear when used in a spheroidized form. In order to improve fluidity, a method focusing on the particle size distribution has been proposed, and a method of giving a maximum peak of the particle size distribution to 0.4 to 0.7 μm, 12 to 18 μm, and 30 to 38 μm (for example, see Patent Document 1). ), A method of paying attention to the regression coefficient of the regression equation of the Rosin-Rammler diagram (for example, see Patent Document 2).

近年の新たな動きとして、環境対応のため半導体装置を実装する際に従来よりも融点の高い無鉛半田の使用が高まってきている。この半田の適用により実装温度を従来に比べ約20℃高くする必要があり、実装後の半導体装置の耐熱性が現状に比べ著しく低下する問題が生じており、向上の必要性が加速的に強くなってきている。これを解決し得る半導体装置の低応力化、低吸水化を達成するためには、更なる無機充填材の高充填化が必要となっている。   As a new movement in recent years, the use of lead-free solder having a higher melting point than before is increasing when mounting semiconductor devices for environmental reasons. The application of this solder requires that the mounting temperature be increased by about 20 ° C. compared to the conventional case, and there is a problem that the heat resistance of the semiconductor device after mounting is significantly reduced compared to the current situation. It has become to. In order to achieve low stress and low water absorption of a semiconductor device that can solve this, it is necessary to further increase the filling of the inorganic filler.

また半導体素子の高集積化が進むにつれて増加傾向にあるエリア実装型半導体装置においては、無機充填材の高充填化が更に必要になってくる。エリア実装型半導体装置としては、BGA(ボールグリッドアレイ)、或いは更に小型化を追求したCSP(チップスケールパッケージ)等が代表的であり、これらは従来のQFP、SOPなどに代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、BT樹脂/銅箔回路基板(ビスマレイミド・トリアジン樹脂/ガラスクロス基板)に代表される硬質回路基板、或いはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その半導体素子搭載面、即ち基板の片面のみがエポキシ樹脂組成物等で成形・封止されている。また、基板の半導体素子搭載面の反対面には半田ボールを2次元的に並列して形成し、回路基板と接合させる。この半導体装置を回路基板上に半田接合を行う場合、200℃以上の加熱工程を経るが、この際に半導体装置の反りが発生すると多数の半田ボールが平坦とならず、回路基板から浮き上がってしまうため電気的接合信頼性が低下する問題が起こる。   Further, in the area mounting type semiconductor device which is increasing as the integration of semiconductor elements is increased, it is necessary to further increase the filling of the inorganic filler. Typical area-mounted semiconductor devices include BGA (ball grid array) or CSP (chip scale package) that pursues further miniaturization, and these are surface-mounted types typified by conventional QFP, SOP, and the like. The semiconductor device was developed to meet the demand for higher pin count and higher speed, which are approaching the limit. As a structure, on one side of a hard circuit board represented by BT resin / copper foil circuit board (bismaleimide / triazine resin / glass cloth board) or a flexible circuit board represented by polyimide resin film / copper foil circuit board. A semiconductor element is mounted, and only the semiconductor element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. Also, solder balls are two-dimensionally formed in parallel on the surface opposite to the semiconductor element mounting surface of the substrate and bonded to the circuit substrate. When this semiconductor device is solder-bonded to a circuit board, a heating process of 200 ° C. or higher is performed. If warpage of the semiconductor device occurs at this time, a large number of solder balls do not become flat and float from the circuit board. Therefore, there arises a problem that the reliability of electrical connection is lowered.

基板上の片面のみをエポキシ樹脂組成物で封止した半導体装置において反りを低減するには、基板の熱膨張係数とエポキシ樹脂組成物の硬化物の熱膨張係数とを近づけること、及びエポキシ樹脂組成物の成形硬化時の硬化収縮を小さくすることの二つの方法が重要である。基板としては、有機基板ではBT樹脂やポリイミド樹脂のような高いガラス転移温度(以下、Tgという)を有する樹脂が広く用いられており、これらはエポキシ樹脂組成物の成形温度である170℃近辺よりも高いTgを有する。従って、成形温度から室温までの冷却過程では有機基板のガラス領域、換言すると線膨張係数がα1の領域のみで収縮する。よってエポキシ樹脂組成物の硬化物も、Tgが成形温度より高く且つα1が有機基板と同じで、更に成形硬化時の硬化収縮がゼロとなれば、反りはほぼゼロとなると考えられる。このため、多官能型エポキシ樹脂と多官能型フェノール樹脂との組み合わせによりTgを高くし、無機充填材の配合量でα1を合わせる手法が既に提案されている(たとえば、特許文献3参照。)。しかし多官能型樹脂は吸水性、粘度が高いことから金線変形、耐熱性の低下を引き起こし易いため、多官能型樹脂以外の低粘度樹脂を用い、無機充填材の高充填化によってエポキシ樹脂組成物の熱膨張係数を基板の熱膨張係数に近づけ、成形硬化時の硬化収縮を小さくする、といった手法が用いられている(たとえば、特許文献4参照。)。   To reduce warpage in a semiconductor device in which only one surface on a substrate is sealed with an epoxy resin composition, the thermal expansion coefficient of the substrate and the thermal expansion coefficient of a cured product of the epoxy resin composition are brought close to each other, and the epoxy resin composition Two methods are important for reducing the shrinkage of the cured product when it is molded and cured. As the substrate, a resin having a high glass transition temperature (hereinafter referred to as Tg) such as BT resin and polyimide resin is widely used in the organic substrate, and these are from around 170 ° C. which is the molding temperature of the epoxy resin composition. Also has a high Tg. Accordingly, in the cooling process from the molding temperature to room temperature, the glass shrinks only in the glass region of the organic substrate, in other words, in the region where the linear expansion coefficient is α1. Therefore, it is considered that the cured product of the epoxy resin composition has almost zero warpage if Tg is higher than the molding temperature, α1 is the same as that of the organic substrate, and curing shrinkage at the time of molding and curing is zero. For this reason, a technique for increasing Tg by combining a multifunctional epoxy resin and a multifunctional phenol resin and adjusting α1 by the blending amount of the inorganic filler has been proposed (for example, see Patent Document 3). However, since polyfunctional resins have high water absorption and viscosity, they tend to cause deformation of the gold wire and decrease in heat resistance. Therefore, low viscosity resins other than polyfunctional resins are used, and the epoxy resin composition is increased by increasing the filling of inorganic fillers. A technique has been used in which the thermal expansion coefficient of an object is brought close to the thermal expansion coefficient of a substrate to reduce curing shrinkage during molding and curing (see, for example, Patent Document 4).

前述の様に、アルミナをより多く充填するために樹脂組成物の流動性を向上させる様々な手法が提案されているが、アルミナ以外のエポキシ樹脂組成物の構成原料には着目していないために十分な性能が得られず、市場の要求を満足させるレベルには至っていない。   As described above, various methods for improving the fluidity of the resin composition in order to fill more alumina have been proposed. However, since attention is not paid to the constituent raw materials of the epoxy resin composition other than alumina. Sufficient performance is not obtained, and it does not reach a level that satisfies market demands.

特開平7−278415号公報(第2〜9頁)JP-A-7-278415 (pages 2-9) 特開平7−118506号公報(第2〜6頁)JP-A-7-118506 (pages 2-6) 特開平9−181226号公報(第2〜9頁)JP-A-9-181226 (pages 2 to 9) 特開2003−40979号公報(第2〜6頁)JP2003-40979A (pages 2-6)

本発明は、従来の背景技術の問題点を解決するためになされたものであり、その目的とするところは硬化性及び他の諸特性を劣化させることなく、成形後や実装時の半導体装置の反りと耐半田性を両立させた半導体封止用に適したエポキシ樹脂組成物、及びこれを用いた半導体装置を提供することにある。   The present invention has been made to solve the problems of the conventional background art, and the object of the present invention is to provide a semiconductor device after molding or mounting without deteriorating curability and other characteristics. An object of the present invention is to provide an epoxy resin composition suitable for semiconductor encapsulation that has both warpage and solder resistance, and a semiconductor device using the same.

本発明は、
[1]エポキシ樹脂(A)、フェノール樹脂(B)、硬化促進剤(C)、一般式(1)で示されるシランカップリング剤(D)、球状アルミナ(E)、ナフタレン環に2個の隣接した水酸基を有し、かつ該水酸基以外の置換基を有するか、又は有しない化合物(F)を含むことを特徴とする半導体封止用エポキシ樹脂組成物、
The present invention
[1] Epoxy resin (A), phenol resin (B), curing accelerator (C), silane coupling agent (D) represented by general formula (1), spherical alumina (E), two naphthalene rings An epoxy resin composition for semiconductor encapsulation, comprising a compound (F) having an adjacent hydroxyl group and having or not having a substituent other than the hydroxyl group,

(Rは炭素数1〜12の有機基。R、R、Rは炭素数1〜12のアルキル基。nは1〜3の整数。) (R 1 is an organic group having 1 to 12 carbon atoms. R 2 , R 3 and R 4 are alkyl groups having 1 to 12 carbon atoms. N is an integer of 1 to 3)

[2]全エポキシ樹脂組成物中に、更に0.05〜0.5重量%のシリコーンオイル(G)を含有する第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3]前記球状アルミナ(E)の粒度分布が、0.5〜1μm、3〜8μm、36〜50μmに極大点を有する第[1]又は[2]項記載の半導体封止用エポキシ樹脂組成物、
[4]第[1]、[2]又は[3]項のいずれかに記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
[5]基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみの封止に用いるものであって、エポキシ樹脂(A)、フェノール樹脂(B)、硬化促進剤(C)、一般式(1)で示されるシランカップリング剤(D)、球状アルミナ(E)ナフタレン環に2個の隣接した水酸基を有し、かつ該水酸基以外の置換基を有するか、又は有しない化合物(F)、を含むことを特徴とするエリア実装型半導体封止用エポキシ樹脂組成物、
[2] The epoxy resin composition for semiconductor encapsulation according to item [1], further containing 0.05 to 0.5% by weight of silicone oil (G) in the total epoxy resin composition,
[3] The epoxy resin composition for semiconductor encapsulation according to [1] or [2], wherein the particle size distribution of the spherical alumina (E) has a maximum point at 0.5 to 1 μm, 3 to 8 μm, or 36 to 50 μm. object,
[4] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to any one of [1], [2] or [3],
[5] A semiconductor element is mounted on one side of a substrate, and is used for sealing only substantially on one side of the substrate surface on which the semiconductor element is mounted. The epoxy resin (A) and the phenol resin (B) A curing accelerator (C), a silane coupling agent (D) represented by the general formula (1), a spherical alumina (E) having two adjacent hydroxyl groups on the naphthalene ring, and a substituent other than the hydroxyl group. An epoxy resin composition for area-mounting semiconductor encapsulation, comprising a compound (F) having or not having,

(Rは炭素数1〜12の有機基。R、R、Rは炭素数1〜12のアルキル基。nは1〜3の整数。) (R 1 is an organic group having 1 to 12 carbon atoms. R 2 , R 3 and R 4 are alkyl groups having 1 to 12 carbon atoms. N is an integer of 1 to 3)

[6]全エポキシ樹脂組成物中に、更に0.05〜0.5重量%のシリコーンオイル(G)を含有する第[5]項記載の半導体封止用エポキシ樹脂組成物、
[7]前記球状アルミナ(E)の粒度分布が、0.5〜1μm、3〜8μm、36〜50μmに極大点を有する第[5]又は[6]項記載の半導体封止用エポキシ樹脂組成物、
[8]基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが第[5]、[6]又は[7]項のいずれかに記載のエポキシ樹脂組成物を用いて封止されていることを特徴とするエリア実装型半導体装置、
である。
[6] The epoxy resin composition for semiconductor encapsulation according to [5], further containing 0.05 to 0.5% by weight of silicone oil (G) in the total epoxy resin composition,
[7] The epoxy resin composition for semiconductor encapsulation according to [5] or [6], wherein the particle size distribution of the spherical alumina (E) has a maximum point at 0.5 to 1 μm, 3 to 8 μm, or 36 to 50 μm. object,
[8] A semiconductor element is mounted on one side of the substrate, and substantially only one side of the substrate surface on which the semiconductor element is mounted is the epoxy according to any one of [5], [6], or [7]. An area-mounting semiconductor device characterized by being sealed with a resin composition;
It is.

本発明に従うと、従来の技術では得られなかった反り、耐半田性における性能を両立させることが出来るので、特にエリア実装型半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置として好適である。   According to the present invention, since it is possible to achieve both warpage and solder resistance performance that could not be obtained by the prior art, it is particularly suitable as an area mounting type semiconductor sealing epoxy resin composition and a semiconductor device using the same. is there.

本発明は、エポキシ樹脂、フェノール樹脂、硬化促進剤、特定構造のシランカップリング剤、球状アルミナ、特定構造の化合物を含むエポキシ樹脂組成物を用いることにより、エポキシ樹脂組成物の低粘度化が可能となるため、無機充填材をより多く充填できるようになる。これによって反り、耐半田性の性能を両立できるという効果が得られるものである。更に前記手法により反りを低減できるため、低反り化のために多量添加を必要としていたシリコーンオイルの添加量を抑制することが可能となる。その結果、耐湿性低下を防止できるという効果も得られるものである。
以下、本発明について詳細に説明する。
The present invention can reduce the viscosity of an epoxy resin composition by using an epoxy resin composition containing an epoxy resin, a phenol resin, a curing accelerator, a silane coupling agent having a specific structure, spherical alumina, and a compound having a specific structure. Therefore, more inorganic filler can be filled. As a result, it is possible to obtain an effect that both warpage and solder resistance performance can be achieved. Further, since the warpage can be reduced by the above-described method, it is possible to suppress the amount of silicone oil added that requires a large amount of addition to reduce warpage. As a result, the effect of preventing a decrease in moisture resistance can also be obtained.
Hereinafter, the present invention will be described in detail.

本発明に用いるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定するものではないが、例えばビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジシクロベンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂、ハイドロキノン型エポキシ樹脂などが挙げられる。またこれらは単独でも混合して用いてもよい。なお無機充填材を高充填化する、という観点では、常温で固形、かつ成形時の溶融粘度が非常に低い結晶性エポキシ樹脂を用いることが好ましい。   Examples of the epoxy resin used in the present invention include monomers, oligomers and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. For example, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenylene skeleton-containing phenol aralkyl type epoxy resin, stilbene type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, naphthol novolak type epoxy resin, triphenolmethane type epoxy resin , Dicyclopentadiene-modified phenol type epoxy resin, terpene-modified phenol type epoxy resin, hydroquinone type epoxy resin, and the like. These may be used alone or in combination. In view of increasing the inorganic filler, it is preferable to use a crystalline epoxy resin that is solid at room temperature and has a very low melt viscosity at the time of molding.

本発明に用いるフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロベンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂などが挙げられる。またこれらは単独でも混合して用いてもよい。なお無機充填材を高充填化する、という観点では、エポキシ樹脂と同様に低粘度のものが好ましい。   Examples of the phenol resin used in the present invention include monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. For example, phenol novolak resin, cresol Examples thereof include novolak resins, dicyclopentadiene-modified phenol resins, phenol aralkyl resins, phenol aralkyl resins having a biphenylene skeleton, terpene-modified phenol resins, and triphenolmethane type resins. These may be used alone or in combination. In addition, from the viewpoint of increasing the inorganic filler, a material having a low viscosity is preferable like the epoxy resin.

本発明に用いる全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の当量比としては、好ましくは0.5〜2であり、特に0.7〜1.5がより好ましい。上記範囲を外れると、耐湿性、硬化性などが低下する恐れがあるので好ましくない。   The equivalent ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins used in the present invention is preferably 0.5 to 2, and more preferably 0.7 to 1.5. If it is out of the above range, the moisture resistance, curability and the like may be lowered, which is not preferable.

本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであればよく、一般に封止材料に使用するものを用いることができる。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート(、ベンゾキノンをアダクトしたトリフェニルホスフィン)等が挙げられ、これらは単独でも混合して用いても差し支えない。   As a hardening accelerator used for this invention, what is necessary is just to accelerate the hardening reaction of an epoxy group and a phenolic hydroxyl group, and what is generally used for a sealing material can be used. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, amine compounds such as tributylamine and benzyldimethylamine, imidazole compounds such as 2-methylimidazole, and triphenyl Organic phosphines such as phosphine, methyldiphenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetrabenzoic acid borate, tetraphenylphosphonium / tetranaphthoic acid borate, tetraphenylphosphonium / tetranaphthoyloxyborate, tetraphenyl Tetra-substituted phosphonium / tetra-substituted borate such as phosphonium / tetranaphthyloxyborate (triphenylphosphine adducted with benzoquinone) Gerare, it no problem is used singly or in admixture.

本発明に用いられる一般式(1)で示されるシランカップリング剤を使用すると、従来のシランカップリング剤よりもエポキシ樹脂組成物の低粘度化が可能となるため、無機充填材をより多く充填させ易くなり、その結果半導体装置の反り及び耐半田性を向上させることができる。本発明に用いる一般式(1)で示されるシランカップリング剤は、好ましくはRがフェニル基であり、Rが炭素数1〜3のアルキル基、かつR、Rはメチル基もしくはエチル基であることが好ましい。しかしこれらに限定されるものではなく、また単独で用いても併用してもよい。本発明に用いるシランカップリング剤の配合量は、全エポキシ樹脂組成物中に0.05〜0.5重量%が好ましく、下限値未満だと目的とする流動性が得られず、上限値を越えると硬化性が損なわれるおそれがあり好ましくない。
(Rは炭素数1〜12の有機基。R、R、Rは炭素数1〜12のアルキル基。nは1〜3の整数。)
When the silane coupling agent represented by the general formula (1) used in the present invention is used, the viscosity of the epoxy resin composition can be lowered as compared with the conventional silane coupling agent, so that the inorganic filler is filled more. As a result, warpage and solder resistance of the semiconductor device can be improved. In the silane coupling agent represented by the general formula (1) used in the present invention, preferably R 1 is a phenyl group, R 2 is an alkyl group having 1 to 3 carbon atoms, and R 3 and R 4 are methyl groups or An ethyl group is preferred. However, it is not limited to these, and may be used alone or in combination. The blending amount of the silane coupling agent used in the present invention is preferably 0.05 to 0.5% by weight in the total epoxy resin composition, and if it is less than the lower limit, the intended fluidity cannot be obtained, and the upper limit is set. If it exceeds, the curability may be impaired.
(R 1 is an organic group having 1 to 12 carbon atoms. R 2 , R 3 and R 4 are alkyl groups having 1 to 12 carbon atoms. N is an integer of 1 to 3)

また、一般式(1)で示されるシランカップリング剤を用いることによる効果を損なわない範囲であれば、その他のカップリング剤を併用しても差し支えない。併用できるカップリング剤としては、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等が挙げられる。   Further, other coupling agents may be used in combination as long as the effects of using the silane coupling agent represented by the general formula (1) are not impaired. Examples of coupling agents that can be used in combination include silane coupling agents such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane, titanate coupling agents, aluminum coupling agents, aluminum / zirconium coupling agents, and the like. Is mentioned.

本発明においては、高熱伝導性を付与する目的で、充填材として球状アルミナを用いる。本発明に用いる球状アルミナの粒度分布は特に規定しないが、粒度分布の極大点を0.5〜1μm(以下微粒子と記載する。)、3〜8μm(以下中粒子と記載する。)、36〜50μm(以下粗粒子と記載する。)に有することが好ましい。微粒子の極大点が0.5μm未満もしくは1μmを超えると流動性を損なう場合があり、また中粒子の極大点が3μm未満もしくは8μmを超えると、同様に流動性を損なう場合がある。なお粗粒子については、極大点が50μmを超えると、狭い充填領域が存在する小型半導体装置において未充填を引き起こす、及び金線間隔の狭い半導体装置において流動を阻害し、金線変形を引き起こす懸念が生じる。なお、本発明では、充填材として球状アルミナを単独で用いる必要はなく、例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、チタンホワイト、窒化珪素等と併用してもよい。本発明に用いる球状アルミナの配合量は、全エポキシ樹脂組成物中に85〜93重量%が好ましく、下限値未満だと目的とする熱伝導性が得られず、上限値を超えると流動性が損なわれるおそれがあり好ましくない。   In the present invention, spherical alumina is used as a filler for the purpose of imparting high thermal conductivity. The particle size distribution of the spherical alumina used in the present invention is not particularly defined, but the maximum point of the particle size distribution is 0.5 to 1 μm (hereinafter referred to as fine particles), 3 to 8 μm (hereinafter referred to as medium particles), 36 to. It is preferable to have a thickness of 50 μm (hereinafter referred to as coarse particles). If the maximum point of the fine particles is less than 0.5 μm or exceeds 1 μm, the fluidity may be impaired, and if the maximum point of the medium particles is less than 3 μm or more than 8 μm, the fluidity may be similarly impaired. Regarding coarse particles, when the maximum point exceeds 50 μm, there is a concern that unfilling may occur in a small semiconductor device having a narrow filling region, and flow may be hindered in a semiconductor device having a narrow interval between gold wires, thereby causing deformation of the gold wire. Arise. In the present invention, spherical alumina does not need to be used alone as a filler, and may be used in combination with, for example, fused spherical silica, fused crushed silica, crystalline silica, talc, titanium white, or silicon nitride. The blend amount of the spherical alumina used in the present invention is preferably 85 to 93% by weight in the total epoxy resin composition, and if it is less than the lower limit, the intended thermal conductivity cannot be obtained, and if it exceeds the upper limit, the fluidity is There is a risk of damage, which is not preferable.

ここでの球状アルミナの粒度分布は、JIS M8100粉塊混合物−サンプリング方法通則に準じて無機充填材を採取し、JIS R 1622−1995 ファインセラミック原料粒子径分布測定のための試料調整通則に準じて、無機充填材を測定用試料として調整し、JIS R 1629−1997ファインセラミック原料のレーザー回折・散乱法による粒子径分布測定方法に準じて(株)島津製作所製のレーザー回折式粒度分布測定装置SALD−7000(レーザー波長:405nm)を用いて、溶媒に水を用い無機充填材の屈折率が実数部1.80、虚数部1.00の条件のもと測定した値である。
また比表面積は、JIS R 1626−1996 ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法に準じて、窒素を吸着質として用い、BET1点法によって測定した値である。
Here, the particle size distribution of the spherical alumina is obtained according to JIS R 1622-1995 Sample preparation general rule for fine ceramic raw material particle size distribution measurement after collecting inorganic filler according to JIS M8100 powder mixture-general sampling method. In addition, an inorganic filler was prepared as a measurement sample, and a laser diffraction particle size distribution measuring device SALD manufactured by Shimadzu Corporation in accordance with a particle size distribution measuring method by a laser diffraction / scattering method of a JIS R 1629-1997 fine ceramic raw material. -7000 (laser wavelength: 405 nm) using water as a solvent and the refractive index of the inorganic filler measured under the conditions of a real part 1.80 and an imaginary part 1.00.
The specific surface area is a value measured by the BET 1-point method using nitrogen as an adsorbate in accordance with the method for measuring the specific surface area of the fine ceramic powder by the gas adsorption BET method of JIS R 1626-1996.

本発明に用いる芳香環に2個の隣接した水酸基を有し、かつ該水酸基以外の置換基を有するか、又は有しない化合物(F)(以下化合物(F)と記載する。)としては、式(2)又は式(3)で表される化合物が好ましく、例えば、カテコール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びこれらの誘導体が挙げられる。そのうち制御のしやすさ、低揮発性の点から母核はナフタレン環である化合物(1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びその誘導体)がより好ましい。これらの化合物()は2種以上併用してもよい。なおこの化合物()の配合量は全エポキシ樹脂組成物中0.01〜0.5重量%、好ましくは0.02〜0.3重量%である。下限値未満だと期待するような粘度特性及び流動特性が得られず、上限値を越えるとエポキシ樹脂組成物の硬化が阻害され、また硬化物の物性が劣り、半導体封止樹脂としての性能が悪化するので好ましくない。 The compound (F) (hereinafter referred to as compound (F)) having two adjacent hydroxyl groups in the aromatic ring used in the present invention and having or not having a substituent other than the hydroxyl group is represented by the formula: The compound represented by (2) or formula (3) is preferable, and examples thereof include catechol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof. Of these, compounds (1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof) in which the mother nucleus is a naphthalene ring are more preferred from the viewpoint of ease of control and low volatility. Two or more of these compounds ( F ) may be used in combination. In addition, the compounding quantity of this compound ( F ) is 0.01 to 0.5 weight% in all the epoxy resin compositions, Preferably it is 0.02 to 0.3 weight%. Viscosity and flow characteristics that are expected to be less than the lower limit cannot be obtained, and if the upper limit is exceeded, curing of the epoxy resin composition is inhibited, and physical properties of the cured product are inferior, resulting in performance as a semiconductor sealing resin. Since it deteriorates, it is not preferable.

(R、Rはどちらか一方が水酸基であり、片方が水酸基のとき他方は水素又は水酸基以外の置換基、R、R、Rは水素、水酸基又は水酸基以外の置換基。) (One of R 5 and R 9 is a hydroxyl group, and when one of them is a hydroxyl group, the other is a substituent other than hydrogen or a hydroxyl group, and R 6 , R 7 and R 8 are substituents other than hydrogen, a hydroxyl group or a hydroxyl group.)

(R10、R16はどちらか一方が水酸基であり、片方が水酸基のとき他方は水素又は水酸基以外の置換基、R11、R12、R13、R14、R15は水素、水酸基又は水酸基以外の置換基。) (R 10 and R 16 are either hydroxyl groups, and when one is a hydroxyl group, the other is hydrogen or a substituent other than a hydroxyl group, R 11 , R 12 , R 13 , R 14 , R 15 are hydrogen, hydroxyl group or hydroxyl group. Other substituents.)

本発明においては、上記成分に加え、更にシリコーンオイルを全エポキシ樹脂組成物に対し0.05〜0.5重量%添加することができる。本発明に用いるシリコーンオイルは、特に平均重合度に制約は無く、エポキシ樹脂、フェノール樹脂、無機充填材との親和性を付与するために、メチル基、フェニル基の他にC、O、N、S原子などを含む有機基を有していても構わない。またシリコーンオイルは単独でも混合して用いてもよい。シリコーンオイルを添加することにより、成形時の金型離型性を付与することができる。また、シリコーンオイルの種類、添加量によっては低弾性化が可能となるため、半導体装置の反りを低減し、温度サイクル試験時に発生する応力を緩和する効果が得られる。しかしシリコーンオイルの配合量が、上記上限値を超えると、シリコーンオイルの種類によってはガラス転移温度の低下、半導体装置内の部材との界面密着力低下による耐湿性の低下を招きやすくなるので好ましくない。また上記下限値を下回ると、成形時の金型離型性が不十分となる場合がある。   In the present invention, in addition to the above components, 0.05 to 0.5% by weight of silicone oil can be added to the total epoxy resin composition. The silicone oil used in the present invention is not particularly limited in the average degree of polymerization, and in order to impart affinity with epoxy resin, phenol resin, and inorganic filler, in addition to methyl group and phenyl group, C, O, N, You may have an organic group containing S atom etc. Silicone oils may be used alone or in combination. By adding silicone oil, mold releasability at the time of molding can be imparted. In addition, since the elasticity can be lowered depending on the type and amount of silicone oil, it is possible to reduce the warpage of the semiconductor device and to relieve the stress generated during the temperature cycle test. However, if the amount of silicone oil exceeds the upper limit, depending on the type of silicone oil, it is not preferable because it tends to cause a decrease in glass transition temperature and a decrease in moisture resistance due to a decrease in interfacial adhesion with members in a semiconductor device. . On the other hand, if the lower limit is not reached, mold releasability during molding may be insufficient.

本発明のエポキシ樹脂組成物は、(A)〜(G)成分の他、必要に応じてカルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤、カーボンブラック、ベンガラ等の着色剤、臭素化エポキシ樹脂、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤、酸化ビスマス水和物等の無機イオン交換体、酸化防止剤等の各種添加剤が適宜配合可能である。   In addition to the components (A) to (G), the epoxy resin composition of the present invention includes, as necessary, natural wax such as carnauba wax, synthetic wax such as polyethylene wax, higher fatty acid such as stearic acid and zinc stearate and the like. Release agents such as metal salts or paraffin, colorants such as carbon black and bengara, brominated epoxy resins, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene and other flame retardants, oxidation Various additives such as inorganic ion exchangers such as bismuth hydrate and antioxidants can be appropriately blended.

本発明のエポキシ樹脂組成物は、(A)〜(G)成分、及びその他の添加剤等を、ミキサー等を用いて常温混合し、ロール、ニーダー、押出機等の混練機で加熱混練、冷却後粉砕して得られる。   In the epoxy resin composition of the present invention, the components (A) to (G) and other additives are mixed at room temperature using a mixer or the like, and heated and kneaded with a kneader such as a roll, kneader, or extruder, and cooled. Obtained by post-grinding.

本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。その他の半導体装置の製造方法は、公知の方法を用いることができる。   In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it can be cured by a conventional molding method such as transfer molding, compression molding, injection molding, etc. Good. As other semiconductor device manufacturing methods, known methods can be used.

以下に、実施例を挙げて本発明を説明するが、これらの実施例に限定されるものではない。配合割合は重量部とする。
実施例1
ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000K、融点105℃、エポキシ当量185) 4.67重量部
フェノールノボラック樹脂(軟化点80℃、水酸基当量105) 1.74重量部
ビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成(株)製、MEH−7851SS、軟化点65℃、水酸基当量203) 1.74重量部
トリフェニルホスフィン 0.15重量部
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The blending ratio is parts by weight.
Example 1
Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX4000K, melting point 105 ° C., epoxy equivalent 185) 4.67 parts by weight Phenol novolac resin (softening point 80 ° C., hydroxyl group equivalent 105) 1.74 parts by weight Phenol aralkyl resin (Maywa Kasei Co., Ltd., MEH-7851SS, softening point 65 ° C., hydroxyl group equivalent 203) 1.74 parts by weight Triphenylphosphine 0.15 parts by weight

式(4)で示されるシランカップリング剤 0.20重量部
Silane coupling agent represented by formula (4) 0.20 parts by weight

アルミナB(平均粒径38μm、比表面積0.1m/g、極大点粒径38μm)
55.00重量部
アルミナF(平均粒径3μm、比表面積0.8m/g、極大点粒径3μm)
22.50重量部
アルミナI(平均粒径0.7μm、比表面積6.3m/g、極大点粒径0.7μm)
10.00重量部
シリカA(平均粒径0.5μm、比表面積6.5m/g) 3.00重量部
シリカB(一次粒子12nm、比表面積200m/g) 0.50重量部
2,3−ジヒドロキシナフタレン(試薬) 0.20重量部
Alumina B (average particle size 38 μm, specific surface area 0.1 m 2 / g, maximum point particle size 38 μm)
55.00 parts by weight Alumina F (average particle size 3 μm, specific surface area 0.8 m 2 / g, maximum point particle size 3 μm)
22.50 parts by weight Alumina I (average particle size 0.7 μm, specific surface area 6.3 m 2 / g, maximum point particle size 0.7 μm)
10.00 parts by weight Silica A (average particle size 0.5 μm, specific surface area 6.5 m 2 / g) 3.00 parts by weight Silica B (primary particles 12 nm, specific surface area 200 m 2 / g) 0.50 parts by weight 2, 3-dihydroxynaphthalene (reagent) 0.20 parts by weight

式(5)で示されるシリコーンオイル 0.30重量部
Silicone oil represented by formula (5) 0.30 parts by weight

カルナバワックス 0.20重量部
カーボンブラック 0.30重量部
をミキサーで混合した後、表面温度が90℃と45℃の2本ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物とした。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
Carnauba wax 0.20 part by weight Carbon black 0.30 part by weight was mixed with a mixer, then kneaded using two rolls with surface temperatures of 90 ° C. and 45 ° C., cooled and ground to obtain an epoxy resin composition. . The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で測定した。単位はcm。
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. The unit is cm.

金線変形率:パッケージ反り量の評価で成形した352ピンBGAパッケージを軟X線透視装置で観察し、金線の変形率を(流れ量)/(金線長)の比率で表した。単位は%。   Gold wire deformation rate: A 352-pin BGA package molded by evaluation of the amount of warpage of the package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was expressed as a ratio of (flow amount) / (gold wire length). Units%.

パッケージ反り量:トランスファー成形機を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で352ピンBGA(基板は厚さ0.56mmのビスマレイミド・トリアジン樹脂/ガラスクロス基板、半導体装置のサイズは30mm×30mm、厚さ1.17mm、半導体素子のサイズ10mm×10mm、厚さ0.35mm、半導体素子と回路基板のボンディングパッドを25μm径の金線でボンディングしている。)を成形し、175℃、2時間で後硬化してサンプルを得た。得られた半導体装置各10個を室温に冷却後、パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変異差の最も大きい値を反り量とした。単位はμm。   Package warpage amount: Using a transfer molding machine, mold temperature of 175 ° C., injection pressure of 6.9 MPa, curing time of 2 minutes, 352 pin BGA (substrate is bismaleimide / triazine resin / glass cloth substrate with a thickness of 0.56 mm, semiconductor The size of the device is 30 mm × 30 mm, the thickness is 1.17 mm, the size of the semiconductor element is 10 mm × 10 mm, the thickness is 0.35 mm, and the bonding pad of the semiconductor element and the circuit board is bonded with a 25 μm diameter gold wire. A sample was obtained by molding and post-curing at 175 ° C. for 2 hours. After 10 semiconductor devices obtained were cooled to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the value with the largest variation difference was taken as the amount of warpage. The unit is μm.

バリ長さ:パッケージ反り量の評価で成形した352ピンBGAパッケージの約30μm厚のベント部から漏れる樹脂バリの長さを測定した。単位はmm。   Burr length: The length of the resin burr leaking from the vent part having a thickness of about 30 μm of the 352-pin BGA package formed by the evaluation of the amount of warping of the package was measured. The unit is mm.

耐半田性:パッケージ反り量の評価で成形した352ピンBGAパッケージを175℃、2時間で後硬化し、得られた半導体装置各10個を、60℃、相対湿度60%の環境下で168時間、又は85℃、相対湿度60%の環境下で168時間処理した後、ピーク温度260℃のIRリフロー処理(255℃以上が10秒)を行った。処理後の内部の剥離及びクラックの有無を超音波探傷機で観察し、不良半導体装置の個数を数えた。不良半導体装置の個数がn個であるとき、n/10と表示した。   Solder resistance: 352-pin BGA package molded by evaluation of package warpage amount is post-cured at 175 ° C. for 2 hours, and each of the obtained 10 semiconductor devices is 168 hours in an environment of 60 ° C. and 60% relative humidity. Or, after being treated for 168 hours in an environment of 85 ° C. and 60% relative humidity, IR reflow treatment (255 ° C. or more is 10 seconds) at a peak temperature of 260 ° C. was performed. The presence or absence of internal peeling and cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective semiconductor devices was counted. When the number of defective semiconductor devices was n, it was displayed as n / 10.

耐湿性:トランスファー成形機を用い、金型温度175℃、注入圧9.8MPa、硬化時間2分で16pSOP(モールドサイズ11mm×7mm、厚さ1.95mm、半導体素子サイズ3.5mm×3.0mm、厚さ0.48mm、半導体素子のボンディングパッドと42アロイフレームを25μm径の金線で12箇所ボンディングしている。半導体素子はアルミ配線幅10μm、配線間距離10μm、アルミ蒸着厚み1μm。)を成形し、175℃、2時間で後硬化してサンプルを得た。得られた半導体装置5個を室温に冷却後、140℃、相対湿度85%の環境下で20V印加(ボンディングした6箇所のうち6箇所を陽極、6箇所を陰極)、500Hr処理してからパッケージを取り出し、各々の端子にテスターを当てて回路の抵抗値を測定した。抵抗値が初期値の200%を超えたものを不良とし、不良箇所がn箇所であるときn/15と表示した(陽極:3箇所×5個、陰極:3箇所×5個)。   Moisture resistance: Using a transfer molding machine, mold temperature of 175 ° C., injection pressure of 9.8 MPa, curing time of 2 minutes, 16 pSOP (mold size 11 mm × 7 mm, thickness 1.95 mm, semiconductor element size 3.5 mm × 3.0 mm The semiconductor element bonding pad and 42 alloy frame are bonded to each other at 12 locations with a 25 μm diameter gold wire. The semiconductor element has an aluminum wiring width of 10 μm, an inter-wiring distance of 10 μm, and an aluminum deposition thickness of 1 μm. A sample was obtained by molding and post-curing at 175 ° C. for 2 hours. After 5 semiconductor devices obtained were cooled to room temperature, 20 V was applied in an environment of 140 ° C. and 85% relative humidity (6 of the 6 bonded locations were anodes and 6 locations were cathodes), treated for 500 hours, and then packaged. The resistance value of the circuit was measured by applying a tester to each terminal. When the resistance value exceeded 200% of the initial value, it was regarded as defective, and indicated as n / 15 when there were n defective portions (anode: 3 locations × 5, cathode: 3 locations × 5).

実施例2〜9、11〜8、参考例10、比較例1〜6
表1、表2、表3の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、同様に評価した。これらの評価結果を表1、表2、表3に示す。
実施例1以外で用いたアルミナ、シリコーンオイルなどを以下に示す。
1,8−ジアザビシクロ(5,4,0)ウンデセン−7
γ−メルカプトプロピルトリメトキシシラン
γ−グリシドキシプロピルトリメトキシシラン
アルミナA(平均粒径33μm、比表面積0.3m/g、極大点粒径33μm)
アルミナC(平均粒径49μm、比表面積0.1m/g、極大点粒径49μm)
アルミナD(平均粒径55μm、比表面積0.1m/g、極大点粒径55μm)
アルミナE(平均粒径1.5μm、比表面積5.0m/g、極大点粒径1.5μm)
アルミナG(平均粒径7μm、比表面積0.4m/g、極大点粒径7μm)
アルミナH(平均粒径10μm、比表面積0.4m/g、極大点粒径10μm)
1,2−ジヒドロキシナフタレン(試薬)
カテコール
1,6−ジヒドロキシナフタレン(試薬)
レゾルシノール(試薬)
Examples 2 to 9 , 11 to 8, Reference Example 10, Comparative Examples 1 to 6
According to the composition of Table 1, Table 2, and Table 3, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner. These evaluation results are shown in Table 1, Table 2, and Table 3.
Alumina, silicone oil, etc. used other than Example 1 are shown below.
1,8-diazabicyclo (5,4,0) undecene-7
γ-mercaptopropyltrimethoxysilane γ-glycidoxypropyltrimethoxysilane alumina A (average particle size 33 μm, specific surface area 0.3 m 2 / g, maximum point particle size 33 μm)
Alumina C (average particle size 49 μm, specific surface area 0.1 m 2 / g, maximum point particle size 49 μm)
Alumina D (average particle size 55 μm, specific surface area 0.1 m 2 / g, maximum point particle size 55 μm)
Alumina E (average particle size 1.5 μm, specific surface area 5.0 m 2 / g, maximum point particle size 1.5 μm)
Alumina G (average particle size 7 μm, specific surface area 0.4 m 2 / g, maximum point particle size 7 μm)
Alumina H (average particle size 10 μm, specific surface area 0.4 m 2 / g, maximum point particle size 10 μm)
1,2-dihydroxynaphthalene (reagent)
Catechol 1,6-dihydroxynaphthalene (reagent)
Resorcinol (reagent)

式(6)で示されるシリコーンオイル
Silicone oil represented by formula (6)

本発明の半導体封止用エポキシ樹脂組成物は、反り、耐半田性、耐湿性に優れたものであり、これらの特性が要求される分野、例えばエリア実装型半導体装置等への適用が有用である。   The epoxy resin composition for semiconductor encapsulation of the present invention has excellent warpage, solder resistance, and moisture resistance, and is useful for application to fields requiring these characteristics, such as area mounting type semiconductor devices. is there.

Claims (8)

エポキシ樹脂(A)、フェノール樹脂(B)、硬化促進剤(C)、一般式(1)で示されるシランカップリング剤(D)、球状アルミナ(E)、およびナフタレン環に2個の隣接した水酸基を有し、かつ該水酸基以外の置換基を有するか、又は有しない化合物(F)を含むことを特徴とする半導体封止用エポキシ樹脂組成物。

(Rは炭素数1〜12の有機基。R は炭素数1〜12のアルキレン基。、Rは炭素数1〜12のアルキル基。nは1〜3の整数。)
Two adjacent epoxy resins (A), phenolic resin (B), curing accelerator (C), silane coupling agent (D) represented by general formula (1), spherical alumina (E), and naphthalene ring An epoxy resin composition for semiconductor encapsulation, comprising a compound (F) having a hydroxyl group and having or not having a substituent other than the hydroxyl group.

(R 1 is an organic group having 1 to 12 carbon atoms. R 2 is an alkylene group having 1 to 12 carbon atoms. R 3 and R 4 are alkyl groups having 1 to 12 carbon atoms. N is an integer of 1 to 3)
全エポキシ樹脂組成物中に、更に0.05〜0.5重量%のシリコーンオイル(G)を含有する請求項1記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1, further comprising 0.05 to 0.5% by weight of silicone oil (G) in the total epoxy resin composition. 前記球状アルミナ(E)の粒度分布が、0.5〜1μm、3〜8μm、36〜50μmとの3箇所に極大点を有する請求項1又は2記載の半導体封止用エポキシ樹脂組成物。 3. The epoxy resin composition for encapsulating a semiconductor according to claim 1, wherein the spherical alumina (E) has a particle size distribution of three points of 0.5 to 1 μm, 3 to 8 μm , and 36 to 50 μm. . 請求項1、2又は3のいずれかに記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1. 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみの封止に用いるものであって、エポキシ樹脂(A)、フェノール樹脂(B)、硬化促進剤(C)、一般式(1)で示されるシランカップリング剤(D)、球状アルミナ(E)、およびナフタレン環に2個の隣接した水酸基を有し、かつ該水酸基以外の置換基を有するか、又は有しない化合物(F)を含むことを特徴とするエリア実装型半導体封止用エポキシ樹脂組成物。

(Rは炭素数1〜12の有機基。R は炭素数1〜12のアルキレン基。、Rは炭素数1〜12のアルキル基。nは1〜3の整数。)
A semiconductor element is mounted on one side of a substrate, and is used for sealing substantially only one side of the substrate surface on which this semiconductor element is mounted. Epoxy resin (A), phenol resin (B), curing acceleration Agent (C), silane coupling agent (D) represented by general formula (1), spherical alumina (E), and having two adjacent hydroxyl groups on the naphthalene ring, and having a substituent other than the hydroxyl group Or an epoxy resin composition for encapsulating an area-mounting semiconductor, comprising a compound (F) that does or does not exist.

(R 1 is an organic group having 1 to 12 carbon atoms. R 2 is an alkylene group having 1 to 12 carbon atoms. R 3 and R 4 are alkyl groups having 1 to 12 carbon atoms. N is an integer of 1 to 3)
全エポキシ樹脂組成物中に、更に0.05〜0.5重量%のシリコーンオイル(G)を含有する請求項5記載のエリア実装型半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for area mounting type semiconductor encapsulation according to claim 5, further comprising 0.05 to 0.5% by weight of silicone oil (G) in the total epoxy resin composition. 前記球状アルミナ(E)の粒度分布が、0.5〜1μm、3〜8μm、36〜50μmとの3箇所に極大点を有する請求項5又は6記載のエリア実装型半導体封止用エポキシ樹脂組成物。 The area-mounting type semiconductor sealing epoxy according to claim 5 or 6, wherein the spherical alumina (E) has a particle size distribution of 0.5 to 1 µm, 3 to 8 µm , and 36 to 50 µm at three points. Resin composition. 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが請求項5、6又は7のいずれかに記載のエリア実装型半導体封止用エポキシ樹脂組成物を用いて封止されていることを特徴とするエリア実装型半導体装置。
8. The area mounting type semiconductor sealing epoxy resin composition according to claim 5, wherein a semiconductor element is mounted on one side of the substrate, and substantially only one side of the substrate side on which the semiconductor element is mounted. An area-mounting semiconductor device which is sealed with an object.
JP2009253085A 2009-11-04 2009-11-04 Epoxy resin composition and semiconductor device Expired - Lifetime JP5407767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253085A JP5407767B2 (en) 2009-11-04 2009-11-04 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253085A JP5407767B2 (en) 2009-11-04 2009-11-04 Epoxy resin composition and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004015838A Division JP4496786B2 (en) 2004-01-23 2004-01-23 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2010024464A JP2010024464A (en) 2010-02-04
JP5407767B2 true JP5407767B2 (en) 2014-02-05

Family

ID=41730560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253085A Expired - Lifetime JP5407767B2 (en) 2009-11-04 2009-11-04 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5407767B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983085B2 (en) * 2012-06-25 2016-08-31 住友ベークライト株式会社 Epoxy resin composition and electronic component device
JP6712895B2 (en) * 2016-04-15 2020-06-24 京セラ株式会社 Powder-granular resin composition for semiconductor encapsulation and semiconductor device
JP7238791B2 (en) * 2017-12-28 2023-03-14 株式会社レゾナック Encapsulating composition and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206988A (en) * 1994-01-19 1995-08-08 Hitachi Chem Co Ltd Epoxy resin molding-material for sealing electronic part
JP3483817B2 (en) * 1999-12-01 2004-01-06 電気化学工業株式会社 Spherical inorganic powder and its use
JP2002348442A (en) * 2000-12-28 2002-12-04 Hitachi Chem Co Ltd Sealing epoxy resin molding material and semiconductor device
JP5364963B2 (en) * 2001-09-28 2013-12-11 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP4404050B2 (en) * 2003-03-11 2010-01-27 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device using the same

Also Published As

Publication number Publication date
JP2010024464A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4496786B2 (en) Epoxy resin composition and semiconductor device
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
JP4250996B2 (en) Epoxy resin composition and semiconductor device
JP4569137B2 (en) Semiconductor sealing resin composition and semiconductor device
JP4973322B2 (en) Epoxy resin composition and semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JP2020152844A (en) Sealing resin composition and electronic device
JP2006152185A (en) Epoxy resin composition and semiconductor device
JP5407767B2 (en) Epoxy resin composition and semiconductor device
JP4525139B2 (en) The manufacturing method of the epoxy resin composition for semiconductor sealing.
JP3562565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
KR20130064000A (en) Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4525141B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation and method for producing epoxy resin composition for area mounting type semiconductor encapsulation
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP4543638B2 (en) Epoxy resin composition and semiconductor device
JP4765294B2 (en) Semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP5093977B2 (en) Area mounted semiconductor device
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JP2017128657A (en) Sealing epoxy resin composition, and semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150