WO2004085511A1 - Resin composition for sealing semiconductor and semiconductor device using the same - Google Patents

Resin composition for sealing semiconductor and semiconductor device using the same Download PDF

Info

Publication number
WO2004085511A1
WO2004085511A1 PCT/JP2004/003105 JP2004003105W WO2004085511A1 WO 2004085511 A1 WO2004085511 A1 WO 2004085511A1 JP 2004003105 W JP2004003105 W JP 2004003105W WO 2004085511 A1 WO2004085511 A1 WO 2004085511A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
semiconductor
compound
general formula
weight
Prior art date
Application number
PCT/JP2004/003105
Other languages
French (fr)
Japanese (ja)
Inventor
Kuniharu Umeno
Shigehisa Ueda
Original Assignee
Sumitomo Bakelite Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co., Ltd. filed Critical Sumitomo Bakelite Co., Ltd.
Priority to JP2005503995A priority Critical patent/JP4404051B2/en
Publication of WO2004085511A1 publication Critical patent/WO2004085511A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Definitions

  • the present invention relates to a resin composition for semiconductor encapsulation and a semiconductor device using the same.
  • epoxy resin compositions for encapsulation are required to have even lower viscosity and higher strength. Also, due to environmental problems, there is an increasing demand for flame retardancy without using flame retardants such as Br compounds and antimony oxide. against this background, the recent trend in epoxy resin compositions has been to increase the tendency to apply lower viscosity resins and mix more inorganic fillers. As a new trend, when mounting semiconductor devices, the use of lead-free solder, which has a higher melting point than before, is increasing.
  • the mounting temperature must be raised by about 20 ° C compared to the conventional method, and the reliability of the semiconductor device after mounting is significantly reduced compared to the current situation.
  • the demand for improving the reliability of semiconductor devices by increasing the level of epoxy resin compositions has been increasing at an accelerating pace, which has spurred the reduction in resin viscosity and the increase in inorganic filler filling. ing.
  • Patent Document 1 a resin with a low melt viscosity
  • Patent Document 2 an inorganic filler with a silane coupling agent to increase the amount of the inorganic filler.
  • Patent Document 2 There is a known treatment method (Patent Document 2).
  • these methods alone are not sufficient for crack resistance, fluidity and flame retardancy. A method that satisfies all has not been found yet.
  • Patent Document 1 JP-A-7-130991 (pages 2 to 5)
  • Patent Document 2 JP-A-8-20673 (pages 2 to 4) Disclosure of the Invention
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for improving fluidity without impairing curability at the time of molding a resin composition for sealing a semiconductor.
  • a semiconductor comprising: an accelerator (D); a silane coupling agent (E); and a compound (F) in which a hydroxyl group is bonded to at least two adjacent carbon atoms constituting an aromatic ring.
  • a sealing resin composition is provided.
  • R is hydrogen or an alkyl group having 4 or less carbon atoms
  • n is an average value and a positive number of 1 to 10.
  • R 2 (However, in the above general formula (2), represents a phenylene group or a biphenylene group, R 2 represents an alkyl group having a carbon number of 4 or less. Further, n is an average value and a positive number of 1 to 10 Is.)
  • the semiconductor encapsulating resin composition of the present invention contains the resin represented by the general formulas (1) and (2), and contains the compound (F) as an essential component, and therefore has sufficient curability and fluidity during molding. Can be secured.
  • the semiconductor sealing resin composition of the present invention can contain the epoxy resin (A), the phenol resin (B), the inorganic filler (C), and the curing accelerator (D) as main components. .
  • the compound (F) may be contained in an amount of 0.01% by weight or more of the entire resin composition. By doing so, the fluidity can be improved without lowering the curability during molding of the resin composition for semiconductor encapsulation.
  • the silane coupling agent (E) may be contained in an amount of 0.01% by weight or more and 1.0% by weight or less of the entire resin composition. By doing so, the curability and fluidity during molding of the resin composition for semiconductor encapsulation can be further improved.
  • the inorganic filler (C) may be contained in an amount of 84% by weight or more and 90% by weight or less of the entire resin composition. By doing so, the viscosity of the resin composition can be surely reduced and the strength can be increased.
  • the compound (F) is a compound having two aromatic rings. And a compound in which a hydroxyl group is bonded to adjacent carbon atoms. By doing so, the curability and fluidity during molding can be suitably ensured.
  • the aromatic ring may be a naphthalene ring.
  • the compound (F) may be a compound in which a hydroxyl group is bonded to two adjacent carbon atoms constituting a naphthalene ring. By doing so, the balance between curability and fluidity during molding can be further improved.
  • a semiconductor device characterized in that a semiconductor element is sealed using the resin composition for semiconductor sealing. Since the semiconductor device according to the present invention is sealed using the above-described resin composition for semiconductor sealing, sufficient production stability can be ensured.
  • FIG. 1 is a cross-sectional view illustrating an example of a configuration of a semiconductor device according to an embodiment of the present invention.
  • Epoxy resin (A) represented by the following general formula (1)
  • R is hydrogen or an alkyl group having 4 or less carbon atoms
  • n is an average value and a positive number of 1 to 10.
  • R 2 represents an alkyl group having a carbon number of 4 or less. Further, n is an average value and a positive number of 1 to 10 Is.
  • the content of the components (A) to (F) can be, for example, as follows.
  • the epoxy resin represented by the general formula (1) has a hydrophobic and rigid biphenylene skeleton in the main chain, and a cured product of the epoxy resin composition using the epoxy resin has a low moisture absorption, Elasticity at high temperature beyond the transition temperature (Tg) Low rate and excellent adhesion to semiconductor elements, organic substrates, and metal substrates. In addition, it has excellent flame retardancy and high heat resistance in spite of its low crosslinking density.
  • Examples of the epoxy resin (A) represented by the general formula (1) include a phenol biphenyl aralkyl type epoxy resin, but are not particularly limited as long as the structure has the formula (1). .
  • Epoxy resins that can be used in combination include, for example, biphenyl-type epoxy resins, bisphenol-type epoxy resins, stilbene-type epoxy resins, phenol-nopolak-type epoxy resins, cresol-no-polak-type epoxy resins, triphenylphenol-type epoxy resins, and phenolic-type epoxy resins.
  • Examples include a ralalkyl epoxy resin, a naphthol epoxy resin, an alkyl modified triphenol epoxy resin, a triazine nucleated epoxy resin, and a dicyclopentene modified phenol epoxy resin.
  • the Na ion and C 1 ion which are ionizable impurities, be as small as possible. 0 g / e Q or more and 500 g Z e Q or less.
  • the phenolic resin (B) represented by the above general formula (2) has a hydrophobic phenylene group or a hydrophobic and rigid biphenylene skeleton in the main chain, and an epoxy resin composition using the same.
  • the cured product has a low moisture absorption, a low elastic modulus at high temperatures exceeding Tg, and has excellent adhesion to semiconductor elements, organic substrates, and metal substrates. It also has excellent flame retardancy and high heat resistance despite its low crosslinking density.
  • Examples of the phenolic resin (B) represented by the general formula (2) include a phenol-arbiphenyl aralkyl resin and a phenol aralkyl resin.
  • phenol resins can be used in combination as long as the effects of the phenol resin represented by the general formula (2) are not impaired.
  • Phenol resins that can be used in combination include, for example, phenol novolak resin, cresol nopolak resin, triphenyl methane resin, terpene-modified phenol resin, dicyclopentene-modified phenol resin, and naphthol aralkyl resin (phenylene skeleton, biphenylene skeleton And the like).
  • the hydroxyl group equivalent is, for example, not less than SO g Z eq and not more than 250 g no eQ.
  • Examples of the material of the inorganic filler (C) include fused silica, spherical silica, crystalline silica, alumina, silicon nitride, and aluminum nitride, which are generally used for sealing materials.
  • the particle size of the inorganic filler can be, for example, not less than 0.01 / zm and not more than 150 m in consideration of the filling property to the mold.
  • the filling amount of the inorganic filler (C) can be, for example, from 84% by weight to 90% by weight based on the entire epoxy resin composition. If the filling amount is too small, the amount of water absorbed by the cured product of the epoxy resin composition increases, and the strength decreases, so that the solder resistance may be unsatisfactory. On the other hand, if the filling amount is too large, the flowability is impaired, and the moldability may be reduced.
  • the material of the curing accelerator (D) may be any material that promotes the reaction between the epoxy group of the epoxy resin and the hydroxyl group of the phenol resin, and is generally used in epoxy resin compositions that are encapsulating materials for semiconductor devices. Things can be used. Specific examples include phosphorus atoms-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, and phosphobetaine compounds, and nitrogen atoms such as 1,8-diazabicyclo (5,4,0) indene-7, benzyldimethylamine, and 2-methylimidazole. Containing compounds.
  • organic phosphine examples include primary phosphines such as ethyl phosphine and phenyl phosphine;
  • Secondary phosphines such as dimethylphosphine and diphenylphosphine; and trimethylphosphine, triethylphosphine, tributylphosphine, A tertiary phosphine such as refenylphosphine;
  • Examples of the tetra-substituted phosphonium compound include compounds represented by the following general formula (3).
  • P is a phosphorus atom
  • R 2 , R 3 and R 4 are a substituted or unsubstituted aromatic group or an alkyl group
  • A is a hydroxyl group, a hydroxyl group, or a thiol group.
  • Anion of an aromatic organic acid having at least one of the following functional groups on the aromatic ring AH represents an aromatic organic acid having at least one of a hydroxyl group, a carboxyl group, and a thiol group on the aromatic ring
  • a and b are integers of 1 or more and 3 or less
  • c is an integer of 0 or more and 3 or less
  • a b.
  • the compound represented by the general formula (3) is obtained, for example, as follows. First, a tetra-substituted phosphonium bromide, an aromatic organic acid, and a base are mixed in an organic solvent and uniformly mixed to generate an aromatic organic acid anion in the solution. Then water is added. Then, the compound represented by the general formula (3) can be precipitated.
  • R 2 , R 3 and R 4 bonded to a phosphorus atom are phenyl groups
  • AH is a compound having a hydroxyl group in an aromatic ring, that is, phenols
  • A is preferably an anion of the phenols.
  • Examples of the phosphorine-in compound include compounds represented by the following general formula (4).
  • X represents hydrogen or an alkyl group having 1 to 3 carbon atoms
  • Y represents hydrogen or a hydroxyl group
  • m and n are integers of 1 to 3.
  • the compound represented by the general formula (4) is obtained, for example, as follows. First, a phenol iodide and a triaromatic substituted phosphine are uniformly mixed in an organic solvent, and precipitated as a rhododium salt with a nickel catalyst. The compound represented by the general formula (4) can be precipitated by uniformly mixing the odonium salt and the base with an organic solvent and adding water as necessary.
  • X is hydrogen or a methyl group
  • Y is hydrogen or a hydroxyl group.
  • the present invention is not limited to these, and they may be used alone or in combination.
  • the compounding amount of the curing accelerator (D) can be, for example, 0.1% by weight or more and 1% by weight or less of the entire epoxy resin composition, and 0.1% by weight or more and 0.6% by weight or less. preferable. If the amount of the curing accelerator (D) is too small, the desired curability may not be obtained. If the amount is too large, the liquidity may be impaired.
  • the silane coupling agent (E) is not particularly limited to epoxy silane, amino silane, perylene silane, mercapto silane and the like, and reacts between the epoxy resin composition and the inorganic filler to form the epoxy resin composition and the inorganic filler. Any material that improves the interface strength may be used.
  • Compound (F) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring is a silane coupling agent.
  • the silane coupling agent (E) is indispensable for sufficiently obtaining the effect of the compound (F) because the synergistic effect with (E) significantly improves the viscosity characteristics and flow characteristics.
  • silane coupling agents (E) may be used alone or in combination.
  • the compounding amount of the silane coupling agent (E) is, for example, from 0.01% to 1% by weight, preferably from 0.05% to 0.8% by weight, particularly preferably from 0.05% to 0.8% by weight of the entire epoxy resin composition. It can be 0.1% by weight or more and 0.6% by weight or less. If the compounding amount is too small, the effect of the compound (F) may not be sufficiently obtained, and the solder resistance of the semiconductor package may be reduced. On the other hand, if it is too large, the water absorption of the epoxy resin composition will increase, and the solder resistance in the semiconductor package may also decrease.
  • the compound (F) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring may have a substituent other than a hydroxyl group.
  • a monocyclic compound represented by the following general formula (5) or a polycyclic compound represented by the following general formula (6) can be used as the compound (F).
  • one of R 5 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group.
  • R 2 , R 3 are hydrogen, a hydroxyl group or a hydroxyl group. Substituents other than.
  • one of R and R 7 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group.
  • R 2 , R 3 , R 4 , R 5 , R 6 is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group.
  • Specific examples of the monocyclic compound represented by the general formula (5) include, for example, force tecol, pyrogallol, gallic acid, gallic acid ester, and derivatives thereof.
  • Specific examples of the polycyclic compound represented by the general formula (6) include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof.
  • the number of hydroxyl groups adjacent to the aromatic ring is more preferably two from the viewpoint of fluidity and control of curability.
  • the mother nucleus be a compound having a low volatility and a high weighing stability with a naphthalene ring.
  • the compound (F) is specifically, for example, Compounds having a naphthalene ring such as 1,2-dihydroxysinaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof can be obtained.
  • controllability in handling the epoxy resin composition can be further improved. Further, the volatility of the epoxy resin composition can be reduced.
  • Two or more of these compounds (F) may be used in combination.
  • the compounding amount of the compound (F) is 0.01% by weight of the whole epoxy resin composition. Not less than 0.5% by weight, preferably not less than 0.02% by weight and not more than 0.3% by weight. If it is too small, the expected viscosity and flow properties due to the synergistic effect with the silane coupling agent (E) cannot be obtained. On the other hand, if it is too large, the curing of the epoxy resin composition will be inhibited, and the physical properties of the cured product will be poor, and the performance as a semiconductor encapsulating resin will be reduced.
  • the epoxy resin composition of the present invention contains the above components (A) to (F) as essential components.
  • a flame retardant such as a brominated epoxy resin or antimony trioxide
  • a release agent such as a release agent
  • Colorants such as carbon black
  • low-stress additives such as silicone oil and silicone rubber
  • additives such as inorganic ion exchangers
  • the epoxy resin composition of the present invention is obtained by uniformly mixing the components (A) to (F) and other additives at room temperature using a mixer or the like, and then melt-kneading the mixture with a heating roll or a kneader or an extruder. It can be manufactured by crushing after cooling.
  • molding and curing are performed by a molding method such as a transfer mold, a compression mold, and an injection mold. Just fine.
  • the semiconductor device shown in FIG. 1 is cured and molded by a method such as transfer molding, compression molding, or injection molding using the epoxy resin composition described above as the sealing resin 5, and the semiconductor element 1 is sealed. It can be obtained by stopping.
  • the semiconductor device shown in FIG. 1 is sealed with a sealing resin composition containing a compound (F) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring.
  • the viscosity and flow characteristics of the composition can be made favorable. Therefore, a semiconductor device having excellent moldability can be stably obtained.
  • Phenol biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC 3000 P, epoxy equivalent 274, n in the above formula (1) is 2.8 on average, softening point 58 ° C) 7 35 parts by weight,
  • Spiral flow Using a mold according to EMM 1-1-66, The resin composition was molded using a low-pressure transfer molding machine under the conditions of 175 ° C., a molding pressure of 6.9 MPa, and a dwelling time of 120 seconds, and measured. Spiral flow is a parameter of fluidity, and the larger the value, the better the fluidity. The unit is cm.
  • the torque in the curast meter is a parameter of thermal rigidity, and the larger the curing torque ratio, the better the curability. Units%.
  • Solder reflow crack resistance Using a low-pressure transfer molding machine, a 6 x 6 x 0.3 mm Si chip was bonded to a lOO pQFP (Cu frame) with a body size of 14 x 14 x 1.4 mm. The frame was molded at a mold temperature of 175 ° C, an injection time of 10 sec, a curing time of 90 sec, an injection pressure of 9.8 MPa, and after post-curing at 175 ° C for 8 hr at 8 5 8 5 % 48 hours with humidifying treatment, passed through IR reflow at a peak temperature of 260 three times (10 times X 3 times at 255 ° C or more), and checked for internal cracks and peeling using an ultrasonic flaw detector. It was measured and judged by the number of chip peelings and internal cracks in the 10 package.
  • Flame retardancy Using a low-pressure transfer molding machine, mold temperature: 175 ° C, injection time: 15 sec, curing time: 120 sec, injection pressure: 9.8 MPa, 3.2 mm thick flame retardant A test piece was molded and subjected to a flame retardancy test in accordance with the UL 94 standard.
  • An epoxy resin composition was produced in the same manner as in Example 1 according to the formulations in Tables 1 and 2, and evaluated in the same manner as in Example 1.
  • Tables 1 and 2 show the evaluation results.
  • Example 1 The components used in other than Example 1 are shown below.
  • Biphenyl type epoxy resin (manufactured by Japan Epoxy Resins Co., Ltd., YX400H, epoxy equivalent: 195, melting point: 105 ° C), Phenol aralkyl resin (manufactured by Mitsui Chemicals, Inc., XLC_LL, hydroxyl equivalent 174, n in the above formula (2) is an average value of 3.6, softening point 79 ° C), Cresol nopolak epoxy resin (Nippon Kayaku Co., Ltd. EOCN 102 0-55, Epoxy Equivalent 198, Softening Point 55 ° C),
  • Phenol nopolak resin (hydroxyl equivalent 104, softening point 80 ° C), mercaptopropyltrimethoxysilane,
  • DBU 1,8-diazabicyclo (5,4,0) indene-7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A resin composition for sealing a semiconductor, which comprises a phenol aralkyl type epoxy resin having a biphenylene skeleton (A), a phenol aralkyl resin having a phenylene skeleton or biphenylene skeleton (B), an inorganic filler (C) in an amount of 84 to 90 wt % and a curing accelerator (D), as main components, and further comprises a silane coupling agent (E) in an amount of 0.01 wt % to 1 wt % and an aromatic compound (F) having two or more hydroxyl groups bonded to adjacent carbon atoms in an aromatic ring in an amount of 0.01 wt % or more, the percentages being relative to the total amount of the resin composition. The resin composition exhibits improved flowability, without detriment to its curability.

Description

明 細 書 半導体封止用樹脂組成物およびこれを用いた半導体装置 技術分野  Description: Resin composition for semiconductor encapsulation and semiconductor device using the same
本発明は、 半導体封止用樹脂組成物およびそれを用いた半導体装置に関す るものである。 背景技術  The present invention relates to a resin composition for semiconductor encapsulation and a semiconductor device using the same. Background art
近年、 半導体装置は生産性、 コスト、 信頼性等のバランスに優れることか らエポキシ樹脂組成物を用いて封止されるのが主流となっている。 半導体装 置の小型化、 薄型化に伴い、 封止用エポキシ樹脂組成物に対しては、 より一 層の低粘度化、 高強度化が要求されている。 また、 環境問題から B r化合物 や酸化アンチモン等の難燃剤を使わずに難燃化する要求が高まってきている 。 このような背景から、 最近のエポキシ樹脂組成物の動向は、 より低粘度の 樹脂を適用し、 より多くの無機充填剤を配合する傾向が強くなつている。 また新たな動きとして、 半導体装置を実装する際、 従来よりも融点の高い 無鉛半田の使用が高まってきている。 この半田の適用により実装温度を従来 に比べ約 2 0 °C高くする必要があり、 実装後の半導体装置の信頼性が現状に 比べ著しく低下する問題が生じている。 このようなことからエポキシ樹脂組 成物のレベルアップによる半導体装置の信頼性の向上要求が加速的に強くな つてきており、 樹脂の低粘度化と無機充填剤の高充填化に拍車がかかってい る。  In recent years, semiconductor devices have been predominantly sealed with an epoxy resin composition because of their excellent balance of productivity, cost, reliability, and the like. As semiconductor devices become smaller and thinner, epoxy resin compositions for encapsulation are required to have even lower viscosity and higher strength. Also, due to environmental problems, there is an increasing demand for flame retardancy without using flame retardants such as Br compounds and antimony oxide. Against this background, the recent trend in epoxy resin compositions has been to increase the tendency to apply lower viscosity resins and mix more inorganic fillers. As a new trend, when mounting semiconductor devices, the use of lead-free solder, which has a higher melting point than before, is increasing. With the use of this solder, the mounting temperature must be raised by about 20 ° C compared to the conventional method, and the reliability of the semiconductor device after mounting is significantly reduced compared to the current situation. As a result, the demand for improving the reliability of semiconductor devices by increasing the level of epoxy resin compositions has been increasing at an accelerating pace, which has spurred the reduction in resin viscosity and the increase in inorganic filler filling. ing.
成形時に低粘度で高流動性を維持するためには、 溶融粘度の低い樹脂を用 いたり (特許文献 1 ) 、 また無機充填剤の配合量を高めるために無機充填剤 をシランカップリング剤で表面処理する方法が知られている (特許文献 2 ) ところが、 これらの方法だけでは耐クラック性、 流動性および難燃性のす ベてを満足する手法は未だ見出されていない。 耐クラック性、 難燃性に優れ た樹脂を用いて、 さらに無機充填剤の配合量を高めて信頼性を満足させ、 流 動性と硬化性を損なわないさらなる技術が求められていた。 To maintain low viscosity and high fluidity during molding, use a resin with a low melt viscosity (Patent Document 1), or use an inorganic filler with a silane coupling agent to increase the amount of the inorganic filler. There is a known treatment method (Patent Document 2). However, these methods alone are not sufficient for crack resistance, fluidity and flame retardancy. A method that satisfies all has not been found yet. There has been a need for further technology that uses a resin with excellent crack resistance and flame retardancy and further increases the blending amount of an inorganic filler to satisfy reliability and that does not impair fluidity and curability.
特許文献 1 特開平 7— 1 3091 9号公報 (第 2〜 5頁)  Patent Document 1 JP-A-7-130991 (pages 2 to 5)
特許文献 2 特開平 8— 20673号公報 (第 2〜4頁) 発明の開示  Patent Document 2 JP-A-8-20673 (pages 2 to 4) Disclosure of the Invention
本発明は、 上記事情に鑑みてなされたものであり、 その目的は、 半導体封 止用樹脂組成物の成形時の硬化性を損なうことなく流動性を向上させる技術 を提供することにある。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for improving fluidity without impairing curability at the time of molding a resin composition for sealing a semiconductor.
本発明によれば、 下記一般式 (1) で表されるエポキシ樹脂 (A) と、 下 記一般式 (2) で表されるフエノール樹脂 (B) と、 無機充填剤 (C) と、 硬化促進剤 (D) と、 シランカップリング剤 (E) と、 芳香環を構成する 2 個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物 (F) と、 を含 むことを特徴とする半導体封止用樹脂組成物が提供される。 According to the present invention, an epoxy resin (A) represented by the following general formula (1), a phenol resin (B) represented by the following general formula (2), an inorganic filler (C), and a curing agent A semiconductor comprising: an accelerator (D); a silane coupling agent (E); and a compound (F) in which a hydroxyl group is bonded to at least two adjacent carbon atoms constituting an aromatic ring. A sealing resin composition is provided.
H  H
(1)
Figure imgf000004_0001
(1)
Figure imgf000004_0001
(ただし、 上記一般式 (1) において、 Rは水素または炭素数 4以下のァ ルキル基である。 また、 nは平均値で、 1〜10の正数である。)  (However, in the above general formula (1), R is hydrogen or an alkyl group having 4 or less carbon atoms, and n is an average value and a positive number of 1 to 10.)
H (2)
Figure imgf000004_0002
R 2 (ただし、 上記一般式 (2 ) において、 はフエ二レン基またはビフエ二 レン基、 R 2は炭素数 4以下のアルキル基である。 また、 nは平均値で、 1〜 1 0の正数である。)
H (2)
Figure imgf000004_0002
R 2 (However, in the above general formula (2), represents a phenylene group or a biphenylene group, R 2 represents an alkyl group having a carbon number of 4 or less. Further, n is an average value and a positive number of 1 to 10 Is.)
本発明の半導体封止樹脂組成物は、 上記一般式 (1 ) および (2 ) で示さ れる樹脂を含み、 化合物 (F ) を必須の成分として含むため、 成形時の硬化 性および流動性を充分に確保することができる。  The semiconductor encapsulating resin composition of the present invention contains the resin represented by the general formulas (1) and (2), and contains the compound (F) as an essential component, and therefore has sufficient curability and fluidity during molding. Can be secured.
本発明の半導体封止樹脂組成物は、 前記エポキシ樹脂 (A)、 前記フエノー ル樹脂 (B )、 前記無機充填剤 (C )、 および硬化促進剤 (D ) を主成分とす ることができる。  The semiconductor sealing resin composition of the present invention can contain the epoxy resin (A), the phenol resin (B), the inorganic filler (C), and the curing accelerator (D) as main components. .
本発明の半導体封止用樹脂組成物において、 前記化合物 (F ) を当該樹脂 組成物全体の 0 . 0 1重量%以上含んでもよい。 こうすることにより、 半導 体封止用樹脂組成物の成形時の硬化性を低下させることなく流動性を向上さ せることができる。  In the resin composition for semiconductor encapsulation of the present invention, the compound (F) may be contained in an amount of 0.01% by weight or more of the entire resin composition. By doing so, the fluidity can be improved without lowering the curability during molding of the resin composition for semiconductor encapsulation.
また、 本発明の半導体封止用樹脂組成物において、 前記シランカップリン グ剤 (E ) を当該樹脂組成物全体の 0 . 0 1重量%以上 1 . 0重量%以下含 んでもよい。 こうすることにより、 半導体封止用樹脂組成物の成形時の硬化 性および流動性をさらに向上させることができる。  Further, in the resin composition for encapsulating a semiconductor of the present invention, the silane coupling agent (E) may be contained in an amount of 0.01% by weight or more and 1.0% by weight or less of the entire resin composition. By doing so, the curability and fluidity during molding of the resin composition for semiconductor encapsulation can be further improved.
本発明の半導体封止用樹脂組成物において、 前記無機充填剤 (C ) を当該 樹脂組成物全体の 8 4重量%以上 9 0重量%以下含んでもよい。 こうするこ とにより、 樹脂組成物を確実に低粘度化し、 また高強度化することができる 本発明の半導体封止用樹脂組成物において、 前記化合物 (F ) は、 芳香環 を構成する 2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物であ つてもよい。 こうすることにより、 成形時の硬化性および流動性を好適に確 保することができる。  In the resin composition for semiconductor encapsulation of the present invention, the inorganic filler (C) may be contained in an amount of 84% by weight or more and 90% by weight or less of the entire resin composition. By doing so, the viscosity of the resin composition can be surely reduced and the strength can be increased. In the resin composition for semiconductor encapsulation of the present invention, the compound (F) is a compound having two aromatic rings. And a compound in which a hydroxyl group is bonded to adjacent carbon atoms. By doing so, the curability and fluidity during molding can be suitably ensured.
本発明の半導体封止用樹脂組成物において、 前記芳香環がナフタレン環で ある構成とすることができる。 こうすることにより、 成形時の硬化性および 流動性をさらに向上させることができる。 本発明の半導体封止用樹脂組成物において、 前記化合物 (F ) は、 ナフタ レン環を構成する 2個の隣接する炭素原子にそれぞれ水酸基が結合した化合 物であってもよい。 こうすることにより、 成形時の硬化性および流動性のバ ランスをより一層向上させることができる。 In the resin composition for semiconductor encapsulation of the present invention, the aromatic ring may be a naphthalene ring. By doing so, the curability and fluidity during molding can be further improved. In the resin composition for semiconductor encapsulation of the present invention, the compound (F) may be a compound in which a hydroxyl group is bonded to two adjacent carbon atoms constituting a naphthalene ring. By doing so, the balance between curability and fluidity during molding can be further improved.
本発明によれば、 前記半導体封止用樹脂組成物を用いて半導体素子を封止 してなることを特徴とする半導体装置が提供される。 本発明に係る半導体装 置は、 上述の半導体封止用樹脂組成物を用いて封止されるため、 製造安定性 を充分に確保することができる。  According to the present invention, there is provided a semiconductor device characterized in that a semiconductor element is sealed using the resin composition for semiconductor sealing. Since the semiconductor device according to the present invention is sealed using the above-described resin composition for semiconductor sealing, sufficient production stability can be ensured.
以上説明したように本発明によれば、 硬化性を維持しつつ成形時の流動性 に優れたエポキシ樹脂組成物を得ることができる。 図面の簡単な説明  As described above, according to the present invention, it is possible to obtain an epoxy resin composition having excellent fluidity during molding while maintaining curability. BRIEF DESCRIPTION OF THE FIGURES
上述した目的、 およびその他の目的、 特徴および利点は、 以下に述べる好 適な実施の形態、 およびそれに付随する以下の図面によってさらに明らかに なる。  The above and other objects, features and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
図 1は、 本発明の実施の形態に係る半導体装置の構成の一例を示す断面図 である。 発明を実施するための最良の形態  FIG. 1 is a cross-sectional view illustrating an example of a configuration of a semiconductor device according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る樹脂組成物は、  The resin composition according to the present invention,
下記一般式 (1 ) で示されるエポキシ樹脂 (A) Epoxy resin (A) represented by the following general formula (1)
Figure imgf000006_0001
Figure imgf000006_0001
(ただし、 上記一般式 (1 ) において、 Rは水素または炭素数 4以下のァ ルキル基である。 また、 nは平均値で、 1〜 1 0の正数である。)  (However, in the above general formula (1), R is hydrogen or an alkyl group having 4 or less carbon atoms, and n is an average value and a positive number of 1 to 10.)
下記一般式 (2 ) で示されるフエノール樹脂 (B )
Figure imgf000007_0001
A phenolic resin (B) represented by the following general formula (2)
Figure imgf000007_0001
(ただし、 上記一般式 (2) において、 はフエ二レン基またはビフエ二 レン基、 R2は炭素数 4以下のアルキル基である。 また、 nは平均値で、 1〜 1 0の正数である。) (However, in the above general formula (2), represents a phenylene group or a biphenylene group, R 2 represents an alkyl group having a carbon number of 4 or less. Further, n is an average value and a positive number of 1 to 10 Is.)
無機充填剤 (C) Inorganic filler (C)
硬化促進剤 (D) Curing accelerator (D)
シランカツプリング剤 (E) Silane coupling agent (E)
芳香環を構成する 2個以上の隣接する炭素原子にそれぞれ水酸基が結合した 化合物 (F) Compounds in which hydroxyl groups are bonded to two or more adjacent carbon atoms that constitute an aromatic ring (F)
を必須成分とする。 As an essential component.
エポキシ樹脂組成物全体を基準として、 (A) 〜 (F) 成分の含有量は、 た とえば以下のようにすることができる。  Based on the entire epoxy resin composition, the content of the components (A) to (F) can be, for example, as follows.
(A) : 1〜40重量%、  (A): 1 to 40% by weight,
(B) : 1〜40重量%、  (B): 1 to 40% by weight,
(C) : 40〜 97重量%、  (C): 40-97% by weight,
(D) : 0. 00 1〜 5重量%、  (D): 0.001 to 5% by weight,
(E) : 0. 0 1〜 1重量%  (E): 0.01-1% by weight
(F) : 0. 0 1〜 1重量%  (F): 0.01-1% by weight
以下、 本発明に係る半導体封止用エポキシ樹脂組成物を構成する各成分に ついて説明する。  Hereinafter, each component constituting the epoxy resin composition for semiconductor encapsulation according to the present invention will be described.
上記一般式 ( 1) で表されるエポキシ樹脂は、 主鎖に疎水性で剛直なビフ ェニレン骨格を有しており、 これを用いたエポキシ樹脂組成物の硬化物は吸 湿率が低く、 ガラス転移温度 (以下、 Tgという。) を越えた高温域での弾性 率が低く、 半導体素子、 有機基板、 及び金属基板との密着性に優れる。 また 、 難燃性にも優れ、 架橋密度が低い割には耐熱性が高いという特徴を有して いる。 The epoxy resin represented by the general formula (1) has a hydrophobic and rigid biphenylene skeleton in the main chain, and a cured product of the epoxy resin composition using the epoxy resin has a low moisture absorption, Elasticity at high temperature beyond the transition temperature (Tg) Low rate and excellent adhesion to semiconductor elements, organic substrates, and metal substrates. In addition, it has excellent flame retardancy and high heat resistance in spite of its low crosslinking density.
一般式 (1 ) で表されるエポキシ樹脂 (A) としては、 たとえばフエノー ルビフエニルァラルキル型エポキシ樹脂などが挙げられるが、 式 (1 ) の構 造であれば特に限定するものではない。  Examples of the epoxy resin (A) represented by the general formula (1) include a phenol biphenyl aralkyl type epoxy resin, but are not particularly limited as long as the structure has the formula (1). .
また、 一般式 (1 ) で表されるエポキシ樹脂による効果が損なわれない範 囲で、 他のエポキシ樹脂と併用することができる。 併用できるエポキシ樹脂 としては、 たとえばビフエ二ル型エポキシ樹脂、 ビスフエノール型エポキシ 樹脂、 スチルベン型エポキシ樹脂、 フエノールノポラック型エポキシ樹脂、 クレゾールノポラック型エポキシ樹脂、 トリフエノ一ルメタン型エポキシ樹 脂、 フエノ一ルァラルキル型エポキシ樹脂、 ナフトール型エポキシ樹脂、 ァ ルキル変性トリフエノ一ルメ夕ン型エポキシ樹脂、 トリアジン核含有ェポキ シ樹脂、 ジシクロペン夕ジェン変性フエノール型エポキシ樹脂等が挙げられ る。  Further, it can be used in combination with another epoxy resin as long as the effect of the epoxy resin represented by the general formula (1) is not impaired. Epoxy resins that can be used in combination include, for example, biphenyl-type epoxy resins, bisphenol-type epoxy resins, stilbene-type epoxy resins, phenol-nopolak-type epoxy resins, cresol-no-polak-type epoxy resins, triphenylphenol-type epoxy resins, and phenolic-type epoxy resins. Examples include a ralalkyl epoxy resin, a naphthol epoxy resin, an alkyl modified triphenol epoxy resin, a triazine nucleated epoxy resin, and a dicyclopentene modified phenol epoxy resin.
半導体封止用エポキシ樹脂組成物としての耐湿信頼性を考慮すると、 ィォ ン性不純物である N aイオンや C 1イオンが極力少ない方が好ましく、 硬化 性の点からエポキシ当量を、 たとえば 1 0 0 g / e Q以上 5 0 0 g Z e Q以 下とすることができる。  In consideration of the moisture resistance reliability of the epoxy resin composition for semiconductor encapsulation, it is preferable that the Na ion and C 1 ion, which are ionizable impurities, be as small as possible. 0 g / e Q or more and 500 g Z e Q or less.
上記一般式 (2 ) で表されるフエノール樹脂 (B ) は、 主鎖に疎水性のフ ェニレン基または疎水性で剛直なビフエ二レン骨格を有しており、 これを用 いたエポキシ樹脂組成物の硬化物は吸湿率が低く、 T gを越えた高温域での 弾性率が低く、 半導体素子、 有機基板、 及び金属基板との密着性に優れる。 また、 難燃性にも優れ、 架橋密度が低い割には耐熱性が高いという特徴を有 している。  The phenolic resin (B) represented by the above general formula (2) has a hydrophobic phenylene group or a hydrophobic and rigid biphenylene skeleton in the main chain, and an epoxy resin composition using the same. The cured product has a low moisture absorption, a low elastic modulus at high temperatures exceeding Tg, and has excellent adhesion to semiconductor elements, organic substrates, and metal substrates. It also has excellent flame retardancy and high heat resistance despite its low crosslinking density.
一般式 (2 ) で表されるフエノール樹脂 (B ) としては、 たとえばフエノ —ルビフエニルァラルキル樹脂やフエノールァラルキル樹脂などが挙げられ るが、 式 (2 ) の構造であれば特に限定するものではない。 本発明では、 一般式 (2 ) で表されるフエノール樹脂による効果が損なわ れない範囲で、 他のフエノール樹脂と併用することができる。 併用できるフ ェノール樹脂としては、 たとえばフエノールノボラック樹脂、 クレゾールノ ポラック樹脂、 トリフエノールメタン樹脂、 テルペン変性フエノール樹脂、 ジシクロペン夕ジェン変性フエノール樹脂、 ナフトールァラルキル樹脂 (フ ェニレン骨格、 ビフエ二レン骨格を含む) 等が挙げられる。 硬化性の点から 水酸基当量、 たとえば S O g Z e q以上 2 5 0 gノ e Q以下とすることが好 ましい。 Examples of the phenolic resin (B) represented by the general formula (2) include a phenol-arbiphenyl aralkyl resin and a phenol aralkyl resin. There is no limitation. In the present invention, other phenol resins can be used in combination as long as the effects of the phenol resin represented by the general formula (2) are not impaired. Phenol resins that can be used in combination include, for example, phenol novolak resin, cresol nopolak resin, triphenyl methane resin, terpene-modified phenol resin, dicyclopentene-modified phenol resin, and naphthol aralkyl resin (phenylene skeleton, biphenylene skeleton And the like). From the viewpoint of curability, it is preferable that the hydroxyl group equivalent is, for example, not less than SO g Z eq and not more than 250 g no eQ.
無機充填剤 (C ) の材料としては、 一般に封止材料に用いられている溶融 シリカ、 球状シリカ、 結晶シリカ、 アルミナ、 窒化珪素、 窒化アルミ等が挙 げられる。 無機充填剤の粒径としては、 金型への充填性を考慮するとたとえ ば 0 . 0 1 /z m以上 1 5 0 m以下とすることができる。  Examples of the material of the inorganic filler (C) include fused silica, spherical silica, crystalline silica, alumina, silicon nitride, and aluminum nitride, which are generally used for sealing materials. The particle size of the inorganic filler can be, for example, not less than 0.01 / zm and not more than 150 m in consideration of the filling property to the mold.
また無機充填剤 (C ) の充填量を、 たとえばエポキシ樹脂組成物全体の 8 4重量%以上 9 0重量%以下とすることができる。 充填量が小さすぎるとェ ポキシ樹脂組成物の硬化物の吸水量が増加し、 強度が低下するため耐半田性 が不満足となるおそれがある。 また、 充填量が大きすぎると、 流動性が損な われるために成形性が低下するおそれがある。  Further, the filling amount of the inorganic filler (C) can be, for example, from 84% by weight to 90% by weight based on the entire epoxy resin composition. If the filling amount is too small, the amount of water absorbed by the cured product of the epoxy resin composition increases, and the strength decreases, so that the solder resistance may be unsatisfactory. On the other hand, if the filling amount is too large, the flowability is impaired, and the moldability may be reduced.
硬化促進剤 (D ) の材料は、 エポキシ樹脂のエポキシ基とフエノール樹脂 の水酸基との反応を促進するものであればよく、 一般に半導体素子の封止材 であるエポキシ樹脂組成物に使用されているものを利用することができる。 具体例として有機ホスフィン、 テトラ置換ホスホニゥム化合物、 ホスホベタ イン化合物等のリン原子含有化合物、 1, 8—ジァザビシクロ (5, 4, 0 ) ゥンデセン— 7、 ベンジルジメチルァミン、 2—メチルイミダゾール等の 窒素原子含有化合物が挙げられる。  The material of the curing accelerator (D) may be any material that promotes the reaction between the epoxy group of the epoxy resin and the hydroxyl group of the phenol resin, and is generally used in epoxy resin compositions that are encapsulating materials for semiconductor devices. Things can be used. Specific examples include phosphorus atoms-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, and phosphobetaine compounds, and nitrogen atoms such as 1,8-diazabicyclo (5,4,0) indene-7, benzyldimethylamine, and 2-methylimidazole. Containing compounds.
有機ホスフィンとしては、 たとえばェチルホスフィン、 フエニルホスフィ ン等の第 1ホスフィン;  Examples of the organic phosphine include primary phosphines such as ethyl phosphine and phenyl phosphine;
ジメチルホスフィン、 ジフエ二ルホスフィン等の第 2ホスフィン;および トリメチルホスフィン、 トリェチルホスフィン、 トリブチルホスフィン、 ト リフエニルホスフィン等の第 3ホスフィン; Secondary phosphines such as dimethylphosphine and diphenylphosphine; and trimethylphosphine, triethylphosphine, tributylphosphine, A tertiary phosphine such as refenylphosphine;
等が挙げられる。 And the like.
テトラ置換ホスホニゥム化合物としては、 下記一般式 (3 ) :示す化合物 が挙げられる。  Examples of the tetra-substituted phosphonium compound include compounds represented by the following general formula (3).
Figure imgf000010_0001
Figure imgf000010_0001
(上記一般式 (3 ) において、 Pはリン原子、 R 2、 R 3および R 4は置 換もしくは無置換の芳香族基、 またはアルキル基、 Aはヒドロキシル基、 力 ルポキシル基、 チオール基から選ばれる官能基のいずれかを芳香環に少なく とも 1つ有する芳香族有機酸のァニオン、 A Hはヒドロキシル基、 カルポキ シル基、 チオール基のいずれかを芳香環に少なくとも 1つ有する芳香族有機 酸を表す。 a、 bは 1以上 3以下の整数、 cは 0以上 3以下の整数であり、 かつ a = bである。) (In the above general formula (3), P is a phosphorus atom, R 2 , R 3 and R 4 are a substituted or unsubstituted aromatic group or an alkyl group, and A is a hydroxyl group, a hydroxyl group, or a thiol group. Anion of an aromatic organic acid having at least one of the following functional groups on the aromatic ring, AH represents an aromatic organic acid having at least one of a hydroxyl group, a carboxyl group, and a thiol group on the aromatic ring A and b are integers of 1 or more and 3 or less, c is an integer of 0 or more and 3 or less, and a = b.)
上記一般式 (3 ) に示す化合物は、 たとえば以下のようにして得られる。 まず、 テトラ置換ホスホニゥムブロマイドと芳香族有機酸と塩基を有機溶剤 に混ぜ均一に混合し、 その溶液系内に芳香族有機酸ァニオンを発生させる。 次いで水を加える。 すると、 上記一般式 (3 ) に示す化合物を沈殿させるこ とができる。  The compound represented by the general formula (3) is obtained, for example, as follows. First, a tetra-substituted phosphonium bromide, an aromatic organic acid, and a base are mixed in an organic solvent and uniformly mixed to generate an aromatic organic acid anion in the solution. Then water is added. Then, the compound represented by the general formula (3) can be precipitated.
上記一般式 (3 ) に示す化合物において、 リン原子に結合する R 2、 R 3および R 4がフエニル基であり、 かつ A Hはヒドロキシル基を芳香環に有 する化合物、 すなわちフエノール類であり、 かつ Aは該フエノール類のァニ オンであるのが好ましい。 In the compound represented by the above general formula (3), R 2 , R 3 and R 4 bonded to a phosphorus atom are phenyl groups, and AH is a compound having a hydroxyl group in an aromatic ring, that is, phenols; and A is preferably an anion of the phenols.
ホスホべ夕イン化合物としては、 下記一般式 (4 ) に示す化合物が挙げら れる。
Figure imgf000011_0001
Examples of the phosphorine-in compound include compounds represented by the following general formula (4).
Figure imgf000011_0001
(上記一般式 (4 ) において、 Xは水素または炭素数 1〜3のアルキル基、 Yは水素またはヒドロキシル基を表す。 m、 nは 1〜3の整数。) (In the general formula (4), X represents hydrogen or an alkyl group having 1 to 3 carbon atoms, Y represents hydrogen or a hydroxyl group, and m and n are integers of 1 to 3.)
上記一般式 (4 ) に示す化合物は、 たとえば以下のようにして得られる。 まず、 沃化フエノール類とトリ芳香族置換ホスフィンを有機溶媒に均一に混 合し、 ニッケル触媒によりョードニゥム塩として沈殿させる。 このョードニ ゥム塩と塩基を有機溶剤に均一に混合し、 必要により水を加えると、 上記一 般式 (4 ) に示す化合物を沈殿させることができる。  The compound represented by the general formula (4) is obtained, for example, as follows. First, a phenol iodide and a triaromatic substituted phosphine are uniformly mixed in an organic solvent, and precipitated as a rhododium salt with a nickel catalyst. The compound represented by the general formula (4) can be precipitated by uniformly mixing the odonium salt and the base with an organic solvent and adding water as necessary.
上記一般式 (4 ) に示す化合物としては、 好ましぐは Xが水素またはメチ ル基であり、 かつ Yが水素またはヒドロキシル基であるのが好ましい。 しか しこれらに限定されるものではなく、 単独でも併用してもよい。  As the compound represented by the general formula (4), preferably, X is hydrogen or a methyl group, and Y is hydrogen or a hydroxyl group. However, the present invention is not limited to these, and they may be used alone or in combination.
硬化促進剤 (D ) の配合量は、 たとえばエポキシ樹脂組成物全体の 0 . 1 重量%以上 1重量%以下とすることができ、 0 . 1重量%以上 0 . 6重量% 以下とすることが好ましい。 硬化促進剤 (D ) の配合量が少なすぎると目的 とする硬化性が得られないおそれがある。 また、 多すぎると流動性が損なわ れるおそれがある。  The compounding amount of the curing accelerator (D) can be, for example, 0.1% by weight or more and 1% by weight or less of the entire epoxy resin composition, and 0.1% by weight or more and 0.6% by weight or less. preferable. If the amount of the curing accelerator (D) is too small, the desired curability may not be obtained. If the amount is too large, the liquidity may be impaired.
シランカップリング剤 (E ) は、 エポキシシラン、 アミノシラン、 ゥレイ ドシラン、 メルカプトシラン等特に限定せず、 エポキシ樹脂組成物と無機充 填剤との間で反応し、 エポキシ樹脂組成物と無機充填剤の界面強度を向上さ せるものであればよい。  The silane coupling agent (E) is not particularly limited to epoxy silane, amino silane, perylene silane, mercapto silane and the like, and reacts between the epoxy resin composition and the inorganic filler to form the epoxy resin composition and the inorganic filler. Any material that improves the interface strength may be used.
芳香環を構成する 2個以上の隣接する炭素原子にそれぞれ水酸基が結合し た化合物 (F ) (以下、 化合物 (F ) と称する。) は、 シランカップリング剤 (E) との相乗効果により、 粘度特性と流動特性を著しく改善させるため、 シランカップリング剤 (E) は化合物 (F) の効果を充分に得るためには必 須である。 Compound (F) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring (hereinafter, referred to as compound (F)) is a silane coupling agent. The silane coupling agent (E) is indispensable for sufficiently obtaining the effect of the compound (F) because the synergistic effect with (E) significantly improves the viscosity characteristics and flow characteristics.
これらのシランカップリング剤 (E) は単独でも併用してもよい。 シラン カップリング剤 (E) の配合量は、 たとえばエポキシ樹脂組成物全体の 0. 0 1重量%以上 1重量%以下、 好ましくは 0. 0 5重量%以上 0. 8重量% 以下、 特に好ましくは 0. 1重量%以上 0. 6重量%以下とすることができ る。 配合量が小さすぎると化合物 (F) の効果が充分に得られず、 また半導 体パッケージにおける耐半田性が低下するおそれがある。 また、 大きすぎる とェポキシ樹脂組成物の吸水性が大きくなり、 やはり半導体パッケージにお ける耐半田性が低下するおそれがある。  These silane coupling agents (E) may be used alone or in combination. The compounding amount of the silane coupling agent (E) is, for example, from 0.01% to 1% by weight, preferably from 0.05% to 0.8% by weight, particularly preferably from 0.05% to 0.8% by weight of the entire epoxy resin composition. It can be 0.1% by weight or more and 0.6% by weight or less. If the compounding amount is too small, the effect of the compound (F) may not be sufficiently obtained, and the solder resistance of the semiconductor package may be reduced. On the other hand, if it is too large, the water absorption of the epoxy resin composition will increase, and the solder resistance in the semiconductor package may also decrease.
芳香環を構成する 2個以上の隣接する炭素原子にそれぞれ水酸基が結合し た化合物 (F) は、 水酸基以外の置換基を有していてもよい。 化合物 (F) として、 下記一般式 (5) で示される単環式化合物または下記一般式 (6) で示される多環式化合物を用いることができる。  The compound (F) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring may have a substituent other than a hydroxyl group. As the compound (F), a monocyclic compound represented by the following general formula (5) or a polycyclic compound represented by the following general formula (6) can be used.
Figure imgf000012_0001
Figure imgf000012_0001
R 3  R 3
(上記一般式 (5) において、 R5はどちらか一方が水酸基であり、 片 方が水酸基のとき他方は水素、 水酸基または水酸基以外の置換基。 R2、 R3 、 は水素、 水酸基または水酸基以外の置換基。 )
Figure imgf000013_0001
(In the general formula (5), one of R 5 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R 2 , R 3 are hydrogen, a hydroxyl group or a hydroxyl group. Substituents other than.)
Figure imgf000013_0001
(上記一般式 (6) において、 Rい R7はどちらか一方が水酸基であり、 片 方が水酸基のとき他方は水素、 水酸基または水酸基以外の置換基。 R2、 R3 、 R4、 R5、 R6は水素、 水酸基または水酸基以外の置換基。) (In the above general formula (6), one of R and R 7 is a hydroxyl group, and when one is a hydroxyl group, the other is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R 2 , R 3 , R 4 , R 5 , R 6 is hydrogen, a hydroxyl group or a substituent other than a hydroxyl group.)
上記一般式 (5) で示される単環式化合物の具体例として、 たとえば、 力 テコール、 ピロガロール、 没食子酸、 没食子酸エステルまたはこれらの誘導 体等が挙げられる。 また、 上記一般式 (6) で示される多環式化合物の具体 例として、 たとえば、 1 , 2—ジヒドロキシナフタレン、 2, 3—ジヒドロ キシナフタレンおよびこれらの誘導体等が挙げられる。  Specific examples of the monocyclic compound represented by the general formula (5) include, for example, force tecol, pyrogallol, gallic acid, gallic acid ester, and derivatives thereof. Specific examples of the polycyclic compound represented by the general formula (6) include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof.
そのうち、 流動性と硬化性の制御のしゃすさから芳香環に隣接する水酸基 は 2個がより好ましい。 また、 混練工程での揮発を考慮した場合、 母核は低 揮発性で秤量安定性の高いナフタレン環である化合物とすることが好ましい この場合、 化合物 (F) を、 具体的には、 たとえば、 1, 2—ジヒドロキ シナフタレン、 2, 3—ジヒドロキシナフタレンおよびその誘導体等のナフ タレン環を有する化合物とすることができる。 このような化合物を用いるこ とにより、 エポキシ樹脂組成物のハンドリングの際の制御性をより一層向上 させることができる。 また、 エポキシ樹脂組成物の揮発性を低下させること ができる。  Among them, the number of hydroxyl groups adjacent to the aromatic ring is more preferably two from the viewpoint of fluidity and control of curability. In consideration of volatilization in the kneading step, it is preferable that the mother nucleus be a compound having a low volatility and a high weighing stability with a naphthalene ring. In this case, the compound (F) is specifically, for example, Compounds having a naphthalene ring such as 1,2-dihydroxysinaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof can be obtained. By using such a compound, controllability in handling the epoxy resin composition can be further improved. Further, the volatility of the epoxy resin composition can be reduced.
これらの化合物 (F) は 2種以上併用してもよい。  Two or more of these compounds (F) may be used in combination.
かかる化合物 (F) の配合量はエポキシ樹脂組成物全体の 0. 0 1重量% 以上 0 . 5重量%以下、 好ましくは 0 . 0 2重量%以上 0 . 3重量%以下で ある。 小さすぎると、 シランカップリング剤 (E ) との相乗効果による期待 するような粘度特性および流動特性が得られない。 また、 大きすぎると、 ェ ポキシ樹脂組成物の硬化が阻害され、 また硬化物の物性が劣り、 半導体封止 樹脂としての性能が低下する。 The compounding amount of the compound (F) is 0.01% by weight of the whole epoxy resin composition. Not less than 0.5% by weight, preferably not less than 0.02% by weight and not more than 0.3% by weight. If it is too small, the expected viscosity and flow properties due to the synergistic effect with the silane coupling agent (E) cannot be obtained. On the other hand, if it is too large, the curing of the epoxy resin composition will be inhibited, and the physical properties of the cured product will be poor, and the performance as a semiconductor encapsulating resin will be reduced.
本発明のエポキシ樹脂組成物は、 上記 (A) 〜 (F ) 成分を必須成分とす るが、 これ以外に必要に応じて臭素化エポキシ樹脂、 三酸化アンチモン等の 難燃剤、 離型剤、 カーボンブラック等の着色剤、 シリコーンオイル、 シリコ ーンゴム等の低応力添加剤、 無機イオン交換体等の添加剤を適宜配合しても よい。  The epoxy resin composition of the present invention contains the above components (A) to (F) as essential components. In addition to this, a flame retardant such as a brominated epoxy resin or antimony trioxide, a release agent, Colorants such as carbon black, low-stress additives such as silicone oil and silicone rubber, and additives such as inorganic ion exchangers may be appropriately compounded.
本発明のエポキシ樹脂組成物は、 (A) 〜 (F ) 成分およびその他の添加剤 等をミキサー等で用いて常温で均一に混合した後、 加熱ロールまたはニーダ 一、 押出機等で溶融混練し、 冷却後粉砕して製造することができる。  The epoxy resin composition of the present invention is obtained by uniformly mixing the components (A) to (F) and other additives at room temperature using a mixer or the like, and then melt-kneading the mixture with a heating roll or a kneader or an extruder. It can be manufactured by crushing after cooling.
また、 本発明のエポキシ樹脂組成物を用いて、 半導体素子を封止し、 半導 体装置を製造するには、 トランスファ一モールド、 コンプレツシヨンモール ド、 インジェクションモールド等の成形方法で成形硬化すればよい。  In order to manufacture a semiconductor device by encapsulating a semiconductor element using the epoxy resin composition of the present invention, molding and curing are performed by a molding method such as a transfer mold, a compression mold, and an injection mold. Just fine.
本発明に係るエポキシ樹脂組成物は、 種々の半導体装置の封止に好適に用 いられる。 たとえば、 Q F P (クヮッドフラットパッケージ)、 T S O P (ス ィンスモールァゥトラインパッケージ) 等の表面実装型半導体装置の封止材 料として用いることができる。 図 1は、 本発明に係るエポキシ樹脂組成物を 用いた半導体装置の構成の一例を示す断面図である。 ダイパッド 2上に、 ダ ィポンド材硬化体 6を介して半導体素子 1が固定されている。 半導体素子 1 とリードフレーム 4との間は金線 3によって接続されている。 半導体素子 1 は、 封止樹脂 5によって封止されている。  The epoxy resin composition according to the present invention is suitably used for sealing various semiconductor devices. For example, it can be used as an encapsulant for surface mount semiconductor devices such as QFP (quad flat package) and TSOP (small part line package). FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor device using the epoxy resin composition according to the present invention. The semiconductor element 1 is fixed on the die pad 2 via a cured dip-bond material 6. The semiconductor element 1 and the lead frame 4 are connected by a gold wire 3. The semiconductor element 1 is sealed with a sealing resin 5.
図 1に示される半導体装置は、 封止樹脂 5として上述したエポキシ樹脂組 成物を用いてトランスファーモールド、 コンプレツシヨンモールド、 インジ ェクシヨンモールド等の方法で硬化成形し、 半導体素子 1を封止することに よって得ることができる。 図 1に示した半導体装置は、 芳香環を構成する 2個以上の隣接する炭素原 子にそれぞれ水酸基が結合した化合物 (F) を含む封止樹脂組成物により封 止されるため、 封止樹脂組成物の粘度特性と流動特性を好適なものとするこ とができる。 このため、 成形性にすぐれた半導体装置を安定的に得ることが できる。 The semiconductor device shown in FIG. 1 is cured and molded by a method such as transfer molding, compression molding, or injection molding using the epoxy resin composition described above as the sealing resin 5, and the semiconductor element 1 is sealed. It can be obtained by stopping. The semiconductor device shown in FIG. 1 is sealed with a sealing resin composition containing a compound (F) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring. The viscosity and flow characteristics of the composition can be made favorable. Therefore, a semiconductor device having excellent moldability can be stably obtained.
また、 一般式 (1) で表されるエポキシ樹脂および一般式 (2) で表され るフエノール樹脂を含むエポキシ樹脂組成物により封止することにより、 難 燃性、 耐半田性にさらにすぐれた半導体装置をより一層安定的に得ることが できる。  In addition, by encapsulating with an epoxy resin composition containing the epoxy resin represented by the general formula (1) and the phenol resin represented by the general formula (2), a semiconductor having more excellent flame retardancy and solder resistance can be obtained. The device can be obtained more stably.
以下、 本発明を実施例にて具体的に説明するが、 本発明はこれらの実施例 によりなんら限定されるものではない。 配合割合は重量部とする。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. The mixing ratio is by weight.
(実施例 1)  (Example 1)
フエノールビフエニルァラルキル型エポキシ樹脂 (日本化薬 (株) '製、 N C 3000 P、 エポキシ当量 274、 上記式 (1) における nは平均値で 2 . 8、 軟化点 5 8 °C) 7. 35重量部、  Phenol biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC 3000 P, epoxy equivalent 274, n in the above formula (1) is 2.8 on average, softening point 58 ° C) 7 35 parts by weight,
フエノールビフヱニルァラルキル樹脂 (明和化成 (株) ·製、 MEH— 78 5 1 S S、 水酸基当量 20 3、 上記式 (2) における nは平均値で 2. 5、 軟化点 65 ) 5. 5重量部、  Phenol biphenyl aralkyl resin (Meiwa Kasei Co., Ltd., MEH-7851 SS, hydroxyl equivalent 203, n in the above formula (2) is 2.5 on average, softening point 65) 5. 5 parts by weight,
球状溶融シリカ (平均粒径 30 ^m) 86. 0重量部、  86.0 parts by weight of spherical fused silica (average particle size 30 ^ m)
ァ―グリシジルプロビルトリメトキシシラン 0. 4重量部、  0.4% by weight of glycidyl propyl trimethoxysilane,
トリフエニルホスフィン 0. 2重量部、  0.2 parts by weight of triphenylphosphine,
2, 3—ジヒドロキシナフ夕レン (試薬) 0. 0 5重量部、  2,3-dihydroxynaphthylene (reagent) 0.05 parts by weight,
カルナパワックス 0. 2重量部、 および  0.2 parts by weight of carnapa wax, and
カーボンブラック 0. 3重量部、  0.3 parts by weight of carbon black,
をミキサーにて常温混合し、 80〜 1 00°Cの加熱ロールで溶融混練し、 冷 却後粉砕し、 エポキシ樹脂組成物を得た。 得られたエポキシ樹脂組成物を、 以下の方法で評価した。 評価結果を表 1に示す。 Was mixed at room temperature with a mixer, melt-kneaded with a heating roll at 80 to 100 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following method. Table 1 shows the evaluation results.
スパイラルフロー: EMM 1 - 1 - 66に準じた金型を用い、 前記ェポキ シ樹脂組成物を低圧トランスファー成形機にて 1 7 5°C、 成形圧 6. 9MP a 、 保圧時間 120秒の条件で成形し測定した。 スパイラルフローは、 流動 性のパラメータであり、 数値が大きい方が流動性が良好である。 単位は cm 硬化トルク比:キュラストメ一夕一 (オリエンテック (株) ·製、 J S R キュラストメ一夕一 I VP S型) を用い、 金型温度 1 7 5°C、 加熱開始 9 0 秒後、 300秒後のトルクを求め、 硬化トルク比 = (90秒後のトルク) / (300秒後のトルク) を計算した。 キュラストメーターにおけるトルクは 熱剛性のパラメータであり、 硬化トルク比の大きい方が硬化性が良好である 。 単位は%。 Spiral flow: Using a mold according to EMM 1-1-66, The resin composition was molded using a low-pressure transfer molding machine under the conditions of 175 ° C., a molding pressure of 6.9 MPa, and a dwelling time of 120 seconds, and measured. Spiral flow is a parameter of fluidity, and the larger the value, the better the fluidity. The unit is cm. Curing torque ratio: Curastome Ichiichi (Orientec Co., Ltd., JSR Curastome Ichiichi IVP S type), mold temperature: 175 ° C, 90 seconds after starting heating, 300 The torque after seconds was determined, and the curing torque ratio = (torque after 90 seconds) / (torque after 300 seconds) was calculated. The torque in the curast meter is a parameter of thermal rigidity, and the larger the curing torque ratio, the better the curability. Units%.
耐半田リフロークラック性:低圧トランスファー成形機を用いて、 ボディ 一サイズ 14 X 14 X 1. 4 mmの l O O pQFP (Cuフレーム) に 6 X 6 X 0. 3ひ mmの S iチップを接着したフレームを金型温度 17 5°C、注入時 間 10 s e c、 硬化時間 9 0 s e c、 注入圧 9. 8 MP aで成形し、 1 7 5 °C 8 h rの条件で後硬化後 8 5 8 5 % 48 h rの条件で加湿処理し、 ピー ク温度 260 の I Rリフローに連続 3回(255°C以上が 10秒 X 3回)通 し、 超音波探傷機を用いて内部クラック、 剥離の有無を測定し、 1 0パッケ ージ中のチップ剥離と内部クラックの数で判定した。  Solder reflow crack resistance: Using a low-pressure transfer molding machine, a 6 x 6 x 0.3 mm Si chip was bonded to a lOO pQFP (Cu frame) with a body size of 14 x 14 x 1.4 mm. The frame was molded at a mold temperature of 175 ° C, an injection time of 10 sec, a curing time of 90 sec, an injection pressure of 9.8 MPa, and after post-curing at 175 ° C for 8 hr at 8 5 8 5 % 48 hours with humidifying treatment, passed through IR reflow at a peak temperature of 260 three times (10 times X 3 times at 255 ° C or more), and checked for internal cracks and peeling using an ultrasonic flaw detector. It was measured and judged by the number of chip peelings and internal cracks in the 10 package.
難燃性:低圧トランスファー成形機を用いて、 金型温度 1 7 5°C、 注入時 間 1 5 s e c、 硬化時間 1 20 s e c、 注入圧 9. 8 MP aで 3. 2 mm厚 の難燃試験片を成形し、 UL 94の規格に則り難燃試験を行った。  Flame retardancy: Using a low-pressure transfer molding machine, mold temperature: 175 ° C, injection time: 15 sec, curing time: 120 sec, injection pressure: 9.8 MPa, 3.2 mm thick flame retardant A test piece was molded and subjected to a flame retardancy test in accordance with the UL 94 standard.
(実施例 2〜13、 比較例;!〜 1 5)  (Examples 2 to 13, Comparative Examples;! To 15)
表 1および表 2の配合に従い、 実施例 1と同様にしてエポキシ樹脂組成物 を製造し、 実施例 1と同様にして評価した。 評価結果を表 1および表 2に示 す。  An epoxy resin composition was produced in the same manner as in Example 1 according to the formulations in Tables 1 and 2, and evaluated in the same manner as in Example 1. Tables 1 and 2 show the evaluation results.
実施例 1以外で用いた成分について、 以下に示す。  The components used in other than Example 1 are shown below.
ビフエニル型エポキシ樹脂 (ジャパンエポキシレジン (株) .製、 YX40 00H、 エポキシ当量 1 95、 融点 10 5°C)、 フエノールァラルキル樹脂 (三井化学 (株) '製、 XLC_LL、 水酸基当 量 1 74、 上記式 (2) における nは平均値で 3. 6、 軟化点 79°C)、 クレゾ一ルノポラック型エポキシ樹脂 (日本化薬 (株) 製 EOCN 1 02 0— 55、 エポキシ当量 1 98、 軟化点 55°C)、 Biphenyl type epoxy resin (manufactured by Japan Epoxy Resins Co., Ltd., YX400H, epoxy equivalent: 195, melting point: 105 ° C), Phenol aralkyl resin (manufactured by Mitsui Chemicals, Inc., XLC_LL, hydroxyl equivalent 174, n in the above formula (2) is an average value of 3.6, softening point 79 ° C), Cresol nopolak epoxy resin (Nippon Kayaku Co., Ltd. EOCN 102 0-55, Epoxy Equivalent 198, Softening Point 55 ° C),
フエノールノポラック樹脂 (水酸基当量 1 04、 軟化点 80°C)、 ァ—メルカプトプロピルトリメトキシシラン、  Phenol nopolak resin (hydroxyl equivalent 104, softening point 80 ° C), mercaptopropyltrimethoxysilane,
1 , 8—ジァザビシクロ (5, 4, 0) ゥンデセン— 7 (以下、 DBUと 略す)、  1,8-diazabicyclo (5,4,0) indene-7 (hereinafter abbreviated as DBU),
下記式 (7) で示される硬化促進剤、
Figure imgf000017_0001
A curing accelerator represented by the following formula (7),
Figure imgf000017_0001
下記式 (8) で示される硬化促進剤、  A curing accelerator represented by the following formula (8),
Figure imgf000017_0002
Figure imgf000017_0002
1, 2—ジヒドロキシナフタレン (試薬), 1, 2-dihydroxynaphthalene (reagent),
カテコール (試薬)、  Catechol (reagent),
ピロガロール (試薬)、  Pyrogallol (reagent),
1, 6—ジヒドロキシナフタレン (試薬).  1,6-dihydroxynaphthalene (reagent).
レゾルシノール (試薬)。 表 1 Resorcinol (reagent). table 1
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000019_0001

Claims

1. 下記一般式 (1) で表されるエポキシ樹脂 (A) と、 下記一般式 (2 ) で表されるフエノール樹脂 (B) と、 無機充填剤 (C) と、 硬化促進剤 ( D) と、 シランカップリング剤 (E) と、 芳香環を構成する 2個以上の隣接 する炭素原子にそれぞれ水酸基が結合した化合物 (F) と、 を含むことを特徴 とする半導体封止用樹脂組成請物。 )
Figure imgf000020_0001
1. An epoxy resin (A) represented by the following general formula (1), a phenol resin (B) represented by the following general formula (2), an inorganic filler (C), and a curing accelerator (D) And a silane coupling agent (E), and a compound (F) in which a hydroxyl group is bonded to at least two adjacent carbon atoms constituting an aromatic ring. object. )
Figure imgf000020_0001
 Enclosure
(ただし、 上記一般式 (1) において、 Rは水素または炭素数 4以下のァ ルキル基である。 また、 nは平均値で、 1〜10の正数である。)  (However, in the above general formula (1), R is hydrogen or an alkyl group having 4 or less carbon atoms, and n is an average value and a positive number of 1 to 10.)
H (2)
Figure imgf000020_0002
H (2)
Figure imgf000020_0002
(ただし、 上記一般式 (2) において、 尺ェはフエ二レン基またはビフエ二 レン基、 R2は炭素数 4以下のアルキル基である。 また、 nは平均値で、 1〜 10の正数である。) (However, in the above general formula (2), shaku is a phenylene group or a biphenylene group, R 2 is an alkyl group having 4 or less carbon atoms, and n is an average value and a positive value of 1 to 10 Is a number.)
2. 請求の範囲第 1項に記載の半導体封止用樹脂組成物において、 前記化 合物 (F) を当該樹脂組成物全体の 0. 01重量%以上含むことを特徴とす る半導体封止用樹脂組成物。 2. The resin composition for semiconductor encapsulation according to claim 1, wherein the compound (F) is contained in an amount of 0.01% by weight or more of the entire resin composition. Resin composition.
3. 請求の範囲第 1項に記載の半導体封止用樹脂組成物において、 前記シ ランカップリング剤 (E) を当該樹脂組成物全体の 0. 01重量%以上1. 0重量%以下含むことを特徴とする半導体封止用樹脂組成物。 3. The resin composition for semiconductor encapsulation according to claim 1, wherein the silane coupling agent (E) is contained in an amount of 0.01% by weight or more and 1.0% by weight or less of the entire resin composition. A resin composition for semiconductor encapsulation characterized by the following.
4 . 請求の範囲第 1項に記載の半導体封止用樹脂組成物において、 前記化 合物 (F ) は、 前記芳香環を構成する 2個の隣接する炭素原子にそれぞれ水 酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成物。4. The resin composition for semiconductor encapsulation according to claim 1, wherein the compound (F) has a hydroxyl group bonded to two adjacent carbon atoms constituting the aromatic ring. A resin composition for semiconductor encapsulation, which is a compound.
5 . 請求の範囲第 1項に記載の半導体封止用樹脂組成物において、 前記芳 香環がナフタレン環であることを特徴とする半導体封止用樹脂組成物。 5. The resin composition for semiconductor encapsulation according to claim 1, wherein the aromatic ring is a naphthalene ring.
6 . 請求の範囲第 5項に記載の半導体封止用樹脂組成物において、 前記化 合物 (F ) は、 前記ナフ夕レン環を構成する 2個の隣接する炭素原子にそれ ぞれ水酸基が結合した化合物であることを特徴とする半導体封止用樹脂組成 物。  6. The resin composition for semiconductor encapsulation according to claim 5, wherein the compound (F) has a hydroxyl group at each of two adjacent carbon atoms constituting the naphthylene ring. A resin composition for encapsulating a semiconductor, which is a bonded compound.
7 . 請求の範囲第 1項に記載の半導体封止用樹脂組成物において、 当該樹 脂組成物中に 8 4重量%以上 9 0重量%以下の無機充填剤 (C ) を含むこと を特徴とする半導体封止用樹脂組成物。  7. The resin composition for semiconductor encapsulation according to claim 1, wherein the resin composition contains 84 to 90% by weight of an inorganic filler (C). Semiconductor encapsulating resin composition.
8 . 請求の範囲第 1項に記載の半導体封止用樹脂組成物を用いて半導体素 子を封止してなることを特徴とする半導体装置。  8. A semiconductor device obtained by sealing a semiconductor element with the resin composition for semiconductor sealing according to claim 1.
PCT/JP2004/003105 2003-03-25 2004-03-10 Resin composition for sealing semiconductor and semiconductor device using the same WO2004085511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005503995A JP4404051B2 (en) 2003-03-25 2004-03-10 Semiconductor sealing resin composition and semiconductor device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-083938 2003-03-25
JP2003083937 2003-03-25
JP2003083938 2003-03-25
JP2003-083937 2003-03-25

Publications (1)

Publication Number Publication Date
WO2004085511A1 true WO2004085511A1 (en) 2004-10-07

Family

ID=33100382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003105 WO2004085511A1 (en) 2003-03-25 2004-03-10 Resin composition for sealing semiconductor and semiconductor device using the same

Country Status (5)

Country Link
JP (1) JP4404051B2 (en)
KR (1) KR100697938B1 (en)
MY (1) MY137564A (en)
TW (1) TWI323272B (en)
WO (1) WO2004085511A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233016A (en) * 2005-02-24 2006-09-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2007002110A (en) * 2005-06-24 2007-01-11 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP2008063371A (en) * 2006-09-05 2008-03-21 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
CN1962713B (en) * 2005-11-07 2010-05-05 中国科学院化学研究所 Fluorine-containing phenol resin derivative and its composition and preparation method
CN101302326B (en) * 2007-05-10 2010-09-08 长春人造树脂厂股份有限公司 Flame retardant resin composition
CN102604512A (en) * 2005-03-15 2012-07-25 日本化药株式会社 Epoxy resin, epoxy resin composition, and utilizing the same, prepreg and laminated plate
JP2012162744A (en) * 2005-01-28 2012-08-30 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition, and semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923443B1 (en) 2007-12-11 2009-10-27 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device?and semiconductor device using the?same
KR100953822B1 (en) 2007-12-24 2010-04-21 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device?and semiconductor device?using the same
KR101148140B1 (en) * 2007-12-24 2012-05-23 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
KR100953823B1 (en) 2007-12-24 2010-04-21 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device?and semiconductor device?using the same
KR101226114B1 (en) 2010-12-03 2013-01-24 곽오봉 Shot plate capable of slope regulation for golfpractice
KR101411018B1 (en) * 2011-12-28 2014-06-24 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245014A (en) * 1988-03-25 1989-09-29 Toray Ind Inc Resin compound for sealing semiconductor
JPH0329352A (en) * 1989-06-26 1991-02-07 Nitto Denko Corp Semiconductor device
JPH0790052A (en) * 1993-09-24 1995-04-04 Yuka Shell Epoxy Kk Epoxy resin composition
JP2001131390A (en) * 1999-11-02 2001-05-15 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002322347A (en) * 2001-04-26 2002-11-08 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device
JP2003105056A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2003292730A (en) * 2002-03-29 2003-10-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010110B2 (en) * 1993-11-04 2000-02-14 日東電工株式会社 Semiconductor device
JP3033445B2 (en) * 1994-07-05 2000-04-17 信越化学工業株式会社 Inorganic filler for resin and epoxy resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245014A (en) * 1988-03-25 1989-09-29 Toray Ind Inc Resin compound for sealing semiconductor
JPH0329352A (en) * 1989-06-26 1991-02-07 Nitto Denko Corp Semiconductor device
JPH0790052A (en) * 1993-09-24 1995-04-04 Yuka Shell Epoxy Kk Epoxy resin composition
JP2001131390A (en) * 1999-11-02 2001-05-15 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002322347A (en) * 2001-04-26 2002-11-08 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device
JP2003105056A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2003292730A (en) * 2002-03-29 2003-10-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162744A (en) * 2005-01-28 2012-08-30 Sumitomo Bakelite Co Ltd Semiconductor-sealing epoxy resin composition, and semiconductor device
JP2006233016A (en) * 2005-02-24 2006-09-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
CN102604512A (en) * 2005-03-15 2012-07-25 日本化药株式会社 Epoxy resin, epoxy resin composition, and utilizing the same, prepreg and laminated plate
JP2007002110A (en) * 2005-06-24 2007-01-11 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
CN1962713B (en) * 2005-11-07 2010-05-05 中国科学院化学研究所 Fluorine-containing phenol resin derivative and its composition and preparation method
JP2008063371A (en) * 2006-09-05 2008-03-21 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
CN101302326B (en) * 2007-05-10 2010-09-08 长春人造树脂厂股份有限公司 Flame retardant resin composition

Also Published As

Publication number Publication date
JP4404051B2 (en) 2010-01-27
KR20060002853A (en) 2006-01-09
JPWO2004085511A1 (en) 2006-06-29
MY137564A (en) 2009-02-27
TW200500412A (en) 2005-01-01
TWI323272B (en) 2010-04-11
KR100697938B1 (en) 2007-03-20

Similar Documents

Publication Publication Date Title
JP4404050B2 (en) Semiconductor sealing resin composition and semiconductor device using the same
JP5326210B2 (en) Semiconductor sealing resin composition and semiconductor device
JP5130912B2 (en) Epoxy resin composition and semiconductor device
JP5321057B2 (en) Semiconductor sealing resin composition and semiconductor device
JP7287281B2 (en) EPOXY RESIN COMPOSITION FOR BALL GRID ARRAY PACKAGE SEALING, EPOXY RESIN CURED MATERIAL, AND ELECTRONIC PARTS DEVICE
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP5177763B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
WO2004085511A1 (en) Resin composition for sealing semiconductor and semiconductor device using the same
JP5164076B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5228496B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5386836B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2006282958A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP3562565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5386837B2 (en) Semiconductor sealing resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
WO2019131096A1 (en) Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device
JP4561227B2 (en) Semiconductor sealing resin composition and semiconductor device
JP4691886B2 (en) Epoxy resin composition and semiconductor device
JP2004352894A (en) Epoxy resin composition and semiconductor device
JP2005089486A (en) Epoxy resin composition and semiconductor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JP2006111672A (en) Semiconductor sealing resin composition and semiconductor device
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device
JP2009235164A (en) Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition
JP2007045916A (en) Resin composition for sealing, and resin-sealed type semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503995

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1-2005-501623

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 20048076611

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057017829

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057017829

Country of ref document: KR

122 Ep: pct application non-entry in european phase