JP7238791B2 - Encapsulating composition and semiconductor device - Google Patents

Encapsulating composition and semiconductor device Download PDF

Info

Publication number
JP7238791B2
JP7238791B2 JP2019562046A JP2019562046A JP7238791B2 JP 7238791 B2 JP7238791 B2 JP 7238791B2 JP 2019562046 A JP2019562046 A JP 2019562046A JP 2019562046 A JP2019562046 A JP 2019562046A JP 7238791 B2 JP7238791 B2 JP 7238791B2
Authority
JP
Japan
Prior art keywords
inorganic filler
particle size
mass
alumina
sealing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019562046A
Other languages
Japanese (ja)
Other versions
JPWO2019131669A1 (en
Inventor
健太 石橋
格 山浦
拓也 児玉
実佳 田中
慧地 堀
東哲 姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2019131669A1 publication Critical patent/JPWO2019131669A1/en
Priority to JP2023032122A priority Critical patent/JP2023067951A/en
Application granted granted Critical
Publication of JP7238791B2 publication Critical patent/JP7238791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、封止組成物及び半導体装置に関する。 The present invention relates to encapsulation compositions and semiconductor devices.

近年、小型化及び高集積化に伴い、半導体パッケージ内部の発熱が懸念されている。発熱により、半導体パッケージを有する電気部品又は電子部品の性能低下が生じる恐れがあるため、半導体パッケージに使用される部材には、高い熱伝導性が求められている。そのため、半導体パッケージの封止材を高熱伝導化することが求められている。
封止材を高熱伝導化する手法の一つとして、封止材に含まれる無機充填材に高熱伝導性フィラーであるアルミナを用いる方法が挙げられる(例えば、特許文献1参照)。
In recent years, with miniaturization and high integration, there is concern about heat generation inside a semiconductor package. Since heat generation may deteriorate the performance of electrical or electronic components having semiconductor packages, members used in semiconductor packages are required to have high thermal conductivity. Therefore, it is required to improve the thermal conductivity of the sealing material of the semiconductor package.
As one method for increasing the thermal conductivity of the sealing material, there is a method of using alumina, which is a highly thermally conductive filler, as an inorganic filler contained in the sealing material (see, for example, Patent Document 1).

特開2006-273920号公報JP 2006-273920 A

しかし、特許文献1に記載の方法では、封止材の流動性が悪化することがある。例えば、半導体素子と基板とをワイヤを介して接続するワイヤボンディング構造と呼ばれる方法を採用した半導体パッケージは、半導体素子と、基板と、これらを電気的に接続しているワイヤとを樹脂組成物で封止することにより形成される。その際、封止材の流動によりワイヤに圧力がかかり、ワイヤの位置ずれ(ワイヤ流れ)が生じたり、半導体素子の保護が充分にされないことがある。
このように、封止材の流動性と高熱伝導性とを両立することは、困難な場合がある。
However, in the method described in Patent Document 1, the fluidity of the sealing material may deteriorate. For example, in a semiconductor package employing a method called wire bonding structure in which a semiconductor element and a substrate are connected via wires, a semiconductor element, a substrate, and wires electrically connecting them are made of a resin composition. It is formed by sealing. At this time, pressure is applied to the wires due to the flow of the encapsulant, which may cause displacement of the wires (wire drift) and insufficient protection of the semiconductor element.
Thus, it may be difficult to achieve both fluidity and high thermal conductivity of the sealing material.

本発明の一形態は、上記従来の事情に鑑みてなされたものであり、流動性に優れ高い熱伝導性を有する封止組成物及びそれを用いた半導体装置を提供することを目的とする。 An object of the present invention is to provide a sealing composition having excellent fluidity and high thermal conductivity, and a semiconductor device using the same.

前記課題を達成するための具体的手段は以下の通りである。
<1> エポキシ樹脂と、硬化剤と、無機充填材とを含有し、
前記無機充填材の粒度分布が、少なくとも3つのピークを有し、
前記無機充填材が、粒子径が1μm以下のアルミナを含む封止組成物。
<2> 前記無機充填材の粒度分布が、0.3μm~0.7μmの範囲、7μm~20μmの範囲及び30μm~70μmの範囲にピークを有する<1>に記載の封止組成物。
<3> 前記無機充填材に含まれる粒子径が1μm以下の無機粒子に占めるアルミナの割合が、1体積%~40体積%である<1>又は<2>に記載の封止組成物。
<4> 前記無機充填材の平均円形度が、0.80以上である<1>~<3>のいずれか1項に記載の封止組成物。
<5> 半導体素子と、前記半導体素子を封止してなる<1>~<4>のいずれか1項に記載の封止組成物の硬化物と、を含む半導体装置。
Specific means for achieving the above object are as follows.
<1> Contains an epoxy resin, a curing agent, and an inorganic filler,
the particle size distribution of the inorganic filler has at least three peaks;
The sealing composition, wherein the inorganic filler contains alumina having a particle size of 1 μm or less.
<2> The sealing composition according to <1>, wherein the particle size distribution of the inorganic filler has peaks in the range of 0.3 μm to 0.7 μm, 7 μm to 20 μm, and 30 μm to 70 μm.
<3> The sealing composition according to <1> or <2>, wherein the proportion of alumina in the inorganic particles having a particle diameter of 1 μm or less contained in the inorganic filler is 1% by volume to 40% by volume.
<4> The sealing composition according to any one of <1> to <3>, wherein the inorganic filler has an average circularity of 0.80 or more.
<5> A semiconductor device comprising a semiconductor element and a cured product of the sealing composition according to any one of <1> to <4>, obtained by sealing the semiconductor element.

本発明の一形態によれば、流動性に優れ高い熱伝導性を有する封止組成物及びそれを用いた半導体装置を提供することができる。 ADVANTAGE OF THE INVENTION According to one form of this invention, the sealing composition which has excellent fluidity|liquidity and high thermal conductivity, and a semiconductor device using the same can be provided.

以下、本発明の封止組成物及び半導体装置を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示においては、各成分に該当する粒子を複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
Modes for carrying out the encapsulating composition and semiconductor device of the present invention will be described in detail below. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present invention.
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. . Moreover, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be included. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.

<封止組成物>
本開示の封止組成物は、エポキシ樹脂と、硬化剤と、無機充填材とを含有し、前記無機充填材の粒度分布が、少なくとも3つのピークを有し、前記無機充填材が、粒子径が1μm以下のアルミナを含む。
本開示の封止組成物は、流動性に優れ高い熱伝導性を有する。その理由は明確ではないが、以下のように推察される。
封止組成物に含まれる無機充填材は、少なくとも3つのピークを有する粒度分布を示す。つまり、無機充填材は、少なくとも、大粒子径の無機粒子と中粒子径の無機粒子と小粒子径の無機粒子とを含んで構成される。無機充填材が大粒子径の無機粒子と中粒子径の無機粒子と小粒子径の無機粒子とを含むため、本開示の封止組成物は流動性に優れると考えられる。
また、無機充填材は、粒子径が1μm以下のアルミナを含むところ、アルミナは上述のように、高い熱伝導性を示す。また、粒子径が1μm以下のアルミナは、封止組成物に含まれる無機充填材としては、小粒子径の無機粒子に該当する。小粒子径の無機粒子としてアルミナを含むことで、大粒子径の無機粒子及び中粒子径の無機粒子の間に小粒子径の無機粒子であるアルミナが介在しやすくなる。高い熱伝導性を示すアルミナが大粒子径の無機粒子及び中粒子径の無機粒子の間に介在することで、大粒子径の無機粒子及び中粒子径の無機粒子の間の熱伝導を促進することができる。その結果として、本開示の封止組成物は高い熱伝導性を有すると推察される。
<Sealing composition>
The encapsulating composition of the present disclosure contains an epoxy resin, a curing agent, and an inorganic filler, wherein the particle size distribution of the inorganic filler has at least three peaks, and the inorganic filler has a particle size of contains alumina of 1 μm or less.
The sealing composition of the present disclosure has excellent fluidity and high thermal conductivity. Although the reason is not clear, it is presumed as follows.
The inorganic filler contained in the sealing composition exhibits a particle size distribution with at least three peaks. That is, the inorganic filler contains at least inorganic particles with a large particle size, inorganic particles with a medium particle size, and inorganic particles with a small particle size. Since the inorganic filler contains large particle size inorganic particles, medium particle size inorganic particles, and small particle size inorganic particles, the sealing composition of the present disclosure is believed to have excellent fluidity.
Further, the inorganic filler contains alumina having a particle size of 1 μm or less, and alumina exhibits high thermal conductivity as described above. In addition, alumina having a particle size of 1 μm or less corresponds to inorganic particles having a small particle size as an inorganic filler contained in the sealing composition. By including alumina as the inorganic particles with a small particle size, the alumina, which is an inorganic particle with a small particle size, is likely to intervene between the inorganic particles with a large particle size and the inorganic particles with a medium particle size. Alumina, which exhibits high thermal conductivity, is interposed between the large-particle-size inorganic particles and the medium-particle-size inorganic particles, thereby promoting heat conduction between the large-particle-size inorganic particles and the medium-particle-size inorganic particles. be able to. As a result, the encapsulating compositions of the present disclosure are expected to have high thermal conductivity.

以下、封止組成物を構成する各成分について説明する。本開示の封止組成物は、エポキシ樹脂と、硬化剤と、無機充填材とを含有し、必要に応じてその他の成分を含有してもよい。 Each component constituting the sealing composition will be described below. The encapsulating composition of the present disclosure contains an epoxy resin, a curing agent, an inorganic filler, and optionally other ingredients.

-エポキシ樹脂-
封止組成物は、エポキシ樹脂を含有する。エポキシ樹脂の種類は特に限定されず、公知のエポキシ樹脂を使用することができる。
具体的には、例えば、フェノール化合物(例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA及びビスフェノールF)並びにナフトール化合物(例えば、α-ナフトール、β-ナフトール及びジヒドロキシナフタレン)からなる群より選択される少なくとも1種と、アルデヒド化合物(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド)と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの(例えば、フェノールノボラック型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂);ビスフェノール(例えば、ビスフェノールA、ビスフェノールAD、ビスフェノールF及びビスフェノールS)及びビフェノール(例えば、アルキル置換及び非置換のビフェノール)からなる群より選択される少なくとも1種のジグリシジルエーテル;フェノール・アラルキル樹脂のエポキシ化物;フェノール化合物とジシクロペンタジエン及びテルペン化合物からなる群より選択される少なくとも1種との付加物又は重付加物のエポキシ化物;多塩基酸(例えば、フタル酸及びダイマー酸)とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂;ポリアミン(例えば、ジアミノジフェニルメタン及びイソシアヌル酸)とエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂;オレフィン結合を過酸(例えば、過酢酸)で酸化して得られる線状脂肪族エポキシ樹脂;並びに脂環族エポキシ樹脂が挙げられる。エポキシ樹脂は、1種類を単独で使用しても、2種類以上を併用してもよい。
-Epoxy resin-
The encapsulating composition contains an epoxy resin. The type of epoxy resin is not particularly limited, and known epoxy resins can be used.
Specifically, for example, selected from the group consisting of phenol compounds (e.g., phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F) and naphthol compounds (e.g., α-naphthol, β-naphthol and dihydroxynaphthalene) and an aldehyde compound (e.g., formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde) under an acidic catalyst, and an epoxidized novolak resin obtained by condensation or co-condensation (e.g., phenol novolak-type epoxy resins and ortho-cresol novolak-type epoxy resins); one diglycidyl ether; epoxidized phenol-aralkyl resin; epoxidized adduct or polyadduct of a phenol compound and at least one selected from the group consisting of dicyclopentadiene and terpene compounds; polybasic acid ( Glycidyl ester type epoxy resin obtained by reaction of epichlorohydrin with epichlorohydrin; glycidylamine type epoxy resin obtained by reaction of polyamine (e.g. diaminodiphenylmethane and isocyanuric acid) with epichlorohydrin; linear aliphatic epoxy resins obtained by oxidation with (eg, peracetic acid); and cycloaliphatic epoxy resins. Epoxy resins may be used alone or in combination of two or more.

集積回路(Integrated Circuit、IC)等の素子上のアルミニウム配線又は銅配線の腐食防止の観点から、エポキシ樹脂の純度は高い方が好ましく、加水分解性塩素量は少ない方が好ましい。封止組成物の耐湿性の向上の観点からは、加水分解性塩素量は質量基準で500ppm以下であることが好ましい。 From the viewpoint of preventing corrosion of aluminum wiring or copper wiring on elements such as integrated circuits (ICs), the epoxy resin preferably has a high purity and a low hydrolyzable chlorine content. From the viewpoint of improving the moisture resistance of the sealing composition, the amount of hydrolyzable chlorine is preferably 500 ppm or less on a mass basis.

ここで、加水分解性塩素量は、試料のエポキシ樹脂1gをジオキサン30mLに溶解し、1N-KOHメタノール溶液5mLを添加して30分間リフラックスした後、電位差滴定により求めた値である。 Here, the amount of hydrolyzable chlorine is a value determined by potentiometric titration after dissolving 1 g of a sample epoxy resin in 30 mL of dioxane, adding 5 mL of 1N-KOH methanol solution and refluxing for 30 minutes.

封止組成物に占めるエポキシ樹脂の含有率は、1.5質量%~20質量%であることが好ましく、2.0質量%~15質量%であることがより好ましく、3.0質量%~10質量%であることがさらに好ましい。
無機充填材を除く封止組成物に占めるエポキシ樹脂の含有率は、30質量%~65質量%であることが好ましく、35質量%~60質量%であることがより好ましく、40質量%~55質量%であることがさらに好ましい。
The content of the epoxy resin in the sealing composition is preferably 1.5% by mass to 20% by mass, more preferably 2.0% by mass to 15% by mass, and 3.0% by mass to It is more preferably 10% by mass.
The content of the epoxy resin in the sealing composition excluding the inorganic filler is preferably 30% by mass to 65% by mass, more preferably 35% by mass to 60% by mass, and 40% by mass to 55% by mass. % by mass is more preferred.

-硬化剤-
封止組成物は、硬化剤を含有する。硬化剤の種類は特に限定されず、公知の硬化剤を使用することができる。
具体的には、例えば、フェノール化合物(例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA及びビスフェノールF)並びにナフトール化合物(例えば、α-ナフトール、β-ナフトール及びジヒドロキシナフタレン)からなる群より選択される少なくとも1種と、アルデヒド化合物(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド)とを、酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂;フェノール・アラルキル樹脂;ビフェニル・アラルキル樹脂;並びにナフトール・アラルキル樹脂;が挙げられる。硬化剤は1種類を単独で使用しても、2種類以上を併用してもよい。中でも、硬化剤としては、耐リフロー性向上の観点から、フェノール・アラルキル樹脂が好ましい。硬化剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
-Curing agent-
The sealing composition contains a curing agent. The type of curing agent is not particularly limited, and known curing agents can be used.
Specifically, for example, selected from the group consisting of phenolic compounds (e.g., phenol, cresol, resorcinol, catechol, bisphenol A and bisphenol F) and naphthol compounds (e.g., α-naphthol, β-naphthol and dihydroxynaphthalene) Novolak resins obtained by condensation or co-condensation of at least one kind of aldehyde compound (e.g., formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde) under an acidic catalyst; phenol-aralkyl resins; biphenyl-aralkyl resins; and naphthol-aralkyl resins; One type of curing agent may be used alone, or two or more types may be used in combination. Among them, the curing agent is preferably a phenol-aralkyl resin from the viewpoint of improving reflow resistance. Curing agents may be used alone or in combination of two or more.

硬化剤の官能基(例えば、ノボラック樹脂の場合にはフェノール性水酸基)の当量がエポキシ樹脂のエポキシ基1当量に対して0.5当量~1.5当量になるように、硬化剤が配合されることが好ましく、特に、0.7当量~1.2当量になるように硬化剤が配合されることが好ましい。 The curing agent is blended so that the equivalent of the functional group (for example, phenolic hydroxyl group in the case of novolak resin) of the curing agent is 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group of the epoxy resin. It is particularly preferred that the curing agent is blended in an amount of 0.7 to 1.2 equivalents.

-無機充填材-
封止組成物は、無機充填材を含む。無機充填材を含むことで、封止組成物の吸湿性が低減し、硬化状態での強度が向上する傾向にある。
-Inorganic filler-
The encapsulating composition includes an inorganic filler. Including an inorganic filler tends to reduce the hygroscopicity of the sealing composition and improve the strength in a cured state.

無機充填材は、1種類を単独で使用しても、2種類以上を併用してもよい。
無機充填材を2種類以上併用する場合としては、例えば、成分、平均粒子径、形状等が異なる無機充填材を2種類以上用いる場合が挙げられる。
無機充填材の形状は特に制限されず、例えば、粉状、球状、繊維状等が挙げられる。封止組成物の成形時の流動性及び金型摩耗性の点からは、球状であることが好ましい。
An inorganic filler may be used individually by 1 type, or may use 2 or more types together.
Examples of the combined use of two or more inorganic fillers include the use of two or more inorganic fillers having different components, average particle sizes, shapes, and the like.
The shape of the inorganic filler is not particularly limited, and examples thereof include powdery, spherical, fibrous and the like. A spherical shape is preferable from the viewpoint of fluidity during molding of the sealing composition and mold wear resistance.

無機充填材の平均円形度は、0.80以上であることが好ましく、0.85以上であることがより好ましく、0.90以上であることがさらに好ましく、0.93以上であることが特に好ましい。また、無機充填材の平均円形度は、1.0以下であってもよい。
無機充填材の円形度とは、無機充填材の投影面積と同じ面積を持つ円の直径である円相当径から算出される円としての周囲長を、無機充填材の投影像から測定される周囲長(輪郭線の長さ)で除して得られる数値であり、下記式で求められる。尚、円形度は真円では1.00となる。
円形度=(相当円の周囲長)/(粒子断面像の周囲長)
具体的に平均円形度は、走査型電子顕微鏡で倍率1000倍に拡大した画像を観察し、任意に10個の無機充填材を選択し、上記方法にて個々の無機充填材の円形度を測定し、その算術平均値として算出される値である。なお、円形度、相当円の周囲長及び粒子の投影像の周囲長は、市販されている画像解析ソフトによって求めることが可能である。
無機充填材として2種類以上が併用される場合、無機充填材の平均円形度は、2種類以上の無機充填材の混合物としての値をいう。
The average circularity of the inorganic filler is preferably 0.80 or more, more preferably 0.85 or more, still more preferably 0.90 or more, and particularly preferably 0.93 or more. preferable. Moreover, the average circularity of the inorganic filler may be 1.0 or less.
The circularity of an inorganic filler is the circumference of a circle calculated from the equivalent circle diameter, which is the diameter of a circle having the same area as the projected area of the inorganic filler, and the circumference measured from the projected image of the inorganic filler. It is a numerical value obtained by dividing by the length (the length of the contour line), and is obtained by the following formula. The degree of circularity is 1.00 for a perfect circle.
Circularity = (perimeter of equivalent circle)/(perimeter of particle cross-sectional image)
Specifically, the average circularity is obtained by observing an image magnified 1000 times with a scanning electron microscope, arbitrarily selecting 10 inorganic fillers, and measuring the circularity of each inorganic filler by the above method. and calculated as the arithmetic mean value. The degree of circularity, the perimeter of the equivalent circle, and the perimeter of the projected image of the particle can be determined by commercially available image analysis software.
When two or more kinds of inorganic fillers are used in combination, the average circularity of the inorganic fillers means a value of a mixture of two or more kinds of inorganic fillers.

無機充填材としては、粒度分布が、少なくとも3つのピークを有し、粒子径が1μm以下のアルミナを含むものであれば、材質、粒子径等について特に限定されるものではない。
無機充填材としては、球状シリカ、結晶シリカ等のシリカ、アルミナ、ジルコン、酸化マグネシウム、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化ホウ素、窒化アルミニウム、ベリリア、ジルコニアなどが挙げられる。さらに、難燃効果のある無機充填材としては水酸化アルミニウム、硼酸亜鉛等が挙げられる。これらの中でも、高熱伝導性の観点からはアルミナが好ましい。
無機充填材に占めるアルミナの割合は、60質量%~95質量%であることが好ましく、60質量%~92質量%であることがより好ましく、60質量%~90質量%であることがさらに好ましい。
無機充填材としては、アルミナとシリカとを併用してもよい。無機充填材としてアルミナとシリカとを併用する場合、無機充填材に占めるアルミナの割合が80質量%~95質量%であり、シリカの割合が5質量%~20質量%であることが好ましく、アルミナの割合が82質量%~92質量%であり、シリカの割合が8質量%~18質量%であることがより好ましく、アルミナの割合が85質量%~90質量%であり、シリカの割合が10質量%~15質量%であることがさらに好ましい。
The inorganic filler is not particularly limited as long as it has at least three peaks in the particle size distribution and contains alumina with a particle size of 1 μm or less.
Examples of inorganic fillers include silica such as spherical silica and crystalline silica, alumina, zircon, magnesium oxide, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, boron nitride, aluminum nitride, beryllia, and zirconia. be done. Furthermore, examples of inorganic fillers having a flame retardant effect include aluminum hydroxide and zinc borate. Among these, alumina is preferable from the viewpoint of high thermal conductivity.
The proportion of alumina in the inorganic filler is preferably 60% by mass to 95% by mass, more preferably 60% by mass to 92% by mass, and even more preferably 60% by mass to 90% by mass. .
As the inorganic filler, alumina and silica may be used together. When alumina and silica are used together as inorganic fillers, the proportion of alumina in the inorganic filler is preferably 80% by mass to 95% by mass, and the proportion of silica is preferably 5% by mass to 20% by mass. More preferably, the proportion of silica is 82% to 92% by mass, the proportion of silica is 8% to 18% by mass, the proportion of alumina is 85% to 90% by mass, and the proportion of silica is 10% by mass. More preferably, it is in the range of 15% by mass to 15% by mass.

無機充填材の粒度分布は、少なくとも3つのピークを有するものであり、3つのピークを有することが好ましい。無機充填材の粒度分布におけるピークの位置は特に限定されるものではなく、例えば、0.3μm~0.7μmの範囲、7μm~20μmの範囲及び30μm~70μmの範囲にピークを有することが好ましく、0.3μm~0.6μmの範囲、7μm~15μmの範囲及び40μm~70μmの範囲にピークを有することがより好ましい。 The particle size distribution of the inorganic filler has at least three peaks, preferably three peaks. The position of the peak in the particle size distribution of the inorganic filler is not particularly limited. It is more preferred to have peaks in the range of 0.3 μm to 0.6 μm, 7 μm to 15 μm and 40 μm to 70 μm.

無機充填材の粒度分布は、下記方法で求めることができる。
溶媒(純水)に、測定対象の無機充填材を0.02質量%~0.08質量%の範囲内で添加し、110Wのバス式超音波洗浄機で1分~10分振動し、無機充填材を分散する。分散液の約40mL程度を測定セルに注入して25℃で測定する。測定装置は、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920(商品名))にて、体積基準の粒度分布を測定する。なお、屈折率はアルミナの屈折率を用いる。無機充填材がアルミナとアルミナ以外の無機充填材の混合物である場合においても、屈折率はアルミナの屈折率を用いるものとする。
The particle size distribution of the inorganic filler can be obtained by the following method.
Add the inorganic filler to be measured to the solvent (pure water) within the range of 0.02% by mass to 0.08% by mass, vibrate with a 110W bath-type ultrasonic cleaner for 1 minute to 10 minutes, Distribute the filler. About 40 mL of the dispersion liquid is injected into the measurement cell and measured at 25°C. The measuring device measures the volume-based particle size distribution with a laser diffraction/scattering particle size distribution measuring device (for example, Horiba, Ltd., LA920 (trade name)). Note that the refractive index of alumina is used as the refractive index. Even when the inorganic filler is a mixture of alumina and an inorganic filler other than alumina, the refractive index of alumina shall be used as the refractive index.

無機充填材に含まれる粒子径が1μm以下の無機粒子に占めるアルミナの割合は、1体積%~40体積%であることが好ましく、10体積%~35体積%であることがより好ましく、15体積%~30体積%であることがさらに好ましい。
無機充填材に含まれる粒子径が1μm以下の無機粒子に占めるアルミナの割合は、以下の方法により測定することができる。
走査型電子顕微鏡により粒子径が1μm以下と確認された各無機粒子について、エネルギー分散型X線分析(Energy dispersive X-ray spectrometry)により構成元素を同定し、無機粒子の材質を確定する。1μm以下の無機粒子50個に占めるアルミナの体積基準の割合を求めることで、無機充填材に含まれる粒子径が1μm以下の無機粒子に占めるアルミナの割合を求めることができる。各無機粒子の粒子径は、投影面積と同じ面積を持つ円の直径である円相当径とする。
The proportion of alumina in the inorganic particles having a particle diameter of 1 μm or less contained in the inorganic filler is preferably 1% by volume to 40% by volume, more preferably 10% by volume to 35% by volume, and 15% by volume. % to 30% by volume is more preferred.
The ratio of alumina to the inorganic particles having a particle diameter of 1 μm or less contained in the inorganic filler can be measured by the following method.
For each inorganic particle confirmed to have a particle diameter of 1 μm or less by a scanning electron microscope, the constituent elements are identified by energy dispersive X-ray spectrometry to determine the material of the inorganic particle. By determining the volume-based ratio of alumina to 50 inorganic particles of 1 μm or less, it is possible to obtain the ratio of alumina to the inorganic particles of 1 μm or less in particle size contained in the inorganic filler. The particle diameter of each inorganic particle is the equivalent circle diameter, which is the diameter of a circle having the same area as the projected area.

無機充填材に含まれる粒子径が10μm以上の無機粒子に占めるアルミナの割合は、20体積%~60体積%であることが好ましく、25体積%~55体積%であることがより好ましく、30体積%~50体積%であることがさらに好ましい。
無機充填材に含まれる粒子径が10μm以上の無機粒子に占めるアルミナの割合は、無機充填材に含まれる粒子径が1μm以下の無機粒子に占めるアルミナの割合と同様にして求めることができる。
The proportion of alumina in the inorganic particles having a particle diameter of 10 μm or more contained in the inorganic filler is preferably 20% to 60% by volume, more preferably 25% to 55% by volume, and 30% by volume. % to 50% by volume is more preferred.
The ratio of alumina to the inorganic particles having a particle diameter of 10 μm or more contained in the inorganic filler can be obtained in the same manner as the ratio of alumina to the inorganic particles having a particle diameter of 1 μm or less contained in the inorganic filler.

無機充填材の配合量としては、吸湿性、線膨張係数の低減、強度向上及びはんだ耐熱性の観点から、封止組成物全体に対して75質量%~97質量%の範囲内であることが好ましく、80質量%~95質量%の範囲内であることがより好ましい。 The amount of the inorganic filler to be blended is in the range of 75% by mass to 97% by mass with respect to the entire encapsulating composition from the viewpoint of hygroscopicity, reduction of linear expansion coefficient, improvement of strength and resistance to soldering heat. Preferably, it is more preferably in the range of 80% by mass to 95% by mass.

無機充填材が少なくとも3つのピークを有する粒度分布を示すためには、例えば、平均粒子径の異なる3種類の無機充填材を配合する方法が挙げられるが、これに限定されることはない。例えば、平均粒子径が0.3μm~0.7μmの無機充填材と、平均粒子径が7μm~20μmの無機充填材と、平均粒子径が30μm~70μmの無機充填材とを併用してもよい。
無機充填材全体としての平均粒子径は、4μm~30μmであることが好ましく、5μm~25μmであることがより好ましく、6μm~20μmであることがさらに好ましい。
無機充填材の平均粒子径は、無機充填材の粒度分布の測定の場合と同様にして調製した無機充填材の分散液を用い、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920(商品名))にて測定される体積基準の粒度分布において、小径側からの累積が50%となるときの粒子径(D50%)として求められる。
In order for the inorganic filler to exhibit a particle size distribution having at least three peaks, for example, a method of blending three types of inorganic fillers with different average particle diameters can be mentioned, but it is not limited to this. For example, an inorganic filler with an average particle size of 0.3 μm to 0.7 μm, an inorganic filler with an average particle size of 7 μm to 20 μm, and an inorganic filler with an average particle size of 30 μm to 70 μm may be used in combination. .
The average particle size of the inorganic filler as a whole is preferably 4 μm to 30 μm, more preferably 5 μm to 25 μm, even more preferably 6 μm to 20 μm.
The average particle size of the inorganic filler is determined using a dispersion of the inorganic filler prepared in the same manner as in the measurement of the particle size distribution of the inorganic filler, and using a laser diffraction/scattering particle size distribution measuring device (for example, Horiba Co., Ltd. In the volume-based particle size distribution measured by Seisakusho LA920 (trade name)), it is determined as the particle diameter (D50%) when the accumulation from the small diameter side is 50%.

(硬化促進剤)
封止組成物は、硬化促進剤をさらに含有してもよい。硬化促進剤の種類は特に制限されず、公知の硬化促進剤を使用することができる。
具体的には、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、1,5-ジアザ-ビシクロ[4.3.0]ノネン、5,6-ジブチルアミノ-1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のシクロアミジン化合物;シクロアミジン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物、3級アミン化合物の誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物、イミダゾール化合物の誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩、テトラフェニルボロン塩の誘導体;トリフェニルホスホニウム-トリフェニルボラン、N-メチルモルホリンテトラフェニルホスホニウム-テトラフェニルボレート等のホスフィン化合物とテトラフェニルボロン塩との付加物などが挙げられる。硬化促進剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
(Curing accelerator)
The sealing composition may further contain a curing accelerator. The type of curing accelerator is not particularly limited, and known curing accelerators can be used.
Specifically, 1,8-diaza-bicyclo[5.4.0]undecene-7, 1,5-diaza-bicyclo[4.3.0]nonene, 5,6-dibutylamino-1,8- Cycloamidine compounds such as diaza-bicyclo[5.4.0]undecene-7; cycloamidine compounds such as maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, and 2,3-dimethyl quinone compounds such as benzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone; Compounds having intramolecular polarization obtained by adding compounds having π bonds such as phenylmethane and phenolic resins; tertiary amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris(dimethylaminomethyl)phenol; Derivatives of tertiary amine compounds; imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, derivatives of imidazole compounds; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris(4- organic phosphine compounds such as methylphenyl)phosphine, diphenylphosphine, and phenylphosphine; intramolecular polarization obtained by adding a compound having a π bond such as maleic anhydride, the above quinone compound, diazophenylmethane, and phenolic resin to an organic phosphine compound; Phosphorus compounds having; Tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetraphenylborate, derivatives of tetraphenylboron salts adducts of phosphine compounds such as triphenylphosphonium-triphenylborane, N-methylmorpholine tetraphenylphosphonium-tetraphenylborate, and tetraphenylboron salts; A hardening accelerator may be used individually by 1 type, or may use 2 or more types together.

硬化促進剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、0.1質量%~8質量%であることが好ましい。 The content of the curing accelerator is preferably 0.1% by mass to 8% by mass with respect to the total amount of the epoxy resin and curing agent.

(イオントラップ剤)
封止組成物は、イオントラップ剤をさらに含有してもよい。
本開示において使用可能なイオントラップ剤は、半導体装置の製造用途に用いられる封止材において、一般的に使用されているイオントラップ剤であれば特に制限されるものではなく、ハイドロタルサイト等が挙げられる。イオントラップ剤としては、下記一般式(II-1)又は下記一般式(II-2)で表される化合物を用いてもよい。
(Ion trap agent)
The sealing composition may further contain an ion trapping agent.
The ion trapping agent that can be used in the present disclosure is not particularly limited as long as it is an ion trapping agent that is commonly used in sealing materials used for manufacturing semiconductor devices. mentioned. A compound represented by the following general formula (II-1) or the following general formula (II-2) may be used as the ion trapping agent.

Mg1-aAl(OH)(COa/2・uHO (II-1)
(一般式(II-1)中、aは0<a≦0.5であり、uは正数である。)
BiO(OH)(NO (II-2)
(一般式(II-2)中、bは0.9≦b≦1.1、cは0.6≦c≦0.8、dは0.2≦d≦0.4である。)
Mg 1-a Al a (OH) 2 (CO 3 ) a/2 ·uH 2 O (II-1)
(In general formula (II-1), a is 0 < a ≤ 0.5, and u is a positive number.)
BiO b (OH) c (NO 3 ) d (II-2)
(In general formula (II-2), b is 0.9≦b≦1.1, c is 0.6≦c≦0.8, and d is 0.2≦d≦0.4.)

イオントラップ剤は、市販品として入手可能である。一般式(II-1)で表される化合物としては、例えば、「DHT-4A」(協和化学工業株式会社、商品名)が市販品として入手可能である。また、一般式(II-2)で表される化合物としては、例えば、「IXE500」(東亞合成株式会社、商品名)が市販品として入手可能である。 Ion trapping agents are commercially available. As a compound represented by general formula (II-1), for example, "DHT-4A" (Kyowa Chemical Industry Co., Ltd., trade name) is commercially available. As a compound represented by the general formula (II-2), for example, "IXE500" (trade name of Toagosei Co., Ltd.) is available as a commercial product.

また、上記以外のイオントラップ剤として、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物などが挙げられる。
イオントラップ剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
In addition, ion trapping agents other than those described above include hydrated oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony, and the like.
An ion trap agent may be used individually by 1 type, or may use 2 or more types together.

封止組成物がイオントラップ剤を含有する場合、イオントラップ剤の含有量は、充分な耐湿信頼性を実現する観点からは、封止組成物中のエポキシ樹脂100質量部に対し、1質量部以上であることが好ましい。他の成分の効果を充分に発揮する観点からは、イオントラップ剤の含有量は、封止組成物中のエポキシ樹脂100質量部に対し、15質量部以下であることが好ましい。 When the sealing composition contains an ion trapping agent, the content of the ion trapping agent is 1 part by mass with respect to 100 parts by mass of the epoxy resin in the sealing composition, from the viewpoint of achieving sufficient moisture resistance reliability. It is preferable that it is above. From the viewpoint of sufficiently exhibiting the effects of other components, the content of the ion trapping agent is preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin in the sealing composition.

また、イオントラップ剤の平均粒子径は0.1μm~3.0μmであることが好ましく、最大粒子径は10μm以下であることが好ましい。イオントラップ剤の平均粒子径は、無機充填材の場合と同様にして測定することができる。 The average particle size of the ion trapping agent is preferably 0.1 μm to 3.0 μm, and the maximum particle size is preferably 10 μm or less. The average particle size of the ion trapping agent can be measured in the same manner as the inorganic filler.

(カップリング剤)
封止組成物は、カップリング剤をさらに含有してもよい。カップリング剤の種類は、特に制限されず、公知のカップリング剤を使用することができる。カップリング剤としては、例えば、シランカップリング剤及びチタンカップリング剤が挙げられる。カップリング剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
(coupling agent)
The sealing composition may further contain a coupling agent. The type of coupling agent is not particularly limited, and known coupling agents can be used. Coupling agents include, for example, silane coupling agents and titanium coupling agents. A coupling agent may be used individually by 1 type, or may use 2 or more types together.

シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、γ-アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン及びγ-メルカプトプロピルメチルジメトキシシランが挙げられる。 Examples of silane coupling agents include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-methacryloxypropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. , γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-[bis(β-hydroxyethyl)]aminopropyltriethoxysilane, N -β-(aminoethyl)-γ-aminopropyltrimethoxysilane, γ-(β-aminoethyl)aminopropyldimethoxymethylsilane, N-(trimethoxysilylpropyl)ethylenediamine, N-(dimethoxymethylsilylisopropyl)ethylenediamine, methyltrimethoxysilane, methyltriethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, γ-anilinopropyltrimethoxysilane silanes, vinyltrimethoxysilane and γ-mercaptopropylmethyldimethoxysilane.

チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート及びテトライソプロピルビス(ジオクチルホスファイト)チタネートが挙げられる。 Titanium coupling agents include, for example, isopropyl triisostearoyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra( 2,2-diallyloxymethyl-1-butyl)bis(ditridecylphosphite)titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctanoyltitanate, isopropyldimethacryl iso Stearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tri(dioctylphosphate) titanate, isopropyltricumylphenyl titanate and tetraisopropyl bis(dioctylphosphite) titanate.

封止組成物がカップリング剤を含有する場合、カップリング剤の含有率は、封止組成物の全体に対して3質量%以下であることが好ましく、その効果を発揮させる観点からは、0.1質量%以上であることが好ましい。 When the sealing composition contains a coupling agent, the content of the coupling agent is preferably 3% by mass or less with respect to the entire sealing composition. .1% by mass or more is preferable.

(離型剤)
封止組成物は、離型剤をさらに含有してもよい。離型剤の種類は特に制限されず、公知の離型剤を使用することができる。具体的には、例えば、高級脂肪酸、高級脂肪酸エステル、カルナバワックス及びポリエチレン系ワックスが挙げられる。離型剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
封止組成物が離型剤を含有する場合、離型剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、10質量%以下であることが好ましく、その効果を発揮させる観点からは、0.5質量%以上であることが好ましい。
(Release agent)
The sealing composition may further contain a release agent. The type of release agent is not particularly limited, and known release agents can be used. Specific examples include higher fatty acids, higher fatty acid esters, carnauba wax, and polyethylene waxes. The release agent may be used alone or in combination of two or more.
When the encapsulating composition contains a release agent, the content of the release agent is preferably 10% by mass or less with respect to the total amount of the epoxy resin and the curing agent, from the viewpoint of exhibiting its effect. is preferably 0.5% by mass or more.

(着色剤及び改質剤)
封止組成物は、着色剤(例えば、カーボンブラック)を含有してもよい。また、封止組成物は、改質剤(例えば、シリコーン及びシリコーンゴム)を含有してもよい。着色剤及び改質剤は、それぞれ、1種類を単独で使用しても、2種類以上を併用してもよい。
(Colorant and modifier)
The encapsulating composition may contain a colorant (eg, carbon black). The sealing composition may also contain modifiers such as silicones and silicone rubbers. The colorant and the modifier may be used singly or in combination of two or more.

着色剤としてカーボンブラック等の導電性粒子を用いる場合、導電性粒子は、粒子径10μm以上の粒子の含有率が1質量%以下であることが好ましい。
封止組成物が導電性粒子を含有する場合、導電性粒子の含有率は、エポキシ樹脂と硬化剤の合計量に対して4質量%以下であることが好ましい。
When conductive particles such as carbon black are used as the colorant, the conductive particles preferably contain 1% by mass or less of particles having a particle diameter of 10 μm or more.
When the encapsulating composition contains conductive particles, the content of the conductive particles is preferably 4% by mass or less with respect to the total amount of the epoxy resin and the curing agent.

<封止組成物の作製方法>
封止組成物の作製方法は特に制限されず、公知の方法により行うことができる。例えば、所定の配合量の原材料の混合物をミキサー等によって充分混合した後、熱ロール、押出機等によって混練し、冷却、粉砕等の処理を経ることによって作製することができる。封止組成物の状態は特に制限されず、粉末状、固体状、液体状等であってよい。
<Method for preparing sealing composition>
A method for producing the sealing composition is not particularly limited, and a known method can be used. For example, it can be produced by sufficiently mixing a mixture of raw materials in a predetermined amount with a mixer or the like, kneading with a hot roll, an extruder or the like, and subjecting the mixture to cooling, pulverization, or the like. The state of the sealing composition is not particularly limited, and may be powder, solid, liquid, or the like.

<半導体装置>
本開示の半導体装置は、半導体素子と、前記半導体素子を封止してなる本開示の封止組成物の硬化物と、を含む。
<Semiconductor device>
A semiconductor device of the present disclosure includes a semiconductor element and a cured product of the sealing composition of the present disclosure obtained by sealing the semiconductor element.

封止組成物を用いて半導体素子を封止する方法は特に限定されず、公知の方法を適用することが可能である。例えば、トランスファーモールド法が一般的であるが、コンプレッションモールド法、インジェクション成形法等を用いてもよい。 A method for sealing a semiconductor element using a sealing composition is not particularly limited, and a known method can be applied. For example, a transfer molding method is generally used, but a compression molding method, an injection molding method, or the like may also be used.

本開示の半導体装置は、IC、LSI(Large-Scale Integration、大規模集積回路)等として好適である。 The semiconductor device of the present disclosure is suitable as an IC, LSI (Large-Scale Integration), or the like.

以下に本発明の実施例について説明するが、本発明はこれに限定されるものではない。また、表中の数値は特に断りのない限り「質量部」を意味する。 Examples of the present invention will be described below, but the present invention is not limited thereto. Numerical values in the table mean "mass parts" unless otherwise specified.

(実施例1~11並びに比較例1及び2)
表1~表3に示す配合の材料を予備混合(ドライブレンド)した後、二軸ロール(ロール表面温度:約80℃)で約15分間混練し、冷却粉砕して粉末状の封止組成物を製造した。
(Examples 1 to 11 and Comparative Examples 1 and 2)
After pre-mixing (dry blending) the materials having the formulations shown in Tables 1 to 3, they were kneaded for about 15 minutes with a twin-screw roll (roll surface temperature: about 80°C), cooled and pulverized to obtain a powdery sealing composition. manufactured.

Figure 0007238791000001
Figure 0007238791000001

Figure 0007238791000002
Figure 0007238791000002

Figure 0007238791000003
Figure 0007238791000003

表中の材料の詳細は、それぞれ以下の通りである。また表中の「-」は、該当する成分を含有しないことを示す。 Details of the materials in the table are as follows. Also, "-" in the table indicates that the corresponding component is not contained.

(エポキシ樹脂)
・エポキシ樹脂1:ビフェニル型エポキシ樹脂、エポキシ当量:186g/eq
・エポキシ樹脂2:多官能エポキシ樹脂、エポキシ当量:167g/eq
・エポキシ樹脂3:ビスフェノール型結晶性エポキシ樹脂、エポキシ当量:192g/eq
・エポキシ樹脂4:ビスF型エポキシ樹脂、エポキシ当量:159g/eq
(Epoxy resin)
・ Epoxy resin 1: biphenyl type epoxy resin, epoxy equivalent: 186 g / eq
・ Epoxy resin 2: polyfunctional epoxy resin, epoxy equivalent: 167 g / eq
・ Epoxy resin 3: bisphenol type crystalline epoxy resin, epoxy equivalent: 192 g / eq
・ Epoxy resin 4: bis F type epoxy resin, epoxy equivalent: 159 g / eq

(硬化剤)
・硬化剤1:多官能フェノール樹脂、水酸基当量が102g/eqのトリフェニルメタン型フェノール樹脂
・硬化剤2:多官能フェノール樹脂、水酸基当量が205g/eqのビフェニル・アラルキル樹脂
・硬化剤3:フェノール・アラルキル樹脂、水酸基当量:170g/eq
(curing agent)
Curing agent 1: polyfunctional phenolic resin, triphenylmethane-type phenolic resin with a hydroxyl equivalent of 102 g/eq Curing agent 2: polyfunctional phenolic resin, a biphenyl aralkyl resin with a hydroxyl equivalent of 205 g/eq Curing agent 3: phenol・ Aralkyl resin, hydroxyl equivalent: 170 g / eq

・硬化促進剤:リン系硬化促進剤
・カップリング剤:エポキシシラン(γ-グリシドキシプロピルトリメトキシシラン)
・離型剤:モンタン酸エステル
・着色剤:カーボンブラック
・イオントラップ剤:ハイドロタルサイト
・改質剤:シリコーン
・Curing accelerator: Phosphorus-based curing accelerator ・Coupling agent: Epoxysilane (γ-glycidoxypropyltrimethoxysilane)
・Releasing agent: Montan acid ester ・Coloring agent: Carbon black ・Ion trapping agent: Hydrotalcite ・Modifying agent: Silicone

(無機充填材)
・無機充填材1:アルミナとシリカの混合物(平均粒子径:8.6μm)
・無機充填材2:シリカ(平均粒子径:9.5μm)
・無機充填材3:アルミナ(平均粒子径:0.4μm)
・無機充填材4:シリカ(平均粒子径:0.8μm)
・無機充填材5:シリカ(平均粒子径:0.1μm)
・無機充填材6:シリカ(平均粒子径:13.0μm)
・無機充填材7:シリカ(平均粒子径:2.2μm)
・無機充填材8:シリカ(平均粒子径:0.8μm)
・無機充填材9:アルミナとシリカの混合物(平均粒子径:7.4μm)
・無機充填材10:シリカ(平均粒子径:1.5μm)
・無機充填材11:シリカ(平均粒子径:22.0μm)
・無機充填材12:アルミナ(平均粒子径:14.9μm)
・無機充填材13:アルミナ(平均粒子径:10.4μm)
・無機充填材14:アルミナ(平均粒子径:2.0μm)
・無機充填材15:アルミナとシリカの混合物(平均粒子径:43.9μm)
(Inorganic filler)
・ Inorganic filler 1: A mixture of alumina and silica (average particle size: 8.6 μm)
・ Inorganic filler 2: silica (average particle size: 9.5 μm)
・ Inorganic filler 3: alumina (average particle size: 0.4 μm)
・ Inorganic filler 4: silica (average particle size: 0.8 μm)
・ Inorganic filler 5: silica (average particle size: 0.1 μm)
・ Inorganic filler 6: silica (average particle size: 13.0 μm)
・ Inorganic filler 7: silica (average particle size: 2.2 μm)
・ Inorganic filler 8: silica (average particle size: 0.8 μm)
- Inorganic filler 9: a mixture of alumina and silica (average particle size: 7.4 μm)
・ Inorganic filler 10: silica (average particle size: 1.5 μm)
・ Inorganic filler 11: silica (average particle size: 22.0 μm)
・ Inorganic filler 12: alumina (average particle size: 14.9 μm)
・ Inorganic filler 13: alumina (average particle size: 10.4 μm)
・ Inorganic filler 14: alumina (average particle size: 2.0 μm)
・ Inorganic filler 15: A mixture of alumina and silica (average particle size: 43.9 μm)

実施例1~11の無機充填材の粒度分布におけるピークの位置は、以下の通りであり、
3つのピークを有していた。また、実施例1~11に係る封止組成物は全て粒子径が1μm以下のアルミナを含んでいた。合わせて、無機充填材全体の平均粒子径を以下に示す。
実施例1:0.45μm、10μm及び40μm (平均粒子径:8.1μm)
実施例2:0.5μm、10μm及び50μm (平均粒子径:8.7μm)
実施例3:0.5μm、10μm及び50μm (平均粒子径:7.6μm)
実施例4:0.5μm、10μm及び50μm (平均粒子径:7.7μm)
実施例5:0.5μm、10μm及び50μm (平均粒子径:6.6μm)
実施例6:0.5μm、10μm及び51μm (平均粒子径:6.2μm)
実施例7:0.5μm、10μm及び51μm (平均粒子径:7.7μm)
実施例8:0.5μm、10μm及び51μm (平均粒子径:6.6μm)
実施例9:0.5μm、10μm及び51μm (平均粒子径:10.8μm)
実施例10:0.45μm、10μm及び51μm (平均粒子径:6.4μm)
実施例11:0.4μm、9μm及び45μm (平均粒子径:7.8μm)
一方、比較例1の無機充填材の粒度分布におけるピークの位置は、以下の通りであり、2つのピークを有していた。また、比較例1に係る封止組成物は粒子径が1μm以下のアルミナを含んでいた。合わせて、無機充填材全体の平均粒子径を以下に示す。
比較例1:1.5μm及び10μm (平均粒子径:11.3μm)
また、比較例2の無機充填材の粒度分布におけるピークの位置は、以下の通りであり、3つのピークを有していた。また、比較例2に係る封止組成物は粒子径が1μm以下のアルミナを含んでいなかった。合わせて、無機充填材全体の平均粒子径を以下に示す。
比較例2:0.5μm、10μm及び50μm (平均粒子径:6.5μm)
The peak positions in the particle size distribution of the inorganic fillers of Examples 1 to 11 are as follows,
It had 3 peaks. Further, all of the sealing compositions according to Examples 1 to 11 contained alumina having a particle size of 1 μm or less. In addition, the average particle size of the whole inorganic filler is shown below.
Example 1: 0.45 μm, 10 μm and 40 μm (average particle size: 8.1 μm)
Example 2: 0.5 μm, 10 μm and 50 μm (average particle size: 8.7 μm)
Example 3: 0.5 μm, 10 μm and 50 μm (average particle size: 7.6 μm)
Example 4: 0.5 μm, 10 μm and 50 μm (average particle size: 7.7 μm)
Example 5: 0.5 μm, 10 μm and 50 μm (average particle size: 6.6 μm)
Example 6: 0.5 μm, 10 μm and 51 μm (average particle size: 6.2 μm)
Example 7: 0.5 μm, 10 μm and 51 μm (average particle size: 7.7 μm)
Example 8: 0.5 μm, 10 μm and 51 μm (average particle size: 6.6 μm)
Example 9: 0.5 μm, 10 μm and 51 μm (average particle size: 10.8 μm)
Example 10: 0.45 μm, 10 μm and 51 μm (average particle size: 6.4 μm)
Example 11: 0.4 μm, 9 μm and 45 μm (average particle size: 7.8 μm)
On the other hand, the positions of peaks in the particle size distribution of the inorganic filler of Comparative Example 1 were as follows, and had two peaks. In addition, the sealing composition according to Comparative Example 1 contained alumina with a particle size of 1 μm or less. In addition, the average particle size of the whole inorganic filler is shown below.
Comparative Example 1: 1.5 μm and 10 μm (average particle size: 11.3 μm)
Moreover, the positions of the peaks in the particle size distribution of the inorganic filler of Comparative Example 2 are as follows, and had three peaks. Also, the sealing composition according to Comparative Example 2 did not contain alumina having a particle size of 1 μm or less. In addition, the average particle size of the whole inorganic filler is shown below.
Comparative Example 2: 0.5 μm, 10 μm and 50 μm (average particle size: 6.5 μm)

<流動性の評価>
封止組成物の流動性の評価は、スパイラルフロー試験により行った。
具体的には、EMMI-1-66に準じたスパイラルフロー測定用金型を用いて封止組成物を成形し、封止組成物の成形物の流動距離(cm)を測定した。封止組成物の成形は、トランスファー成形機を用い、金型温度180℃、成形圧力6.9MPa、硬化時間120秒の条件下で行った。
また、流動性は160cm以上をAとし、150cm以上160cm未満をB、150cm未満をCとした。
<Evaluation of liquidity>
Fluidity evaluation of the sealing composition was performed by a spiral flow test.
Specifically, the sealing composition was molded using a spiral flow measurement mold conforming to EMMI-1-66, and the flow distance (cm) of the molding of the sealing composition was measured. Molding of the encapsulating composition was performed using a transfer molding machine under conditions of a mold temperature of 180° C., a molding pressure of 6.9 MPa, and a curing time of 120 seconds.
In addition, the fluidity was defined as A when 160 cm or more, B when 150 cm or more and less than 160 cm, and C when less than 150 cm.

<熱伝導率の評価>
封止組成物の熱伝導率の評価は、下記の方法により行った。
具体的には、調製した封止組成物を用いて、金型温度180℃、成形圧力7MPa、硬化時間300秒間の条件でトランスファー成形を行い、金型形状の硬化物を得た。得られた硬化物をアルキメデス法により測定した密度は2.8g/cm~3.0g/cmであった。また硬化物の熱拡散率を熱拡散率測定装置(NETZSCH社、LFA467)を用いてレーザーフラッシュ法により測定した。上記で測定された熱拡散率、アルキメデス法で測定した密度及びDSC(示差熱量計)により測定した比熱の積から熱伝導率(W/(m・K))を算出した。
また、熱伝導率は2.5W/(m・K)以上をAとし、2.5W/(m・K)未満をBとした。
<Evaluation of thermal conductivity>
Evaluation of the thermal conductivity of the encapsulating composition was performed by the following method.
Specifically, using the prepared encapsulating composition, transfer molding was performed under conditions of a mold temperature of 180° C., a molding pressure of 7 MPa, and a curing time of 300 seconds to obtain a cured product in the shape of a mold. The density of the resulting cured product measured by the Archimedes method was 2.8 g/cm 3 to 3.0 g/cm 3 . The thermal diffusivity of the cured product was measured by the laser flash method using a thermal diffusivity measuring device (LFA467, NETZSCH). The thermal conductivity (W/(m·K)) was calculated from the product of the thermal diffusivity measured above, the density measured by the Archimedes method, and the specific heat measured by DSC (differential calorimeter).
In addition, the thermal conductivity was rated A when it was 2.5 W/(m·K) or more, and rated B when it was less than 2.5 W/(m·K).

Figure 0007238791000004
Figure 0007238791000004

Figure 0007238791000005
Figure 0007238791000005

Figure 0007238791000006
Figure 0007238791000006

表4~表6に示されるように、3つのピークを有する実施例1~11と2つのピークを有する比較例1の結果より、無機充填材に占めるアルミナの割合に関わらず、無機充填材の粒度分布でピークを3つ有さないことにより、流動性は極端に低下し、熱伝導率は低下した。
また、無機充填材の中に粒子径が1μm以下のアルミナを含まない比較例2は、無機充填材の中に粒子径が1μm以下のアルミナを特に多く有する実施例1、5、6、8、10及び11と比較し、流動性は同等か又は低下し、熱伝導率は低下する結果となった。
As shown in Tables 4 to 6, from the results of Examples 1 to 11 having three peaks and Comparative Example 1 having two peaks, regardless of the proportion of alumina in the inorganic filler, the amount of inorganic filler Since the particle size distribution does not have three peaks, the fluidity is extremely lowered and the thermal conductivity is lowered.
Further, Comparative Example 2, in which the inorganic filler does not contain alumina having a particle diameter of 1 μm or less, corresponds to Examples 1, 5, 6, and 8, which have a particularly large amount of alumina having a particle diameter of 1 μm or less in the inorganic filler. Compared to 10 and 11, the fluidity was equal or decreased and the thermal conductivity was decreased.

2017年12月28日に出願された日本国特許出願2017-254883号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-254883 filed on December 28, 2017 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (4)

エポキシ樹脂と、硬化剤と、無機充填材とを含有し、
前記無機充填材の粒度分布が、少なくとも3つのピークを有し、
前記無機充填材が、粒子径が1μm以下のアルミナを含み、
前記無機充填材の粒度分布が、0.3μm~0.7μmの範囲、9μm~20μmの範囲及び40μm~70μmの範囲にピークを有し、
前記無機充填材に占めるアルミナの割合が、60質量%~95質量%である封止組成物。
containing an epoxy resin, a curing agent, and an inorganic filler,
the particle size distribution of the inorganic filler has at least three peaks;
The inorganic filler contains alumina having a particle size of 1 μm or less,
The particle size distribution of the inorganic filler has peaks in the range of 0.3 μm to 0.7 μm, the range of 9 μm to 20 μm and the range of 40 μm to 70 μm,
The sealing composition , wherein the proportion of alumina in the inorganic filler is 60% by mass to 95% by mass .
前記無機充填材に含まれる粒子径が1μm以下の無機粒子に占めるアルミナの割合が、1体積%~40体積%である請求項1に記載の封止組成物。 2. The sealing composition according to claim 1 , wherein the proportion of alumina in inorganic particles having a particle diameter of 1 μm or less contained in said inorganic filler is 1% by volume to 40% by volume. 前記無機充填材の平均円形度が、0.80以上である請求項1又は請求項2に記載の封止組成物。 3. The sealing composition according to claim 1 , wherein the inorganic filler has an average circularity of 0.80 or more. 半導体素子と、前記半導体素子を封止してなる請求項1~請求項のいずれか1項に記載の封止組成物の硬化物と、を含む半導体装置。 A semiconductor device comprising a semiconductor element and a cured product of the sealing composition according to any one of claims 1 to 3 , obtained by sealing the semiconductor element.
JP2019562046A 2017-12-28 2018-12-25 Encapsulating composition and semiconductor device Active JP7238791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023032122A JP2023067951A (en) 2017-12-28 2023-03-02 Sealing composition and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017254883 2017-12-28
JP2017254883 2017-12-28
PCT/JP2018/047642 WO2019131669A1 (en) 2017-12-28 2018-12-25 Sealing composition and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023032122A Division JP2023067951A (en) 2017-12-28 2023-03-02 Sealing composition and semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2019131669A1 JPWO2019131669A1 (en) 2020-12-24
JP7238791B2 true JP7238791B2 (en) 2023-03-14

Family

ID=67067545

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019562046A Active JP7238791B2 (en) 2017-12-28 2018-12-25 Encapsulating composition and semiconductor device
JP2023032122A Pending JP2023067951A (en) 2017-12-28 2023-03-02 Sealing composition and semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023032122A Pending JP2023067951A (en) 2017-12-28 2023-03-02 Sealing composition and semiconductor device

Country Status (5)

Country Link
JP (2) JP7238791B2 (en)
KR (1) KR20200103682A (en)
CN (1) CN111566163B (en)
TW (1) TWI797222B (en)
WO (1) WO2019131669A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230164858A (en) 2022-05-26 2023-12-05 동우 화인켐 주식회사 Composition for Encapsulating Semiconductor Device and Semiconductor Device Encapsulated Using the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290076A (en) 2004-03-31 2005-10-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2010024464A (en) 2009-11-04 2010-02-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2014122364A (en) 2014-03-20 2014-07-03 Sumitomo Bakelite Co Ltd Epoxy resin composition, semiconductor device using the same, organically modified inorganic filler, and method of producing epoxy resin composition
JP2015205796A (en) 2014-04-21 2015-11-19 新日鉄住金マテリアルズ株式会社 Spherical particle and production method therefor, and resin composition containing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874089B2 (en) * 1994-04-13 1999-03-24 信越化学工業株式会社 Resin composition for semiconductor encapsulation and semiconductor device
JP4774778B2 (en) 2005-03-28 2011-09-14 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5359274B2 (en) * 2006-10-06 2013-12-04 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
CN102007073B (en) * 2008-04-30 2014-10-08 电气化学工业株式会社 Alumina powder, process for production of the same, and resin compositions containing the same
CN102382422B (en) * 2010-09-01 2013-01-02 北京科化新材料科技有限公司 Epoxy resin composition with hydrated alumina
JP6282390B2 (en) * 2010-12-16 2018-02-21 日立化成株式会社 Epoxy resin molding material for sealing and semiconductor device using the same
JP2013028659A (en) * 2011-07-26 2013-02-07 Hitachi Chemical Co Ltd Epoxy resin liquid sealing material for underfill and electric component apparatus using the same
CN104221140B (en) * 2012-03-29 2017-08-25 住友电木株式会社 Resin combination and semiconductor device
JP2014031460A (en) * 2012-08-06 2014-02-20 Panasonic Corp Epoxy resin composition for encapsulation and semiconductor device using the same
JP6090614B2 (en) * 2014-01-08 2017-03-08 信越化学工業株式会社 Liquid epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
CN107614608B (en) * 2016-01-13 2020-08-28 株式会社Lg化学 Thermosetting resin composition for semiconductor encapsulation and prepreg using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290076A (en) 2004-03-31 2005-10-20 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2010024464A (en) 2009-11-04 2010-02-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2014122364A (en) 2014-03-20 2014-07-03 Sumitomo Bakelite Co Ltd Epoxy resin composition, semiconductor device using the same, organically modified inorganic filler, and method of producing epoxy resin composition
JP2015205796A (en) 2014-04-21 2015-11-19 新日鉄住金マテリアルズ株式会社 Spherical particle and production method therefor, and resin composition containing the same

Also Published As

Publication number Publication date
KR20200103682A (en) 2020-09-02
JPWO2019131669A1 (en) 2020-12-24
TWI797222B (en) 2023-04-01
CN111566163B (en) 2024-02-13
WO2019131669A1 (en) 2019-07-04
JP2023067951A (en) 2023-05-16
TW201934650A (en) 2019-09-01
CN111566163A (en) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2019131095A1 (en) Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device
JP6988952B2 (en) Encapsulation composition and semiconductor device
JP2023067951A (en) Sealing composition and semiconductor device
JP2008121003A (en) Epoxy resin molding material for use in sealing, and electronic component device using the same
JP7263765B2 (en) Encapsulating composition and semiconductor device
JP7255497B2 (en) Encapsulating composition and semiconductor device
JP7238789B2 (en) Encapsulating composition and semiconductor device
TW202116913A (en) Sealing material for compression molding and electronic component device
JP3582771B2 (en) Epoxy resin composition and semiconductor device
KR102668756B1 (en) Sealing composition and method for manufacturing the same and semiconductor device
JP2022049480A (en) Sealing composition and semiconductor device
WO2019035430A1 (en) Sealing resin composition, semiconductor device, and method for producing semiconductor device
JP7415950B2 (en) Encapsulation composition and semiconductor device
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2009173845A (en) Epoxy resin composition for use in semiconductor encapsulation and semiconductor device using it
WO2022149601A1 (en) Sealing composition and semiconductor device
JP2024055627A (en) Molding resin composition and electronic component device
JP5592174B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2008274041A (en) Epoxy resin composition for encapsulating semiconductor, and resin molded semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R151 Written notification of patent or utility model registration

Ref document number: 7238791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350