JP2006233016A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2006233016A
JP2006233016A JP2005049777A JP2005049777A JP2006233016A JP 2006233016 A JP2006233016 A JP 2006233016A JP 2005049777 A JP2005049777 A JP 2005049777A JP 2005049777 A JP2005049777 A JP 2005049777A JP 2006233016 A JP2006233016 A JP 2006233016A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
less
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049777A
Other languages
Japanese (ja)
Inventor
Tatsu Suzuki
達 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005049777A priority Critical patent/JP2006233016A/en
Publication of JP2006233016A publication Critical patent/JP2006233016A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing an area packaging type semiconductor making high fluidity compatible with low warpage and solder resistance characteristics and to provide a semiconductor device using the same. <P>SOLUTION: The epoxy resin composition for sealing the area packaging type semiconductor device is characterized as comprising a crystalline epoxy resin (A), a phenol aralkyl resin (B) having a biphenylene skeleton, a curing accelerator (C) having a specific structure, an inorganic filler (D) and a low-stress modifier (E) which is at least one kind selected from silicone rubber particles, silicone resin particles and silicone rubber particles having the surface coated with a silicone resin and having ≥0.3 to ≤5 μm average particle diameter and ≤10 μm maximum particle diameter as essential components. The area packaging type semiconductor device comprises a semiconductor element loaded onto one surface of a substrate and substantially only one surface of the substrate surface side in which the semiconductor element is loaded is sealed with the epoxy resin composition for sealing the area packaging type semiconductor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体封止用エポキシ樹脂組成物及び半導体装置に関するものであり、特に、プリント配線板や金属リードフレームの片面に半導体素子を搭載し、その搭載面側の実質的に片面のみが樹脂封止されたエリア実装型半導体装置に好適に用いられるものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device, and in particular, a semiconductor element is mounted on one side of a printed wiring board or a metal lead frame, and only one side of the mounting side is a resin. It is preferably used for a sealed area mounting type semiconductor device.

近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また、半導体装置の表面実装化が促進されるなかで、新規にエリア実装型半導体装置が開発され、従来構造の半導体装置から移行し始めている。半導体装置の小型化、薄型化に伴い、封止用エポキシ樹脂組成物に対しては、より一層の低粘度化、高強度化が要求されている。また、環境問題から臭素化合物、酸化アンチモン等の難燃剤を使わずに難燃化する要求が増えてきている。このような背景から、最近のエポキシ樹脂組成物の動向は、より低粘度の樹脂を適用し、より多くの無機充填材を配合する傾向が強くなっている。また新たな動きとして、半導体装置を実装する際、従来よりも融点の高い無鉛半田の使用が高まってきている。この半田の適用により実装温度を従来に比べ約20℃高くする必要があり、実装後の半導体装置の信頼性が現状に比べ著しく低下する問題が生じている。このようなことからエポキシ樹脂組成物のレベルアップによる半導体装置の信頼性の向上要求が加速的に強くなってきており、樹脂の低粘度化と無機充填材の高充填化に拍車がかかっている。   In recent years, the trend toward smaller, lighter, and higher performance electronic devices has led to the progress of higher integration of semiconductor elements and the promotion of surface mounting of semiconductor devices. Devices have been developed and are beginning to migrate from conventional semiconductor devices. With the downsizing and thinning of semiconductor devices, there is a demand for further lowering the viscosity and increasing the strength of the epoxy resin composition for sealing. In addition, due to environmental problems, there is an increasing demand for flame retardancy without using a flame retardant such as bromine compounds and antimony oxide. Against such a background, the trend of recent epoxy resin compositions has been a tendency to apply a lower viscosity resin and to mix more inorganic fillers. Also, as a new movement, when mounting semiconductor devices, the use of lead-free solder having a higher melting point than before is increasing. By applying this solder, it is necessary to raise the mounting temperature by about 20 ° C. compared to the conventional case, and there is a problem that the reliability of the semiconductor device after mounting is remarkably lowered compared to the current situation. For these reasons, the demand for improving the reliability of semiconductor devices by increasing the level of epoxy resin composition is acceleratingly strengthening, and it is spurred by low resin viscosity and high inorganic filler filling. .

エリア実装型半導体装置としては、BGA(ボールグリッドアレイ)、或いは更に小型化を追求したCSP(チップスケールパッケージ)等が代表的であるが、これらは従来のQFP、SOP等に代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、BT樹脂/銅箔回路基板(ビスマレイミド・トリアジン樹脂/ガラスクロス基板)に代表される硬質回路基板、或いはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その半導体素子搭載面、即ち基板の片面のみがエポキシ樹脂組成物等で成形・封止されている。また、基板の半導体素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装する回路基板との接合を行う特徴を有している。更に、半導体素子を搭載する基板としては、上記の有機回路基板以外にもリードフレーム等の金属基板を用いる構造も開発されている。   Typical area-mounted semiconductor devices are BGA (ball grid array), or CSP (chip scale package) that pursues further miniaturization, but these are surface mounts such as conventional QFP and SOP. This type of semiconductor device was developed to meet the demand for higher pin count and higher speed, which are approaching the limit. As a structure, on one side of a hard circuit board represented by BT resin / copper foil circuit board (bismaleimide / triazine resin / glass cloth board) or a flexible circuit board represented by polyimide resin film / copper foil circuit board. A semiconductor element is mounted, and only the semiconductor element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, solder balls are two-dimensionally formed in parallel on the surface opposite to the semiconductor element mounting surface of the substrate, and are joined to the circuit substrate on which the semiconductor device is mounted. Furthermore, as a substrate on which a semiconductor element is mounted, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been developed.

これらエリア実装型半導体装置の構造は、基板の半導体素子搭載面のみをエポキシ樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。リードフレーム等の金属基板等では、半田ボール形成面でも数十μm程度の封止樹脂層が存在することもあるが、半導体素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため、有機基板や金属基板とエポキシ樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合、或いはエポキシ樹脂組成物の成形硬化時の硬化収縮による影響で、これらの半導体装置では成形直後から反りが発生しやすい。
更に、これらの半導体装置を実装する回路基板上に半田接合を行う場合、200℃以上の加熱工程を経るが、この際に半導体装置の反りが発生し、多数の半田ボールが平坦とならず、半導体装置を実装する回路基板から浮き上がってしまい、電気的接合の信頼性が低下する問題も起こる。
These area-mounted semiconductor devices have a single-side sealing configuration in which only the semiconductor element mounting surface of the substrate is sealed with an epoxy resin composition and the solder ball forming surface side is not sealed. A metal substrate such as a lead frame may have a sealing resin layer of about several tens of μm on the solder ball forming surface, but a sealing resin layer of about several hundred μm to several mm is formed on the semiconductor element mounting surface. Therefore, it is substantially single-sided sealed. For this reason, these semiconductor devices are affected by the mismatch of thermal expansion / shrinkage between the organic substrate or metal substrate and the cured product of the epoxy resin composition, or by the effect of cure shrinkage during the molding and curing of the epoxy resin composition. Then, warping is likely to occur immediately after molding.
Further, when solder bonding is performed on a circuit board on which these semiconductor devices are mounted, a heating process of 200 ° C. or higher is performed. At this time, warpage of the semiconductor device occurs, and a large number of solder balls do not become flat. A problem arises in that the reliability of electrical bonding is lowered due to floating from the circuit board on which the semiconductor device is mounted.

基板上の実質的に片面のみをエポキシ樹脂組成物で封止した半導体装置において、反りを低減するには、基板の熱膨張係数とエポキシ樹脂組成物の硬化物の熱膨張係数とを近づけること、及びエポキシ樹脂組成物の成形硬化時の硬化収縮を小さくすることの二つの方法が重要である。
基板としては、有機基板ではBT樹脂やポリイミド樹脂のような高いガラス転移温度(以下、Tgという)を有する樹脂が広く用いられており、これらはエポキシ樹脂組成物の成形温度である170℃近辺よりも高いTgを有する。従って、成形温度から室温までの冷却過程では有機基板のガラス領域、換言すると線膨張係数がα1の領域のみで収縮する。よって、エポキシ樹脂組成物の硬化物も、Tgが成形温度より高く且つα1が有機基板と同じで、更に成形硬化時の硬化収縮がゼロとなれば、反りはほぼゼロとなると考えられる。このため、多官能型エポキシ樹脂と多官能型フェノール樹脂との組み合わせによりTgを高くし、無機充填材の配合量でα1を合わせる手法が既に提案されている。しかし多官能型エポキシ樹脂と多官能型フェノール樹脂との組み合わせでは流動性が低下し金線変形が生じる等の不具合があった。
従来のQFPやSOP等の表面実装型半導体装置において、成形時に低粘度で高流動性を維持するためには、溶融粘度の低い樹脂を用いる方法や(例えば、特許文献1参照。)、また無機充填材の配合量を高めるために無機充填材をシランカップリング剤で表面処理する方法が知られている(例えば、特許文献2参照。)。しかしこれらは種々ある要求特性のいずれかのみを満足するものが多い。
In a semiconductor device in which only one surface on a substrate is sealed with an epoxy resin composition, in order to reduce warpage, the thermal expansion coefficient of the substrate and the thermal expansion coefficient of a cured product of the epoxy resin composition are brought close to each other. Two methods of reducing the shrinkage of curing at the time of molding and curing the epoxy resin composition are important.
As the substrate, a resin having a high glass transition temperature (hereinafter referred to as Tg) such as BT resin and polyimide resin is widely used in the organic substrate, and these are from around 170 ° C. which is the molding temperature of the epoxy resin composition. Also has a high Tg. Accordingly, in the cooling process from the molding temperature to room temperature, the glass shrinks only in the glass region of the organic substrate, in other words, in the region where the linear expansion coefficient is α1. Therefore, the cured product of the epoxy resin composition is considered to have almost zero warpage if Tg is higher than the molding temperature, α1 is the same as that of the organic substrate, and curing shrinkage upon molding and curing is zero. For this reason, a technique for increasing Tg by combining a multifunctional epoxy resin and a multifunctional phenol resin and adjusting α1 by the blending amount of the inorganic filler has already been proposed. However, the combination of the polyfunctional epoxy resin and the polyfunctional phenol resin has problems such as a decrease in fluidity and deformation of the gold wire.
In a conventional surface mount type semiconductor device such as QFP or SOP, in order to maintain a low viscosity and a high fluidity at the time of molding, a method using a resin having a low melt viscosity (for example, see Patent Document 1), or inorganic. In order to increase the blending amount of the filler, a method of surface-treating the inorganic filler with a silane coupling agent is known (for example, see Patent Document 2). However, many of them satisfy only one of various required characteristics.

また、赤外線リフロー、ベーパーフェイズソルダリング、半田浸漬等の手段での半田処理による半田接合を行う場合、エポキシ樹脂組成物の硬化物並びに有機基板からの吸湿により、半導体装置内部に存在する水分が高温で急激に気化することによる応力で、半導体装置にクラックが発生することや、有機基板の半導体素子搭載面とエポキシ樹脂組成物の硬化物との界面で剥離が発生することもあり、エポキシ樹脂組成物の低応力化・低吸湿化とともに、有機基板との接着性も求められる。
更に、有機基板とエポキシ樹脂組成物の硬化物との間の熱膨張の不整合により、信頼性テストの代表例である温度サイクル試験でも、有機基板/エポキシ樹脂組成物の硬化物との界面の剥離やクラックが発生する。
耐温度サイクル性と耐半田性の両立を達成するためには、無機質充填材を多量に配合した系においても弾性率の増大を押さえる必要がある。その具体的な手法の一つとして、従来から低応力特性を付与するために種々の低応力改質剤を添加するという方法が知られている。しかしながら、従来の低応力改質剤だと粒子の凝集力が強く混練時に均一に分散しないため、エポキシ樹脂組成物が不均一となり、特性のばらつきが大きくなった。また低応力改質剤の凝集物が大きいと溶融状態での粘度が増大することによる流動性の低下や、半田処理時に凝集物を起点としてクラックが発生する等の不良が生じることがあった。
エリア実装型半導体封止用エポキシ樹脂組成物において、高流動、低弾性、低反りに優れた樹脂を用い、更に無機充填材の配合量を高めて信頼性を満足させる技術が求められている。
In addition, when solder bonding is performed by means of soldering using means such as infrared reflow, vapor phase soldering, or solder dipping, the moisture present in the semiconductor device is high due to moisture absorption from the cured epoxy resin composition and organic substrate. Due to stress caused by rapid vaporization in the semiconductor device, cracks may occur in the semiconductor device, and peeling may occur at the interface between the semiconductor element mounting surface of the organic substrate and the cured product of the epoxy resin composition. Along with lowering stress and moisture absorption of objects, adhesion to organic substrates is also required.
Furthermore, due to mismatch of thermal expansion between the organic substrate and the cured product of the epoxy resin composition, the temperature cycle test, which is a representative example of the reliability test, also shows the interface between the organic substrate and the cured product of the epoxy resin composition. Peeling or cracking occurs.
In order to achieve both temperature cycle resistance and solder resistance, it is necessary to suppress an increase in elastic modulus even in a system in which a large amount of an inorganic filler is blended. As one of the specific methods, conventionally, there has been known a method of adding various low stress modifiers to impart low stress characteristics. However, the conventional low-stress modifier has strong particle cohesion and does not uniformly disperse during kneading, resulting in non-uniform epoxy resin composition and large variation in characteristics. Further, when the aggregate of the low-stress modifier is large, defects such as a decrease in fluidity due to an increase in viscosity in the molten state and a crack occurring from the aggregate during soldering may occur.
In the area mounting type semiconductor sealing epoxy resin composition, there is a demand for a technique that satisfies the reliability by using a resin excellent in high fluidity, low elasticity, and low warpage, and further increasing the blending amount of the inorganic filler.

特開平7−130919号公報(第2〜10頁)JP-A-7-130919 (pages 2 to 10) 特開平8−20673号公報(第2〜6頁)JP-A-8-20673 (pages 2-6)

本発明は、従来の背景技術の問題点を解決するためになされたものであり、その目的とするところは硬化性及び他の諸特性を低下させることなく高流動性、成形後や半田処理後の低そり、耐半田特性、耐温度サイクル特性が著しく優れたエリア実装型半導体封止用に適したエポキシ樹脂組成物、及びこれを用いた半導体装置を提供することにある。   The present invention has been made in order to solve the problems of the conventional background art, and the object of the present invention is high fluidity without lowering curability and other characteristics, after molding and after soldering. It is an object of the present invention to provide an epoxy resin composition suitable for area-mounting type semiconductor encapsulation, which is remarkably excellent in low warpage, solder resistance, and temperature cycle resistance, and a semiconductor device using the same.

本発明は、
[1] 結晶性エポキシ樹脂(A)、一般式(1)で表されるフェノール樹脂(B)、一般式(2)で表される硬化促進剤(C)、無機充填材(D)、シリコーンゴム粒子、シリコーン樹脂粒子及び表面をシリコーン樹脂で被覆したシリコーンゴム粒子から選ばれる少なくとも1種であり、その平均粒径が0.3μm以上、5μm以下であり、最大粒径が10μm以下である低応力改質剤(E)を必須成分とし、前記低応力改質剤(E)を全エポキシ樹脂組成物中に0.01重量%以上、5重量%以下の割合で含むことを特徴とする半導体封止用エポキシ樹脂組成物、
The present invention
[1] Crystalline epoxy resin (A), phenol resin (B) represented by general formula (1), curing accelerator (C) represented by general formula (2), inorganic filler (D), silicone It is at least one selected from rubber particles, silicone resin particles, and silicone rubber particles whose surfaces are coated with a silicone resin. The average particle size is 0.3 μm or more and 5 μm or less, and the maximum particle size is 10 μm or less. A semiconductor comprising: a stress modifier (E) as an essential component; and the low stress modifier (E) in a proportion of 0.01 wt% to 5 wt% in the total epoxy resin composition. Epoxy resin composition for sealing,

Figure 2006233016
(ただし、上記一般式(1)において、R1、R2は水素又は炭素数4以下のアルキル基で互いに同一でも異なっていても良い。aは0〜4の整数、bは0〜4の整数、cは0〜3の整数。nは平均値で0〜10の数。)
Figure 2006233016
(However, in the general formula (1), R1 and R2 may be hydrogen or an alkyl group having 4 or less carbon atoms, and may be the same or different. A is an integer of 0 to 4, b is an integer of 0 to 4, c is an integer of 0 to 3. n is an average value of 0 to 10.)

Figure 2006233016
(ただし、上記一般式(2)において、Xは水素又は炭素数1〜3のアルキル基、Yは水素又はヒドロキシル基を表す。m、nは1〜3の整数。)
Figure 2006233016
(However, in the said General formula (2), X represents hydrogen or a C1-C3 alkyl group, Y represents hydrogen or a hydroxyl group. M and n are integers of 1-3.)

[2] 前記無機充填材(D)が全エポキシ樹脂組成物中に85%以上、95重量%以下の割合で含まれる第[1]項に記載の半導体封止用エポキシ樹脂組成物、
[3] 芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)が全エポキシ樹脂組成物中に0.01重量%以上、0.5重量%以下の割合で含まれる請求項第[1]又は[2]項に記載の半導体封止用エポキシ樹脂組成物、
[4] 第[1]ないし[3]項のいずれかに記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
[5] 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみの封止に用いるものであって、
結晶性エポキシ樹脂(A)、下記一般式(1)で表されるフェノール樹脂(B)、一般式(2)で表される硬化促進剤(C)、無機充填材(D)、シリコーンゴム粒子、シリコーン樹脂粒子及び表面をシリコーン樹脂で被覆したシリコーンゴム粒子から選ばれる少なくとも1種であり、その平均粒径が0.3μm以上、5μm以下であり、最大粒径が10μm以下である低応力改質剤(E)を必須成分とし、前記低応力改質剤(E)を全エポキシ樹脂組成物中に0.01重量%以上、5重量%以下の割合で含むことを特徴とする半導体封止用エポキシ樹脂組成物、
[2] The epoxy resin composition for semiconductor encapsulation according to item [1], wherein the inorganic filler (D) is contained in the total epoxy resin composition in a proportion of 85% or more and 95% by weight or less,
[3] The compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring is 0.01% by weight or more and 0.5% by weight or less in the total epoxy resin composition. The epoxy resin composition for semiconductor encapsulation according to claim [1] or [2],
[4] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to any one of [1] to [3],
[5] A semiconductor element is mounted on one side of a substrate, and is used for sealing substantially only one side of the substrate surface on which the semiconductor element is mounted,
Crystalline epoxy resin (A), phenol resin (B) represented by the following general formula (1), curing accelerator (C) represented by the general formula (2), inorganic filler (D), silicone rubber particles And at least one selected from silicone resin particles and silicone rubber particles whose surfaces are coated with a silicone resin, the average particle diameter of which is 0.3 μm or more and 5 μm or less, and the maximum particle diameter is 10 μm or less. A semiconductor encapsulation characterized by comprising a quality agent (E) as an essential component and the low stress modifier (E) in a proportion of 0.01 wt% or more and 5 wt% or less in the total epoxy resin composition. Epoxy resin composition for

Figure 2006233016
(ただし、上記一般式(1)において、R1、R2は水素又は炭素数4以下のアルキル基で互いに同一でも異なっていても良い。aは0〜4の整数、bは0〜4の整数、cは0〜3の整数。nは平均値で0〜10の数。)
Figure 2006233016
(However, in the general formula (1), R1 and R2 may be hydrogen or an alkyl group having 4 or less carbon atoms, and may be the same or different. A is an integer of 0 to 4, b is an integer of 0 to 4, c is an integer of 0 to 3. n is an average value of 0 to 10.)

Figure 2006233016
(ただし、上記一般式(2)において、Xは水素又は炭素数1〜3のアルキル基、Yは水素又はヒドロキシル基を表す。m、nは1〜3の整数。)
Figure 2006233016
(However, in the said General formula (2), X represents hydrogen or a C1-C3 alkyl group, Y represents hydrogen or a hydroxyl group. M and n are integers of 1-3.)

[6] 前記無機充填材(D)が全エポキシ樹脂組成物中に85%以上、95重量%以下の割合で含まれる第[5]項に記載の半導体封止用エポキシ樹脂組成物、
[7] 芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)が全エポキシ樹脂組成物中に0.01重量%以上、0.5重量%以下の割合で含まれる第[5]又は[6]項に記載の半導体封止用エポキシ樹脂組成物、
[8] 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが第[5]ないし[7]項のいずれかに記載のエポキシ樹脂組成物を用いて封止されていることを特徴とするエリア実装型半導体装置、
である。
[6] The epoxy resin composition for semiconductor encapsulation according to item [5], wherein the inorganic filler (D) is contained in the total epoxy resin composition in a proportion of 85% to 95% by weight,
[7] The compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring is 0.01% by weight or more and 0.5% by weight or less in the total epoxy resin composition. The epoxy resin composition for semiconductor encapsulation according to item [5] or [6],
[8] A semiconductor element is mounted on one side of a substrate, and the epoxy resin composition according to any one of [5] to [7] is substantially only on one side of the substrate surface on which the semiconductor element is mounted. Area mounting type semiconductor device characterized by being sealed using,
It is.

本発明に従うと、従来の技術では得られなかった無機充填材の高充填化、高流動性、低そり、耐半田特性、耐温度サイクル特性の全てに優れた樹脂組成物が得られるので、特にエリア実装型半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置として好適である。   According to the present invention, since a resin composition excellent in all of the high filling, high fluidity, low warpage, solder resistance, and temperature cycle resistance of inorganic fillers that could not be obtained by conventional techniques can be obtained, It is suitable as an area mounting type semiconductor sealing epoxy resin composition and a semiconductor device using the same.

本発明は、結晶性エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂、硬化促進剤、無機充填材、特定の粒度分布を有する特定の低応力改質剤を必須成分として含むことにより、特にエリア実装型の半導体装置において低そりと耐半田特性等の高信頼性との両立が可能となるという、顕著な効果が得られるものである。
以下、本発明について詳細に説明する。
The present invention includes a crystalline epoxy resin, a phenol aralkyl resin having a biphenylene skeleton, a curing accelerator, an inorganic filler, and a specific low-stress modifier having a specific particle size distribution as essential components. In this semiconductor device, it is possible to obtain a remarkable effect that both low warpage and high reliability such as solder resistance can be achieved.
Hereinafter, the present invention will be described in detail.

本発明で用いられるエポキシ樹脂としては、室温時には固体で取扱い作業性に優れ、かつ成形時の溶融粘度が非常に低い結晶性エポキシ樹脂(A)が必要である。溶融粘度が低いことにより、エポキシ樹脂組成物の高流動化を得ることができ、無機充填材を高充填化できるため、耐湿性の向上や低線膨張化が図れ、成形品としての特性向上が得られる。
結晶性エポキシ樹脂(A)としては、ハイドロキノンのグリシジルエーテル化物、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、一般式(3)で示されるビフェニル型エポキシ樹脂、一般式(4)で示されるスチルベン型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
As the epoxy resin used in the present invention, a crystalline epoxy resin (A) that is solid at room temperature, has excellent handling workability, and has a very low melt viscosity at the time of molding is required. Since the melt viscosity is low, the epoxy resin composition can be highly fluidized and the inorganic filler can be highly filled, so that the moisture resistance can be improved and the linear expansion can be improved, and the properties as a molded product can be improved. can get.
The crystalline epoxy resin (A) includes hydroquinone glycidyl ether, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin represented by general formula (3), and stilbene represented by general formula (4). Type epoxy resins and the like, and these may be used alone or in combination of two or more.

Figure 2006233016
(ただし、上記一般式(3)において、R3〜R10は水素又は炭素数4以下のアルキル基で互いに同一でも異なっていても良い。)
Figure 2006233016
(However, in the general formula (3), R3 to R10 may be the same or different from each other with hydrogen or an alkyl group having 4 or less carbon atoms.)

Figure 2006233016
(ただし、上記一般式(4)において、R11〜R20は水素又は炭素数4以下のアルキル基で互いに同一でも異なっていても良い。)
Figure 2006233016
(However, in the general formula (4), R11 to R20 may be the same or different from each other with hydrogen or an alkyl group having 4 or less carbon atoms.)

一般式(3)のビフェニル型エポキシ樹脂の内では、作業性、実用性のバランスの取れた4,4’−ジグリシジルビフェニル、あるいは3,3’,5,5’−テトラメチル−4,4’−ジグリシジルビフェニル及びこの両者の溶融混合物が好ましい。
また、一般式(4)のスチルベン型エポキシ樹脂の内では、作業性、実用性のバランスの取れた5−ターシャリブチル−4,4’−グリシジル−2,3’,5’−トリメチルスチルベン、あるいは4,4’−ジグリシジル3,3’,5,5’テトラメチルスチルベン及びこの両者の溶融混合物が好ましい。
本発明の結晶性エポキシ樹脂(A)は、他のエポキシ樹脂と併用することができる。併用する場合、結晶性エポキシ樹脂(A)は全エポキシ樹脂中の少なくとも10重量%以上が好ましく、より好ましくは30重量%以上、更に好ましくは50重量%以上である。結晶性エポキシ樹脂(A)の配合割合が高いほど良好な流動性を得ることができる。併用可能なエポキシ樹脂としては特に限定はしないが、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格を有する)、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。併用するエポキシ樹脂は、成形時の溶融粘度が非常に低い結晶性エポキシ樹脂(A)の特徴を損なわないよう、極力粘度の低いものを使用することが望ましい。
Among the biphenyl type epoxy resins of the general formula (3), 4,4′-diglycidylbiphenyl or 3,3 ′, 5,5′-tetramethyl-4,4, which has a balance between workability and practicality. '-Diglycidylbiphenyl and a molten mixture of both are preferred.
Among the stilbene type epoxy resins of the general formula (4), 5-tertiarybutyl-4,4′-glycidyl-2,3 ′, 5′-trimethylstilbene having a balance between workability and practicality, Alternatively, 4,4′-diglycidyl 3,3 ′, 5,5 ′ tetramethylstilbene and a molten mixture of both are preferred.
The crystalline epoxy resin (A) of the present invention can be used in combination with other epoxy resins. When used in combination, the crystalline epoxy resin (A) is preferably at least 10% by weight or more of the total epoxy resin, more preferably 30% by weight or more, and still more preferably 50% by weight or more. As the blending ratio of the crystalline epoxy resin (A) is higher, better fluidity can be obtained. Although it does not specifically limit as an epoxy resin which can be used together, For example, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a triphenolmethane type epoxy resin, a phenol aralkyl type epoxy resin (having a phenylene skeleton and a biphenylene skeleton), a naphthol type Examples include epoxy resins, naphthalene-type epoxy resins, alkyl-modified triphenol methane-type epoxy resins, triazine nucleus-containing epoxy resins, dicyclopentadiene-modified phenol-type epoxy resins, and these can be used alone or in combination of two or more. You may use together. It is desirable to use an epoxy resin having a viscosity as low as possible so as not to impair the characteristics of the crystalline epoxy resin (A) having a very low melt viscosity at the time of molding.

本発明で用いられる一般式(1)で表されるフェノール樹脂(B)は、フェノール性水酸基間に疎水性で剛直なビフェニレン骨格を有しており、これを用いたエポキシ樹脂組成物の硬化物は低反りの特徴を有し、また吸湿率が低く、Tgを越えた高温域での弾性率が低く、半導体素子、有機基板、及び金属基板との密着性に優れる。また、難燃性にも優れ、架橋密度が低い割には耐熱性が高いという特徴を有している。
一般式(1)のR1、R2は水素又は炭素数4以下のアルキル基、aは0〜4の整数、bは0〜4の整数、cは0〜3の整数、nは平均値で0〜10の数であるが、これらの内では硬化性の点から式(5)で示されるフェノール樹脂が好ましい。nの値が上記範囲内であれば、樹脂の粘度が増大することによる成形時の樹脂組成物の流動性の低下を抑えることができ、より一層の低吸湿化、低そり化のための無機充填材の高充填化が可能となる。

Figure 2006233016
(ただし、上記式(5)において、nは平均値で0〜10の数。) The phenol resin (B) represented by the general formula (1) used in the present invention has a hydrophobic and rigid biphenylene skeleton between phenolic hydroxyl groups, and a cured product of an epoxy resin composition using the same. Has low warpage, low moisture absorption, low elastic modulus in the high temperature range exceeding Tg, and excellent adhesion to semiconductor elements, organic substrates, and metal substrates. Moreover, it has the characteristics that it is excellent in flame retardancy and has high heat resistance for a low crosslinking density.
R1 and R2 in the general formula (1) are hydrogen or an alkyl group having 4 or less carbon atoms, a is an integer of 0 to 4, b is an integer of 0 to 4, c is an integer of 0 to 3, and n is an average value of 0. Among these, a phenol resin represented by the formula (5) is preferable from the viewpoint of curability. If the value of n is within the above range, it is possible to suppress a decrease in fluidity of the resin composition at the time of molding due to an increase in the viscosity of the resin, and an inorganic material for further reducing moisture absorption and warping. High filling of the filler can be achieved.
Figure 2006233016
(However, in said Formula (5), n is an average value and the number of 0-10.)

本発明の一般式(1)のフェノール樹脂(B)は、他のフェノール樹脂と併用することができる。併用する場合、一般式(1)のフェノール樹脂(B)は全フェノール樹脂中の少なくとも10重量%以上が好ましく、より好ましくは30重量%以上、更に好ましくは50重量%以上である。一般式(1)のフェノール樹脂(B)の配合割合が高いほど、高温時の低弾性化、低吸湿化、接着性及び耐燃性という点で優れた樹脂組成物を得ることができる。併用するフェノール樹脂は特に限定しないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン骨格を有するフェノールアラルキル樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。無機充填材の高充填化のためには、エポキシ樹脂と同様に、低粘度のものが好ましい。
本発明に用いられる全エポキシ樹脂のエポキシ基数と全フェノール樹脂のフェノール性水酸基数の当量比としては、好ましくは0.5以上2以下であり、特に0.7以上1.5以下がより好ましい。当量比が上記範囲であれば、耐湿性、硬化性などの低下を抑えることができる。
The phenol resin (B) of the general formula (1) of the present invention can be used in combination with other phenol resins. When used in combination, the phenol resin (B) of the general formula (1) is preferably at least 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more based on the total phenol resin. The higher the blending ratio of the phenol resin (B) of the general formula (1), the more excellent resin composition can be obtained in terms of low elasticity at low temperatures, low moisture absorption, adhesion and flame resistance. The phenol resin used in combination is not particularly limited, and examples thereof include phenol novolak resin, cresol novolak resin, naphthol aralkyl resin, triphenolmethane resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin having a phenylene skeleton, and the like. These may be used alone or in combination of two or more. In order to increase the filling of the inorganic filler, a material having a low viscosity is preferable like the epoxy resin.
The equivalent ratio of the number of epoxy groups of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resins used in the present invention is preferably 0.5 or more and 2 or less, and more preferably 0.7 or more and 1.5 or less. When the equivalent ratio is in the above range, it is possible to suppress a decrease in moisture resistance, curability, and the like.

本発明では硬化促進剤として一般式(2)で表される硬化促進剤(C)を用いる。一般式(2)で表される硬化促進剤(C)は、例えば沃化フェノール類とトリ芳香族置換ホスフィンを有機溶媒に均一に混合し、ニッケル触媒によりヨードニウム塩として沈殿させ、このヨードニウム塩と塩基を有機溶剤に均一に混合し、必要により水を加え沈殿させることにより得ることができる。一般式(2)で表される硬化促進剤(C)としては、好ましくはXが水素又はメチル基であり、かつYが水素又はヒドロキシル基であるものが好ましい。しかし、これらに限定されるものではなく、単独で用いても併用してもよい。一般式(2)で表される硬化促進剤(C)を使用すると、従来の硬化促進剤よりもICパッケージの反り量を低減することができる。一般式(2)で表される硬化促進剤(C)の配合量は、全エポキシ樹脂組成物中に0.05重量%以上、0.3重量%以下が好ましい。上記範囲内であれば、目的とする硬化性と良好な流動性を得ることができる。

Figure 2006233016
(ただし、上記一般式(2)において、Xは水素又は炭素数1〜3のアルキル基、Yは水素又はヒドロキシル基を表す。m、nは1〜3の整数。) In this invention, the hardening accelerator (C) represented by General formula (2) is used as a hardening accelerator. The curing accelerator (C) represented by the general formula (2) is prepared by, for example, uniformly mixing an iodinated phenol and a triaromatic substituted phosphine in an organic solvent, and precipitating as an iodonium salt with a nickel catalyst. It can be obtained by uniformly mixing a base with an organic solvent, and adding water to cause precipitation. The curing accelerator (C) represented by the general formula (2) is preferably one in which X is hydrogen or a methyl group and Y is hydrogen or a hydroxyl group. However, it is not limited to these and may be used alone or in combination. When the curing accelerator (C) represented by the general formula (2) is used, the warpage amount of the IC package can be reduced as compared with the conventional curing accelerator. The blending amount of the curing accelerator (C) represented by the general formula (2) is preferably 0.05% by weight or more and 0.3% by weight or less in the total epoxy resin composition. If it is in the said range, the target sclerosis | hardenability and favorable fluidity | liquidity can be obtained.
Figure 2006233016
(However, in the said General formula (2), X represents hydrogen or a C1-C3 alkyl group, Y represents hydrogen or a hydroxyl group. M and n are integers of 1-3.)

本発明の一般式(2)の硬化促進剤(C)は、他の硬化促進剤と併用することができる。併用する場合、一般式(2)の硬化促進剤(C)は全硬化促進剤中の少なくとも10重量%以上が好ましく、より好ましくは30重量%以上、更に好ましくは50重量%以上である。一般式(2)の硬化促進剤(C)の割合が高いほど、ICパッケージの反り量を低減する効果も高くできる。併用する硬化促進剤としてはエポキシ基とフェノール性水酸基の反応を促進するものであれば特に限定しないが、例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。   The curing accelerator (C) of the general formula (2) of the present invention can be used in combination with other curing accelerators. When used in combination, the curing accelerator (C) of the general formula (2) is preferably at least 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more in the total curing accelerator. The higher the ratio of the curing accelerator (C) of the general formula (2), the higher the effect of reducing the amount of warpage of the IC package. The curing accelerator used in combination is not particularly limited as long as it accelerates the reaction between an epoxy group and a phenolic hydroxyl group. For example, diazabicycloalkene such as 1,8-diazabicyclo (5,4,0) undecene-7 and the like Derivatives, organic phosphines such as triphenylphosphine, methyldiphenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetrabenzoic acid borate, tetraphenylphosphonium / tetranaphthoic acid borate, tetraphenylphosphonium / tetranaphthoyl Examples include tetra-substituted phosphonium and tetra-substituted borates such as oxyborate and tetraphenylphosphonium / tetranaphthyloxyborate. These may be used alone or in combination of two or more. Good.

本発明に用いる無機充填材(D)としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等が挙げられ、最も好適に使用されるものとしては、溶融球状シリカである。これらの無機充填剤は、単独でも混合して用いても差し支えない。またこれらがカップリング剤により表面処理されていてもかまわない。無機充填材(D)の形状としては、流動性改善のために、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。本発明で用いられる無機充填材(D)の含有量は、全エポキシ樹脂組成物中に85重量%以上、95重量%以下であることが好ましく、より好ましくは87重量%以上、93重量%以下である。無機充填材(D)の含有量が上記範囲であると、低吸湿性、低熱膨張性で十分な耐半田性と良好な反り特性を有する樹脂組成物が得られ、かつ流動性が低下し、成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じたりするのを抑えることができる。   As an inorganic filler (D) used for this invention, what is generally used for the epoxy resin composition for semiconductor sealing can be used. For example, fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, silicon nitride and the like can be mentioned, and the most suitably used is fused spherical silica. These inorganic fillers may be used alone or in combination. These may be surface-treated with a coupling agent. The shape of the inorganic filler (D) is preferably as spherical as possible and the particle size distribution is broad in order to improve fluidity. The content of the inorganic filler (D) used in the present invention is preferably 85% by weight or more and 95% by weight or less, more preferably 87% by weight or more and 93% by weight or less in the total epoxy resin composition. It is. When the content of the inorganic filler (D) is in the above range, a resin composition having low hygroscopicity, low thermal expansion, sufficient solder resistance and good warpage characteristics is obtained, and fluidity is lowered. It is possible to suppress the occurrence of defective filling during molding or the occurrence of inconvenience such as deformation of the gold wire in the semiconductor device due to high viscosity.

本発明では、シリコーンゴム粒子、シリコーン樹脂粒子及び表面をシリコーン樹脂で被覆したシリコーンゴム粒子から選ばれる少なくとも1種であり、その平均粒径が0.3μm以上、5μm以下であり、最大粒径が10μm以下である低応力改質剤(E)を全エポキシ樹脂組成物中に0.01重量%以上、5重量%以下の割合で用いることが必須である。平均粒径が上記範囲内であると、低応力改質剤(E)の分散性が低下したり、エポキシ樹脂組成物の流動性が低下したりすることがなく、充分な低応力性を発現することができる。また、最大粒径が上記範囲内であると、低応力性の低下を抑えることができる。また、低応力改質剤(E)の配合量が上記範囲内であると、低応力性の低下、或いは硬化物の強度の低下や吸水率の増加による耐半田性の低下を抑えることができる。
本発明における低応力改質剤(E)の平均粒径は、レーザー回折式の粒度分布測定装置等で測定するのが好ましく、例えば、(株)島津製作所のレーザー回折式粒度分布測定装置SALD−7000等を用いることができる。
In the present invention, it is at least one selected from silicone rubber particles, silicone resin particles and silicone rubber particles whose surfaces are coated with a silicone resin, the average particle size is 0.3 μm or more and 5 μm or less, and the maximum particle size is It is essential to use the low-stress modifier (E) having a size of 10 μm or less in a proportion of 0.01 wt% or more and 5 wt% or less in the entire epoxy resin composition. When the average particle size is within the above range, the dispersibility of the low-stress modifier (E) does not decrease and the fluidity of the epoxy resin composition does not decrease, and sufficient low-stress properties are exhibited. can do. Moreover, the fall of low stress property can be suppressed as the largest particle size is in the said range. Further, when the blending amount of the low stress modifier (E) is within the above range, it is possible to suppress a decrease in low stress property, or a decrease in solder resistance due to a decrease in strength of a cured product or an increase in water absorption. .
The average particle size of the low stress modifier (E) in the present invention is preferably measured with a laser diffraction type particle size distribution measuring device or the like, for example, a laser diffraction type particle size distribution measuring device SALD- manufactured by Shimadzu Corporation. 7000 or the like can be used.

本発明に用いられる低応力改質剤(E)であるシリコーンゴムの製造方法としては、通常、メチルクロロシラン、トリメチルトリクロロシラン、ジメチルジクロロシラン等のオルガノクロロシランを重合させることによりオルガノポリシロキサンを得るがこれらに限定されるものではない。シリコーン樹脂とは、オルガノポリシロキサンを三次元架橋した構造を基本骨格としたものである。またシリコーンゴム粒子の表面をシリコーン樹脂で被覆することも可能である。
またこれらの構造中に各種官能基を導入することが可能であり、導入できる官能基としてはエポキシ基、アミノ基、メトキシ基、フェニル基、カルボキシル基、水酸基、アルキル基、ビニル基、メルカプト基等があげられるが、これらに限定されるものではない。
本発明では、特性を損なわない範囲で他の低応力改質剤を併用して添加しても構わない。併用できる他の低応力改質剤としては、ブタジエンスチレンゴム、ブタジエンアクリロニトリルゴム、ポリウレタンゴム、ポリイソプレンゴム、アクリルゴム、フッ素ゴム、液状オルガノポリシロキサン、液状ポリブタジエン等の液状合成ゴム等が挙げられるが、これらに限定されるものではない。
As a method for producing a silicone rubber which is a low stress modifier (E) used in the present invention, an organopolysiloxane is usually obtained by polymerizing an organochlorosilane such as methylchlorosilane, trimethyltrichlorosilane, or dimethyldichlorosilane. It is not limited to these. The silicone resin has a basic skeleton having a structure in which organopolysiloxane is three-dimensionally crosslinked. It is also possible to coat the surface of the silicone rubber particles with a silicone resin.
Various functional groups can be introduced into these structures. Examples of functional groups that can be introduced include epoxy groups, amino groups, methoxy groups, phenyl groups, carboxyl groups, hydroxyl groups, alkyl groups, vinyl groups, mercapto groups, and the like. However, it is not limited to these.
In the present invention, other low stress modifiers may be added in combination as long as the characteristics are not impaired. Examples of other low stress modifiers that can be used in combination include butadiene styrene rubber, butadiene acrylonitrile rubber, polyurethane rubber, polyisoprene rubber, acrylic rubber, fluororubber, liquid organopolysiloxane, and liquid synthetic rubber such as liquid polybutadiene. However, it is not limited to these.

本発明に用いることができる芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)(以下、化合物(F)と称する。)は、エポキシ樹脂組成物の溶融粘度を下げ、流動性を向上する効果を有するものである。化合物(F)としては、式(6)又は式(7)で表される化合物が好ましく、例えば、カテコール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びこれらの誘導体等が挙げられる。そのうち制御のしやすさ、低揮発性の点から母核はナフタレン環である化合物(1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びその誘導体)がより好ましい。これらの化合物(F)は2種以上併用してもよい。かかる化合物(F)の配合量は全エポキシ樹脂組成物中0.01重量%以上、0.5重量%以下が好ましく、より好ましくは0.02重量%以上、0.3重量%以下である。化合物(F)の配合量が上記範囲であると、期待するような粘度特性及び流動特性を得ることができ、エポキシ樹脂組成物の硬化性の低下や、硬化物の物性の低下を抑えることができる。   The compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring that can be used in the present invention (hereinafter referred to as compound (F)) is the melt viscosity of the epoxy resin composition. And has the effect of improving fluidity. As the compound (F), a compound represented by the formula (6) or the formula (7) is preferable, and examples thereof include catechol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof. Of these, compounds (1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof) in which the mother nucleus is a naphthalene ring are more preferred from the viewpoint of ease of control and low volatility. Two or more of these compounds (F) may be used in combination. The compounding amount of the compound (F) is preferably 0.01% by weight or more and 0.5% by weight or less, more preferably 0.02% by weight or more and 0.3% by weight or less in the total epoxy resin composition. When the compounding amount of the compound (F) is within the above range, it is possible to obtain the expected viscosity characteristics and flow characteristics, and to suppress the decrease in the curability of the epoxy resin composition and the decrease in the physical properties of the cured product. it can.

Figure 2006233016
(ただし、上記式(6)において、R21、R25はどちらか一方が水酸基であり、片方が水酸基のとき他方は水素又は水酸基以外の置換基、R22、R23、R24は水素、水酸基又は水酸基以外の置換基。)
Figure 2006233016
(However, in the above formula (6), one of R21 and R25 is a hydroxyl group, and when one is a hydroxyl group, the other is a substituent other than hydrogen or hydroxyl group, and R22, R23 and R24 are other than hydrogen, hydroxyl group or hydroxyl group. Substituent.)

Figure 2006233016
(ただし、上記式(7)において、R26、R32はどちらか一方が水酸基であり、片方が水酸基のとき他方は水素又は水酸基以外の置換基、R27、R28、R29、R30、R31は水素、水酸基又は水酸基以外の置換基。)
Figure 2006233016
(In the above formula (7), one of R26 and R32 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen or a substituent other than a hydroxyl group, and R27, R28, R29, R30, and R31 are hydrogen, hydroxyl group. Or a substituent other than a hydroxyl group.)

本発明のエポキシ樹脂組成物は、(A)〜(F)成分の他、必要に応じてエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤や、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤等のカップリング剤、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤、カーボンブラック、ベンガラ等の着色剤、臭素化エポキシ樹脂、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤、酸化ビスマス水和物等の無機イオン交換体、酸化防止剤等の各種添加剤が適宜配合可能である。   In addition to the components (A) to (F), the epoxy resin composition of the present invention includes silane coupling agents such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, and titanate coupling as necessary. Agents, coupling agents such as aluminum coupling agents, aluminum / zirconium coupling agents, natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and metal salts thereof, paraffins, etc. Release agents, colorants such as carbon black and bengara, flame retardants such as brominated epoxy resin, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, bismuth oxide hydrate, etc. Inorganic ion exchange Body, various additives such as an antioxidant can be appropriately blended.

本発明のエポキシ樹脂組成物は、(A)〜(F)成分、及びその他の添加剤等を、ミキサー等を用いて常温混合し、ロール、ニーダー、押出機等の混練機で加熱混練、冷却後粉砕して得られる。   In the epoxy resin composition of the present invention, the components (A) to (F) and other additives are mixed at room temperature using a mixer or the like, heated and kneaded with a kneader such as a roll, kneader, or extruder, and cooled. Obtained by post-grinding.

本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。その他の半導体装置の製造方法は、公知の方法を用いることができる。   In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it can be cured by a conventional molding method such as transfer molding, compression molding, injection molding, etc. Good. As other semiconductor device manufacturing methods, known methods can be used.

以下に、実施例を挙げて本発明を説明するが、これらの実施例に限定されるものではない。配合割合は重量部とする。
実施例1
エポキシ樹脂1:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX4000K、融点105℃、エポキシ当量185) 4.33重量部
フェノール樹脂1:ビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成(株)製、MEH7851SS、軟化点65℃、水酸基当量203) 4.75重量部
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The blending ratio is parts by weight.
Example 1
Epoxy resin 1: biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YX4000K, melting point 105 ° C., epoxy equivalent 185) 4.33 parts by weight Phenol resin 1: phenol aralkyl resin having biphenylene skeleton (manufactured by Meiwa Kasei Co., Ltd.) MEH7851SS, softening point 65 ° C., hydroxyl group equivalent 203) 4.75 parts by weight

硬化促進剤:式(8)で示される硬化促進剤 0.22重量部

Figure 2006233016
Curing accelerator: Curing accelerator represented by formula (8) 0.22 parts by weight
Figure 2006233016

溶融球状シリカ(平均粒径30μm) 89.00重量部
低応力改質剤1:シリコーンゴムの表面をシリコーン樹脂で被覆した低応力改質剤(平均粒径4μm、最大粒径9μm) 1.00重量部
γ−グリシジルプロピルトリメトキシシラン 0.20重量部
カルナバワックス 0.20重量部
カーボンブラック 0.30重量部
をミキサーで混合した後、表面温度が90℃と45℃の2本ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物とした。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
Fused spherical silica (average particle size 30 μm) 89.00 parts by weight Low stress modifier 1: Low stress modifier in which silicone rubber surface is coated with silicone resin (average particle size 4 μm, maximum particle size 9 μm) 1.00 Part by weight γ-glycidylpropyltrimethoxysilane 0.20 part by weight Carnauba wax 0.20 part by weight Carbon black 0.30 part by weight was mixed with a mixer, and then using two rolls with surface temperatures of 90 ° C and 45 ° C. The mixture was kneaded, cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:トランスファー成形機を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件でエポキシ樹脂組成物を注入し、流動長を測定した。単位はcm。
Evaluation method Spiral flow: Using a transfer molding machine, an epoxy resin composition in a spiral flow measurement mold according to EMMI-1-66 under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The material was injected and the flow length was measured. The unit is cm.

曲げ強度:トランスファー成形機を用い、金型温度175℃、注入圧力9.8MPa、硬化時間2分で、試験片(80mm×10mm×4mm)を成形し、175℃、4時間で後硬化した後、25℃及び260℃での曲げ強さをJIS K 6911に準じて測定した。単位はMPa。   Bending strength: After using a transfer molding machine to mold a test piece (80 mm × 10 mm × 4 mm) at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes, and post-curing at 175 ° C. for 4 hours. The bending strength at 25 ° C. and 260 ° C. was measured according to JIS K 6911. The unit is MPa.

曲げ弾性率:トランスファー成形機を用い、金型温度175℃、注入圧力9.8MPa、硬化時間2分で、試験片(80mm×10mm×4mm)を成形し、175℃、4時間で後硬化した後、25℃及び260℃での曲げ弾性率をJIS K 6911に準じて測定した。単位はMPa。   Flexural modulus: Using a transfer molding machine, a test piece (80 mm × 10 mm × 4 mm) was molded at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes, and post-cured at 175 ° C. for 4 hours. Thereafter, the flexural modulus at 25 ° C. and 260 ° C. was measured according to JIS K 6911. The unit is MPa.

パッケージ反り量:トランスファー成形機を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で、352ピンBGA(基板は厚さ0.56mmのビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージのサイズは30mm×30mm、厚さ1.17mm、半導体素子のサイズ10mm×10mm、厚さ0.35mm、半導体素子と回路基板のボンディングパッドを25μm径の金線でボンディングしている)を成形し、175℃、2時間で後硬化してサンプルを得た。得られたパッケー各10個を室温に冷却後、パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変異差の最も大きい値を反り量とした。単位はμm。   Package warpage: Using a transfer molding machine, mold temperature is 175 ° C., injection pressure is 6.9 MPa, curing time is 2 minutes, 352 pin BGA (substrate is bismaleimide / triazine resin / glass cloth substrate with a thickness of 0.56 mm, The package size is 30 mm x 30 mm, the thickness is 1.17 mm, the semiconductor element size is 10 mm x 10 mm, the thickness is 0.35 mm, and the bonding pad between the semiconductor element and the circuit board is bonded with a 25 μm diameter gold wire) And post-cured at 175 ° C. for 2 hours to obtain a sample. After each of the 10 packages obtained was cooled to room temperature, the displacement in the height direction was measured in a diagonal direction from the gate of the package using a surface roughness meter, and the value with the largest variation difference was taken as the amount of warpage. The unit is μm.

金線変形率:パッケージ反り量の評価で成形した352ピンBGAパッケージを軟X線透視装置で観察し、金線の変形率を(流れ量)/(金線長)の比率で表した。単位は%。   Gold wire deformation rate: A 352-pin BGA package molded by evaluation of the amount of warpage of the package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was expressed as a ratio of (flow amount) / (gold wire length). Units%.

耐半田性:パッケージ反り量の評価と同様にして成形した352ピンBGAパッケージを175℃、2時間で後硬化し、得られたパッケージ各10個を、60℃、相対湿度60%の環境下で168時間、又は85℃、相対湿度60%の環境下で168時間処理した後、ピーク温度260℃のIRリフロー処理(255℃以上が10秒)を行った。処理後の内部の剥離及びクラックの有無を超音波探傷機で観察し、不良パッケーの個数を数えた。不良パッケーの個数がn個であるとき、n/10と表示した。   Solder resistance: A 352-pin BGA package molded in the same manner as the evaluation of the amount of warpage of the package was post-cured at 175 ° C. for 2 hours. After 168 hours of treatment for 168 hours or in an environment of 85 ° C. and 60% relative humidity, IR reflow treatment (at 255 ° C. or higher for 10 seconds) at a peak temperature of 260 ° C. was performed. The presence or absence of internal peeling and cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages was n, it was displayed as n / 10.

耐温度サイクル性:パッケージ反り量の評価と同様にして成形した352ピンBGAパッケージを175℃、2時間で後硬化し、得られたパッケージ10個を、−65℃/30分←→150℃/30分の環境下で繰り返し処理を行い、100時間毎に外部クラックの有無を観察した。得られたパッケージの50%以上の個数に外部クラックが生じた時間を測定し、「50%不良発生時間」で示した。単位はhr。   Thermal cycle resistance: A 352-pin BGA package molded in the same manner as the evaluation of the amount of warpage of the package was post-cured at 175 ° C. for 2 hours, and 10 obtained packages were −65 ° C./30 minutes ← → 150 ° C. / The treatment was repeated in an environment of 30 minutes, and the presence or absence of external cracks was observed every 100 hours. The time when external cracks occurred in 50% or more of the obtained packages was measured and indicated as “50% defect occurrence time”. The unit is hr.

実施例2〜13、比較例1〜4
表1、表2、3の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得、同様に評価した。これらの評価結果を表1、表2、3に示す。
実施例1以外で用いた成分を以下に示す。
エポキシ樹脂2:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、NC3000、軟化点60℃、エポキシ当量276)
フェノール樹脂2:フェニレン骨格を有するフェノールアラルキル樹脂(三井化学(株)製、XLC−LL、軟化点75℃、水酸基当量175)
フェノール樹脂3:フェノールノボラック樹脂(軟化点80℃、水酸基当量105)
低応力改質剤2:シリコーン樹脂粒子(平均粒径1μm、最大粒径7μm)
低応力改質剤3:シリコーンゴム粒子(平均粒径15μm、最大粒径30μm)
2,3−ジヒドロキシナフタレン(試薬)
1,2−ジヒドロキシナフタレン(試薬)
カテコール(試薬)
γ−メルカプトプロピルトリメトキシシラン
Examples 2-13, Comparative Examples 1-4
According to the composition of Tables 1, 2 and 3, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner. These evaluation results are shown in Tables 1, 2 and 3.
Components used in Examples other than Example 1 are shown below.
Epoxy resin 2: phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC3000, softening point 60 ° C., epoxy equivalent 276)
Phenol resin 2: Phenol aralkyl resin having a phenylene skeleton (Mitsui Chemicals, XLC-LL, softening point 75 ° C., hydroxyl equivalent 175)
Phenol resin 3: phenol novolac resin (softening point 80 ° C., hydroxyl group equivalent 105)
Low stress modifier 2: silicone resin particles (average particle size 1 μm, maximum particle size 7 μm)
Low stress modifier 3: silicone rubber particles (average particle size 15 μm, maximum particle size 30 μm)
2,3-dihydroxynaphthalene (reagent)
1,2-dihydroxynaphthalene (reagent)
Catechol (reagent)
γ-mercaptopropyltrimethoxysilane

Figure 2006233016
Figure 2006233016

Figure 2006233016
Figure 2006233016

Figure 2006233016
Figure 2006233016

本発明の半導体封止用エポキシ樹脂組成物は、高流動性、低反り、耐半田特性、耐温度サイクル特性に優れたものであり、これらの特性が要求されるエリア実装型半導体装置等への適用が有用である。   The epoxy resin composition for semiconductor encapsulation of the present invention is excellent in high fluidity, low warpage, solder resistance, and temperature cycle resistance, and is suitable for area mounting type semiconductor devices and the like that require these characteristics. Application is useful.

Claims (8)

結晶性エポキシ樹脂(A)、一般式(1)で表されるフェノール樹脂(B)、一般式(2)で表される硬化促進剤(C)、無機充填材(D)、シリコーンゴム粒子、シリコーン樹脂粒子及び表面をシリコーン樹脂で被覆したシリコーンゴム粒子から選ばれる少なくとも1種であり、その平均粒径が0.3μm以上、5μm以下であり、最大粒径が10μm以下である低応力改質剤(E)を必須成分とし、前記低応力改質剤(E)を全エポキシ樹脂組成物中に0.01重量%以上、5重量%以下の割合で含むことを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 2006233016
(ただし、上記一般式(1)において、R1、R2は水素又は炭素数4以下のアルキル基で互いに同一でも異なっていても良い。aは0〜4の整数、bは0〜4の整数、cは0〜3の整数。nは平均値で0〜10の数。)
Figure 2006233016
(ただし、上記一般式(2)において、Xは水素又は炭素数1〜3のアルキル基、Yは水素又はヒドロキシル基を表す。m、nは1〜3の整数。)
Crystalline epoxy resin (A), phenol resin (B) represented by general formula (1), curing accelerator (C) represented by general formula (2), inorganic filler (D), silicone rubber particles, Low stress modification with at least one selected from silicone resin particles and silicone rubber particles whose surface is coated with a silicone resin, an average particle size of 0.3 μm to 5 μm, and a maximum particle size of 10 μm or less For semiconductor encapsulation, characterized in that the agent (E) is an essential component and the low-stress modifier (E) is contained in the total epoxy resin composition in a proportion of 0.01 wt% or more and 5 wt% or less. Epoxy resin composition.
Figure 2006233016
(However, in the general formula (1), R1 and R2 may be hydrogen or an alkyl group having 4 or less carbon atoms, and may be the same or different. A is an integer of 0 to 4, b is an integer of 0 to 4, c is an integer of 0 to 3. n is an average value of 0 to 10.)
Figure 2006233016
(However, in the said General formula (2), X represents hydrogen or a C1-C3 alkyl group, Y represents hydrogen or a hydroxyl group. M and n are integers of 1-3.)
前記無機充填材(D)が全エポキシ樹脂組成物中に85重量%以上、95重量%以下の割合で含まれる請求項1に記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the inorganic filler (D) is contained in the total epoxy resin composition in a proportion of 85 wt% or more and 95 wt% or less. 芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)が全エポキシ樹脂組成物中に0.01重量%以上、0.5重量%以下の割合で含まれる請求項1又は2に記載の半導体封止用エポキシ樹脂組成物。 The compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring is contained in the total epoxy resin composition in a proportion of 0.01% by weight or more and 0.5% by weight or less. Item 3. The epoxy resin composition for semiconductor encapsulation according to Item 1 or 2. 請求項1ないし3のいずれかに記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to claim 1. 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみの封止に用いるものであって、
結晶性エポキシ樹脂(A)、下記一般式(1)で表されるフェノール樹脂(B)、一般式(2)で表される硬化促進剤(C)、無機充填材(D)、シリコーンゴム粒子、シリコーン樹脂粒子及び表面をシリコーン樹脂で被覆したシリコーンゴム粒子から選ばれる少なくとも1種であり、その平均粒径が0.3μm以上、5μm以下であり、最大粒径が10μm以下である低応力改質剤(E)を必須成分とし、前記低応力改質剤(E)を全エポキシ樹脂組成物中に0.01重量%以上、5重量%以下の割合で含むことを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 2006233016
(ただし、上記一般式(1)において、R1、R2は水素又は炭素数4以下のアルキル基で互いに同一でも異なっていても良い。aは0〜4の整数、bは0〜4の整数、cは0〜3の整数。nは平均値で0〜10の数。)
Figure 2006233016
(ただし、上記一般式(2)において、Xは水素又は炭素数1〜3のアルキル基、Yは水素又はヒドロキシル基を表す。m、nは1〜3の整数。)
A semiconductor element is mounted on one side of the substrate, and is used for sealing only substantially one side of the substrate side on which the semiconductor element is mounted,
Crystalline epoxy resin (A), phenol resin (B) represented by the following general formula (1), curing accelerator (C) represented by the general formula (2), inorganic filler (D), silicone rubber particles And at least one selected from silicone resin particles and silicone rubber particles whose surfaces are coated with a silicone resin, the average particle diameter of which is 0.3 μm or more and 5 μm or less, and the maximum particle diameter is 10 μm or less. A semiconductor encapsulation characterized by comprising a quality agent (E) as an essential component and the low stress modifier (E) in a proportion of 0.01 wt% or more and 5 wt% or less in the total epoxy resin composition. Epoxy resin composition.
Figure 2006233016
(However, in the general formula (1), R1 and R2 may be hydrogen or an alkyl group having 4 or less carbon atoms, and may be the same or different. A is an integer of 0 to 4, b is an integer of 0 to 4, c is an integer of 0 to 3. n is an average value of 0 to 10.)
Figure 2006233016
(However, in the said General formula (2), X represents hydrogen or a C1-C3 alkyl group, Y represents hydrogen or a hydroxyl group. M and n are integers of 1-3.)
前記無機充填材(D)が全エポキシ樹脂組成物中に85%以上、95重量%以下の割合で含まれる請求項5に記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 5, wherein the inorganic filler (D) is contained in the total epoxy resin composition in a proportion of 85% to 95% by weight. 芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(F)が全エポキシ樹脂組成物中に0.01重量%以上、0.5重量%以下の割合で含まれる請求項5又は6に記載の半導体封止用エポキシ樹脂組成物。 The compound (F) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring is contained in the total epoxy resin composition in a proportion of 0.01% by weight or more and 0.5% by weight or less. Item 7. The epoxy resin composition for semiconductor encapsulation according to Item 5 or 6. 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが請求項5ないし7のいずれかに記載のエポキシ樹脂組成物を用いて封止されていることを特徴とするエリア実装型半導体装置。 A semiconductor element is mounted on one side of the substrate, and substantially only one side of the substrate surface side on which the semiconductor element is mounted is sealed with the epoxy resin composition according to any one of claims 5 to 7. An area mounting type semiconductor device.
JP2005049777A 2005-02-24 2005-02-24 Epoxy resin composition and semiconductor device Pending JP2006233016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049777A JP2006233016A (en) 2005-02-24 2005-02-24 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049777A JP2006233016A (en) 2005-02-24 2005-02-24 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2006233016A true JP2006233016A (en) 2006-09-07

Family

ID=37041025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049777A Pending JP2006233016A (en) 2005-02-24 2005-02-24 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2006233016A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156383A (en) * 2006-12-20 2008-07-10 Matsushita Electric Works Ltd Liquid resin composition, semiconductor device and method for producing the same
JP2008163138A (en) * 2006-12-27 2008-07-17 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition and semiconductor device
JP2009130221A (en) * 2007-11-26 2009-06-11 Sumitomo Bakelite Co Ltd Semiconductor apparatus and sealing resin composition
JP2011105898A (en) * 2009-11-20 2011-06-02 Sumitomo Bakelite Co Ltd Silicone rubber fine particle-containing epoxy resin composition, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP2011105911A (en) * 2009-11-20 2011-06-02 Sumitomo Bakelite Co Ltd Epoxy resin composition containing silicone rubber fine particle, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
WO2016145648A1 (en) * 2015-03-19 2016-09-22 Ablestik (Shanghai) Ltd. Epoxy molding compound for high power soic semiconductor package application
JP2017179012A (en) * 2016-03-28 2017-10-05 味の素株式会社 Resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233937A (en) * 2000-02-22 2001-08-28 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2003064154A (en) * 2001-08-30 2003-03-05 Sumitomo Bakelite Co Ltd Method for producing epoxy resin composition and semiconductor device
WO2004085511A1 (en) * 2003-03-25 2004-10-07 Sumitomo Bakelite Co., Ltd. Resin composition for sealing semiconductor and semiconductor device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233937A (en) * 2000-02-22 2001-08-28 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2003064154A (en) * 2001-08-30 2003-03-05 Sumitomo Bakelite Co Ltd Method for producing epoxy resin composition and semiconductor device
WO2004085511A1 (en) * 2003-03-25 2004-10-07 Sumitomo Bakelite Co., Ltd. Resin composition for sealing semiconductor and semiconductor device using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156383A (en) * 2006-12-20 2008-07-10 Matsushita Electric Works Ltd Liquid resin composition, semiconductor device and method for producing the same
US8106523B2 (en) 2006-12-20 2012-01-31 Panasonic Electric Works Co., Ltd. Liquid resin composition, semi-conductor device, and process of fabricating the same
JP2008163138A (en) * 2006-12-27 2008-07-17 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition and semiconductor device
JP2009130221A (en) * 2007-11-26 2009-06-11 Sumitomo Bakelite Co Ltd Semiconductor apparatus and sealing resin composition
JP2011105898A (en) * 2009-11-20 2011-06-02 Sumitomo Bakelite Co Ltd Silicone rubber fine particle-containing epoxy resin composition, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP2011105911A (en) * 2009-11-20 2011-06-02 Sumitomo Bakelite Co Ltd Epoxy resin composition containing silicone rubber fine particle, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
WO2016145648A1 (en) * 2015-03-19 2016-09-22 Ablestik (Shanghai) Ltd. Epoxy molding compound for high power soic semiconductor package application
CN108140620A (en) * 2015-03-19 2018-06-08 衡所华威电子有限公司 For the epoxy molding compounds of high-power SOIC semiconductor packages application
CN108140620B (en) * 2015-03-19 2021-10-29 衡所华威电子有限公司 Epoxy molding compounds for high power SOIC semiconductor packaging applications
JP2017179012A (en) * 2016-03-28 2017-10-05 味の素株式会社 Resin composition

Similar Documents

Publication Publication Date Title
JPWO2008059612A1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4250996B2 (en) Epoxy resin composition and semiconductor device
JP4496786B2 (en) Epoxy resin composition and semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JP2006152185A (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JPH11263826A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP5407767B2 (en) Epoxy resin composition and semiconductor device
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP2004292514A (en) Epoxy resin composition and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP2005162826A (en) Sealing resin composition and resin-sealed semiconductor device
JP4543638B2 (en) Epoxy resin composition and semiconductor device
JP4525141B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation and method for producing epoxy resin composition for area mounting type semiconductor encapsulation
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP2006176555A (en) Epoxy resin composition and semiconductor device
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP5093977B2 (en) Area mounted semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP3206317B2 (en) Method for producing epoxy resin composition and epoxy resin composition
JP4513195B2 (en) Epoxy resin composition and semiconductor device
JP4645147B2 (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110221

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110603