JP2009235164A - Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition - Google Patents

Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition Download PDF

Info

Publication number
JP2009235164A
JP2009235164A JP2008080327A JP2008080327A JP2009235164A JP 2009235164 A JP2009235164 A JP 2009235164A JP 2008080327 A JP2008080327 A JP 2008080327A JP 2008080327 A JP2008080327 A JP 2008080327A JP 2009235164 A JP2009235164 A JP 2009235164A
Authority
JP
Japan
Prior art keywords
epoxy resin
sealing
semiconductor
resin composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008080327A
Other languages
Japanese (ja)
Inventor
Takashi Minamoto
隆史 源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008080327A priority Critical patent/JP2009235164A/en
Publication of JP2009235164A publication Critical patent/JP2009235164A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor sealing epoxy resin composition having the excellent low warp property, filling property and heat resistance reliability at the same time, capable of restraining warp generation at the time of sealing one side of a substrate with a semiconductor device loaded and restraining generation of exfoliation of a semiconductor device and a substrate at the time of reflow. <P>SOLUTION: The semiconductor sealing epoxy resin used for sealing one side of a substrate with a semiconductor device loaded includes an epoxy resin, a hardener, a hardening accelerator and an inorganic filler. The epoxy resin includes (A) an epoxy resin having a specific naphthalene type structure, and (B) a biphenyl type epoxy resin having a 200 or less average epoxy equivalent. The content of the inorganic filler is 60 mass% to 95 mass% of the total amount of the composition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子搭載用基板の片面に搭載された半導体素子(チップ)を封止するための半導体封止用エポキシ樹脂組成物、及び該組成物を用いて半導体素子を封止して得られる片面封止型半導体装置に関する。   The present invention provides an epoxy resin composition for sealing a semiconductor for sealing a semiconductor element (chip) mounted on one side of a substrate for mounting a semiconductor element, and sealing the semiconductor element using the composition. The present invention relates to a single-side sealed semiconductor device.

近年、電子機器の小型化・薄型化に伴い、半導体装置においては表面実装型パッケージの半導体装置が主流となってきている。また、表面実装型パッケージの半導体装置においては、リード端子数の増加に対応するために、両面封止型のパッケージであるSOP(Small Outline Package)、QFP(Quad Flat Package)のような周辺実装型から、片面封止型のパッケージであるBGA(Ball Grid Array)のようなエリア実装型に主流が移り変わりつつある。   In recent years, with the downsizing and thinning of electronic devices, semiconductor devices of surface mount type packages have become mainstream among semiconductor devices. Further, in a surface mount type semiconductor device, in order to cope with an increase in the number of lead terminals, peripheral mounting types such as SOP (Small Outline Package) and QFP (Quad Flat Package) which are double-side sealed packages are used. Therefore, the mainstream is changing to an area mounting type such as a BGA (Ball Grid Array) which is a single-side sealed package.

このような基板の片面のみに樹脂封止を行うような片面封止型半導体装置では、その構造が封止樹脂と基板が貼り合わされたバイメタルのような構造となっており、成形完了後に常温まで冷却される過程において、それぞれの熱収縮量の差異により、反りが発生しやすいという問題があった。また、このような片面封止型半導体素子は、はんだによりマザーボード等に電気的に接続する際、リフローと呼ばれる加熱処理によって、はんだを溶融させる。その際、封止樹脂が加熱されて、封止樹脂に吸湿されている水分が気化することによって、封止樹脂にクラックが発生したり、半導体素子や基板と封止樹脂との間に剥離が発生するという問題もあった。   In such a single-side encapsulated semiconductor device in which resin sealing is performed only on one side of the substrate, the structure is a bimetal structure in which the sealing resin and the substrate are bonded to each other until the room temperature is reached after molding is completed. In the process of cooling, there is a problem that warpage is likely to occur due to the difference in heat shrinkage. In addition, such a single-side sealed semiconductor element melts solder by a heat treatment called reflow when electrically connected to a mother board or the like by solder. At that time, when the sealing resin is heated and the moisture absorbed in the sealing resin is vaporized, the sealing resin is cracked or peeled between the semiconductor element or the substrate and the sealing resin. There was also a problem that occurred.

半導体素子を封止するために用いられる封止樹脂としては、例えば、ビフェニル型エポキシ樹脂を用いることによって、架橋密度を低下させ、弾性率を低くすることができる。このように弾性率が低い場合、基板の熱収縮に対する封止樹脂の追従性が良くなり、熱応力や吸湿による寸法変化等の応力を緩和することができる。しかしながら、架橋密度が低いと、ガラス転移温度が低くなり、反りが大きくなるという問題があった。   As the sealing resin used for sealing the semiconductor element, for example, by using a biphenyl type epoxy resin, the crosslink density can be lowered and the elastic modulus can be lowered. When the elastic modulus is low as described above, the followability of the sealing resin to the thermal contraction of the substrate is improved, and stress such as thermal stress and dimensional change due to moisture absorption can be relieved. However, when the crosslinking density is low, there is a problem that the glass transition temperature is low and the warp is large.

また、他の封止樹脂として、例えば、オルソクレゾールノボラック型エポキシ樹脂を用いることによって、ガラス転移温度を高め、反りを低減できるが、吸湿性が高まる。このような吸湿性が高い封止樹脂であると、封止樹脂に吸湿された水分によるクラックや封止樹脂の剥離が発生しやすく、耐熱信頼性が低いという問題があった。   Further, for example, by using an ortho-cresol novolac type epoxy resin as another sealing resin, the glass transition temperature can be increased and the warpage can be reduced, but the hygroscopicity is increased. Such a sealing resin with high hygroscopicity has a problem that cracks due to moisture absorbed by the sealing resin and peeling of the sealing resin are likely to occur, and heat resistance reliability is low.

さらに、他の封止樹脂としては、例えば、下記特許文献1に記載のアルキルベンゼン変性フェノールノボラック型エポキシ樹脂を含有するエポキシ樹脂組成物が挙げられる。
特開昭62−246922号公報
Furthermore, as another sealing resin, the epoxy resin composition containing the alkylbenzene modified phenol novolak-type epoxy resin of the following patent document 1 is mentioned, for example.
JP 62-246922 A

特許文献1によれば、アルキルベンゼン変性フェノールノボラック型エポキシ樹脂を含有するエポキシ樹脂組成物は、耐クラック性や耐湿性に優れ、さらに低応力であることが開示されている。しかしながら、このようなエポキシ樹脂を、片面封止型のパッケージを形成するために用いると、粘度が高いため、封止時にワイヤー配線が変形するワイヤースイープが発生してしまうという懸念があった。また、粘度が高いため、充填性が低下し、未充填パッケージが発生するおそれもあった。さらに、粘度が高いために、無機充填材を多く含有させることができず、良好な低反り性を達成することが困難であった。   According to Patent Document 1, it is disclosed that an epoxy resin composition containing an alkylbenzene-modified phenol novolac type epoxy resin is excellent in crack resistance and moisture resistance and has low stress. However, when such an epoxy resin is used to form a single-side sealed package, there is a concern that a wire sweep that deforms the wire wiring at the time of sealing may occur due to high viscosity. Further, since the viscosity is high, the filling property is lowered and there is a possibility that an unfilled package is generated. Furthermore, since the viscosity is high, a large amount of inorganic filler cannot be contained, and it has been difficult to achieve good low warpage.

本発明は、半導体素子が搭載された基板の片面を封止する際に生じる反りの発生を抑制し、未充填パッケージの発生を抑制し、さらに、リフロー時に半導体素子や基板との剥離の発生を抑制できる、優れた低反り性と充填性と耐熱信頼性とを兼ね備えた半導体封止用エポキシ樹脂組成物を提供することを目的とする。   The present invention suppresses the occurrence of warpage that occurs when sealing one side of a substrate on which a semiconductor element is mounted, suppresses the occurrence of unfilled packages, and further prevents the semiconductor element and the substrate from peeling off during reflow. An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation, which can be suppressed, and has both excellent low warpage, filling properties and heat reliability.

本発明の半導体封止用エポキシ樹脂組成物は、半導体素子が搭載された基板の片面を封止するために用いられる半導体封止用エポキシ樹脂組成物であって、エポキシ樹脂、硬化剤、硬化促進剤及び無機充填材を含有し、前記エポキシ樹脂が、下記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)と、平均のエポキシ当量が200以下のビフェニル型エポキシ樹脂(B)とを含有し、前記無機充填剤の含有量が、組成物全量の60質量%〜95質量%であることを特徴とする。   The epoxy resin composition for semiconductor encapsulation of the present invention is an epoxy resin composition for semiconductor encapsulation used for sealing one side of a substrate on which a semiconductor element is mounted, and includes an epoxy resin, a curing agent, and curing acceleration. An epoxy resin (A) having a naphthalene structure represented by the following general formula (I), a biphenyl type epoxy resin (B) having an average epoxy equivalent of 200 or less, The content of the inorganic filler is 60% by mass to 95% by mass of the total amount of the composition.

Figure 2009235164

(式中、R〜Rは、独立して、水素原子、アルキル基、アルコキシ基、アリール基、及びアリル基から選択される原子又は基を示し、Gは、グリシジル基を示し、nは、1〜5を示す。)
Figure 2009235164

Wherein R 1 to R 4 independently represent an atom or group selected from a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, and an allyl group, G represents a glycidyl group, and n represents 1 to 5 are shown.)

前記ナフタレン型構造を有するエポキシ樹脂(A)は、吸湿性が低く、応力が低いので、半導体素子が搭載された基板の片面を封止する際に生じる反りの発生を抑制し、さらに、リフロー時に基板との剥離の発生を抑制できる。一方、前記ビフェニル型エポキシ樹脂(B)は、平均のエポキシ当量が200以下であるので、架橋密度の比較的高い硬化部分を形成し、このようなビフェニル型エポキシ樹脂(B)を、前記ナフタレン型構造を有するエポキシ樹脂(A)と併用することによって、優れた耐リフロー性及び低反り性を達成でき、さらに、充填性も向上させることができる。   The epoxy resin (A) having the naphthalene type structure has low hygroscopicity and low stress, so it suppresses the occurrence of warping that occurs when sealing one side of the substrate on which the semiconductor element is mounted, and also during reflow Generation | occurrence | production of peeling with a board | substrate can be suppressed. On the other hand, since the biphenyl type epoxy resin (B) has an average epoxy equivalent of 200 or less, a cured portion having a relatively high crosslinking density is formed. Such a biphenyl type epoxy resin (B) is converted into the naphthalene type. By using together with the epoxy resin (A) having a structure, excellent reflow resistance and low warpage can be achieved, and further, the filling property can be improved.

また、前記無機充填材を、組成物全量の60質量%〜95質量%となるように含有させることによって、封止性を高めることができる。さらに、エポキシ樹脂組成物の吸湿性を低下させ、よって、リフロー時に半導体素子や基板との剥離の発生をより抑制できる。   Moreover, sealing property can be improved by containing the said inorganic filler so that it may become 60 mass%-95 mass% of composition whole quantity. Furthermore, the hygroscopicity of the epoxy resin composition is lowered, and therefore, the occurrence of peeling from the semiconductor element and the substrate can be further suppressed during reflow.

以上より、上記のような構成によれば、半導体素子が搭載された基板の片面を封止する際に生じる反りの発生を抑制し、未充填パッケージの発生を抑制し、さらに、リフロー時に半導体素子や基板との剥離の発生を抑制できる、優れた低反り性と充填性と耐熱信頼性(耐リフロー性)とを兼ね備えた半導体封止用エポキシ樹脂組成物が得られる。   As described above, according to the configuration as described above, it is possible to suppress the occurrence of warpage that occurs when sealing one side of the substrate on which the semiconductor element is mounted, to suppress the generation of unfilled packages, and further to the semiconductor element during reflow In addition, an epoxy resin composition for semiconductor encapsulation that can suppress the occurrence of peeling from the substrate and has excellent low warpage, filling properties, and heat reliability (reflow resistance) can be obtained.

また、前記ビフェニル型エポキシ樹脂(B)に対する前記ナフタレン型構造を有するエポキシ樹脂(A)の質量比(A/B)が、0.3〜4であることが好ましい。このような構成によれば、前記ビフェニル型エポキシ樹脂(B)を前記ナフタレン型構造を有するエポキシ樹脂(A)と併用する効果を充分に発揮でき、より優れた低反り性と耐熱信頼性とを兼ね備えた半導体封止用エポキシ樹脂組成物が得られる。   Moreover, it is preferable that mass ratio (A / B) of the epoxy resin (A) which has the said naphthalene type structure with respect to the said biphenyl type epoxy resin (B) is 0.3-4. According to such a configuration, the effect of using the biphenyl type epoxy resin (B) together with the epoxy resin (A) having the naphthalene type structure can be sufficiently exhibited, and more excellent low warpage and heat resistance reliability can be achieved. A combined epoxy resin composition for semiconductor encapsulation is obtained.

また、前記半導体封止用エポキシ樹脂において、前記ナフタレン型構造を有するエポキシ樹脂(A)の平均のエポキシ当量が、240〜290であることが好ましい。このような構成によれば、硬化物の架橋密度を好適にし、応力を適切にでき、反りの発生をより抑制できる。   Moreover, in the said epoxy resin for semiconductor sealing, it is preferable that the average epoxy equivalent of the epoxy resin (A) which has the said naphthalene type structure is 240-290. According to such a configuration, the crosslink density of the cured product can be made suitable, the stress can be made appropriate, and the occurrence of warpage can be further suppressed.

また、前記半導体封止用エポキシ樹脂において、前記ナフタレン型構造を有するエポキシ樹脂(A)の含有量が、前記エポキシ樹脂全量に対して、30質量%以上であることが、粘度が低く、低ワイヤースイープ性である点から好ましい。   Further, in the epoxy resin for semiconductor encapsulation, the content of the epoxy resin (A) having the naphthalene structure is 30% by mass or more based on the total amount of the epoxy resin, the viscosity is low, and the low wire It is preferable from the point of sweeping property.

前記硬化剤としては、フェノールノボラック樹脂であることが、成形後の熱時剛性が高くなるため、成形性の点から好ましい。   As the curing agent, a phenol novolac resin is preferable from the viewpoint of moldability since the hot rigidity after molding becomes high.

また、前記ナフタレン型構造を有するエポキシ樹脂(A)の150℃における粘度が、0.09Pa・s以下であることが、充填性が高まる点から好ましい。なお、ここで、150℃における粘度とは、150℃において、ICIコーンプレート回転粘度計で測定したICI粘度をいう。   Moreover, it is preferable that the viscosity at 150 degreeC of the epoxy resin (A) which has the said naphthalene type structure is 0.09 Pa.s or less from the point which a filling property improves. Here, the viscosity at 150 ° C. means the ICI viscosity measured at 150 ° C. with an ICI cone plate rotational viscometer.

また、前記エポキシ樹脂組成物において、ハロゲン系難燃剤、ハロゲン含有エポキシ樹脂、及びアンチモン化合物を実質的に含有しないことが好ましい。   Moreover, it is preferable that the said epoxy resin composition does not contain a halogen-type flame retardant, a halogen containing epoxy resin, and an antimony compound substantially.

また、本発明の片面封止型半導体装置は、前記半導体封止用エポキシ樹脂を用いて、半導体素子搭載用基板の片面に搭載された半導体素子を封止して得られることを特徴とする。このような構成によれば、反りの発生が抑制され、さらに半導体素子や基板と封止樹脂との剥離の発生も抑制された片面封止型半導体装置が得られる。   Moreover, the single-side sealed semiconductor device of the present invention is obtained by sealing a semiconductor element mounted on one side of a semiconductor element mounting substrate using the semiconductor sealing epoxy resin. According to such a configuration, it is possible to obtain a single-side sealed semiconductor device in which the occurrence of warpage is suppressed and the occurrence of peeling between the semiconductor element or substrate and the sealing resin is also suppressed.

本発明によれば、半導体素子が搭載された基板の片面を封止する際に生じる反りの発生を抑制し、さらに、リフロー時に半導体素子や基板との剥離の発生を抑制できる、優れた低反り性と充填性と耐熱信頼性とを兼ね備えた半導体封止用エポキシ樹脂組成物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding low curvature which can suppress generation | occurrence | production of the curvature which arises when sealing the single side | surface of the board | substrate with which the semiconductor element was mounted, and also can suppress generation | occurrence | production of peeling with a semiconductor element or a board | substrate at the time of reflow. It is possible to provide an epoxy resin composition for encapsulating a semiconductor having both properties, filling properties, and heat resistance reliability.

本発明の半導体封止用エポキシ樹脂組成物は、半導体素子が搭載された基板の片面を封止するために用いられる半導体封止用エポキシ樹脂組成物であって、エポキシ樹脂、硬化剤、硬化促進剤及び無機充填材を含有し、前記エポキシ樹脂が、下記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)と、平均のエポキシ当量が200以下のビフェニル型エポキシ樹脂(B)とを含有し、前記無機充填剤の含有量が、組成物全量の60質量%〜95質量%であることを特徴とする。   The epoxy resin composition for semiconductor encapsulation of the present invention is an epoxy resin composition for semiconductor encapsulation used for sealing one side of a substrate on which a semiconductor element is mounted, and includes an epoxy resin, a curing agent, and curing acceleration. An epoxy resin (A) having a naphthalene structure represented by the following general formula (I), a biphenyl type epoxy resin (B) having an average epoxy equivalent of 200 or less, The content of the inorganic filler is 60% by mass to 95% by mass of the total amount of the composition.

Figure 2009235164

(式中、R〜Rは、独立して、水素原子、アルキル基、アルコキシ基、アリール基、及びアリル基から選択される原子又は基を示し、Gは、グリシジル基を示し、nは、1〜5を示す。)
Figure 2009235164

Wherein R 1 to R 4 independently represent an atom or group selected from a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, and an allyl group, G represents a glycidyl group, and n represents 1 to 5 are shown.)

本発明で用いられるエポキシ樹脂としては、上記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)と、平均のエポキシ当量が200以下のビフェニル型エポキシ樹脂(B)とを含有する。   As an epoxy resin used by this invention, the epoxy resin (A) which has the naphthalene type structure shown to the said general formula (I), and the biphenyl type epoxy resin (B) whose average epoxy equivalent is 200 or less are contained.

前記ナフタレン型構造を有するエポキシ樹脂(A)と前記ビフェニル型エポキシ樹脂(B)とを併用することによって、優れた耐リフロー性及び低反り性を達成でき、さらに、充填性も向上させることができる。   By using the epoxy resin (A) having the naphthalene type structure and the biphenyl type epoxy resin (B) in combination, excellent reflow resistance and low warpage can be achieved, and further, the filling property can be improved. .

前記ナフタレン型構造を有するエポキシ樹脂(A)は、上記nが5より大きいと、粘度が高まり、充填性が低下するおそれがある。   When the n is larger than 5, the epoxy resin (A) having the naphthalene type structure may increase the viscosity and decrease the filling property.

また、前記ナフタレン型構造を有するエポキシ樹脂(A)の平均のエポキシ当量が、240〜290であることが好ましく、245〜280であることがより好ましい。エポキシ当量が小さすぎると、吸湿性が高まり、耐リフロー性が低下する傾向があり、大きすぎると、ICI粘度が高まり、充填性が低下し、未充填パッケージが発生しやすくなる傾向がある。   Moreover, it is preferable that the average epoxy equivalent of the epoxy resin (A) which has the said naphthalene type structure is 240-290, and it is more preferable that it is 245-280. If the epoxy equivalent is too small, the hygroscopicity tends to increase and the reflow resistance tends to decrease, and if it is too large, the ICI viscosity increases, the filling property decreases, and an unfilled package tends to occur.

また、前記ナフタレン型構造を有するエポキシ樹脂(A)の150℃における粘度が、0.09Pa・s以下であることが好ましく、0.07Pa・s以下であることがより好ましい。   Moreover, it is preferable that the viscosity at 150 degreeC of the epoxy resin (A) which has the said naphthalene type structure is 0.09 Pa.s or less, and it is more preferable that it is 0.07 Pa.s or less.

前記ビフェニル型エポキシ樹脂(B)の平均のエポキシ当量が、200以下であり、160〜197であることが好ましい。エポキシ当量が小さすぎると、吸湿性が高まり、耐リフロー性が低下する傾向があり、大きすぎると、ICI粘度が高まり、充填性が低下し、未充填パッケージが発生しやすくなる傾向がある。   The average epoxy equivalent of the biphenyl type epoxy resin (B) is 200 or less, preferably 160 to 197. If the epoxy equivalent is too small, the hygroscopicity tends to increase and the reflow resistance tends to decrease, and if it is too large, the ICI viscosity increases, the filling property decreases, and an unfilled package tends to occur.

また、前記ビフェニル型エポキシ樹脂(B)に対する前記ナフタレン型構造を有するエポキシ樹脂(A)の質量比(A/B)が、0.3〜4であることが好ましい。前記質量比が大きすぎると粘度が高くなり、充填性が低下する傾向があり、小さすぎると、前記ナフタレン型構造を有するエポキシ樹脂(A)を含有させた効果が充分に得られず、良好な低反り性が達成できない傾向がある。   Moreover, it is preferable that mass ratio (A / B) of the epoxy resin (A) which has the said naphthalene type structure with respect to the said biphenyl type epoxy resin (B) is 0.3-4. If the mass ratio is too large, the viscosity tends to increase and the filling property tends to decrease. If the mass ratio is too small, the effect of containing the epoxy resin (A) having the naphthalene type structure cannot be sufficiently obtained and is favorable. There is a tendency that low warpage cannot be achieved.

また、前記ナフタレン型構造を有するエポキシ樹脂(A)の含有量が、前記エポキシ樹脂全量に対して、30質量%以上であることが好ましい。前記含有量が少なすぎると、前記ナフタレン型構造を有するエポキシ樹脂(A)を含有させた効果が充分に得られず、良好な低反り性が維持できなくなる傾向がある。   Moreover, it is preferable that content of the epoxy resin (A) which has the said naphthalene type structure is 30 mass% or more with respect to the said epoxy resin whole quantity. If the content is too small, the effect of containing the epoxy resin (A) having the naphthalene structure cannot be sufficiently obtained, and good low warpage tends to be not maintained.

また、前記エポキシ樹脂としては、前記ナフタレン型構造を有するエポキシ樹脂(A)及び前記ビフェニル型エポキシ樹脂(B)以外のエポキシ樹脂を含んでいてもよく、具体的には、例えば、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、フェニレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、及びトリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上を組み合わせて用いてもよい。   The epoxy resin may include an epoxy resin other than the epoxy resin (A) having the naphthalene structure and the biphenyl epoxy resin (B). Specifically, for example, a cresol novolac epoxy Resin, dicyclopentadiene type epoxy resin, bisphenol type epoxy resin, naphthol type epoxy resin, phenylene type epoxy resin, phenol novolac type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, and tri A phenylmethane type epoxy resin etc. are mentioned. These may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物におけるエポキシ樹脂の含有割合は、特に限定されないが、エポキシ樹脂組成物全量に対して、2〜26質量%であることが好ましい。   Although the content rate of the epoxy resin in the epoxy resin composition of this invention is not specifically limited, It is preferable that it is 2-26 mass% with respect to the epoxy resin composition whole quantity.

本発明で用いられる硬化剤としては、前記エポキシ樹脂を硬化させるためのものであり、従来公知の硬化剤を用いることができる。具体的には、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂等のビフェニルアラルキル型フェノール樹脂、ナフトールアラルキル樹脂等、各種多価フェノール化合物又はナフトール化合物等が挙げられる。これらは、単独でも、2種以上を組み合わせて用いてもよい。また、これらの中でも、フェノールノボラック樹脂が好ましく、その含有量は、硬化剤全量に対して、10質量%以上であることが、低反り性を高める点から好ましい。また、耐熱信頼性及び低吸湿性の点では、ビフェニルアラルキル型フェノール樹脂が低架橋密度を達成できるため、好ましい。   The curing agent used in the present invention is for curing the epoxy resin, and a conventionally known curing agent can be used. Specific examples include various polyphenol compounds or naphthol compounds such as phenol novolak resins, cresol novolac resins, phenol aralkyl resins, biphenyl aralkyl type phenol resins such as biphenyl aralkyl resins, and naphthol aralkyl resins. These may be used alone or in combination of two or more. Among these, a phenol novolac resin is preferable, and the content thereof is preferably 10% by mass or more with respect to the total amount of the curing agent from the viewpoint of enhancing low warpage. In terms of heat resistance reliability and low hygroscopicity, biphenyl aralkyl type phenol resins are preferable because they can achieve a low crosslinking density.

硬化剤の含有量は、特に制限されないが、全エポキシ樹脂に対する割合で全エポキシ樹脂/全硬化剤(当量比)=0.8〜1.4であることが好ましく、0.9〜1.2であることがより好ましい。この割合が小さすぎると、硬化剤の含有量が多すぎて経済的に不利となる傾向があり、また上記割合が大きすぎると、硬化剤の含有量が少なすぎて硬化不足になる傾向がある。   The content of the curing agent is not particularly limited, but it is preferable that the total epoxy resin / total curing agent (equivalent ratio) = 0.8 to 1.4 in a ratio to the total epoxy resin, and 0.9 to 1.2. It is more preferable that If this ratio is too small, the content of the curing agent tends to be too high, which tends to be economically disadvantageous. If the ratio is too large, the content of the curing agent tends to be too small, resulting in insufficient curing. .

本発明で用いられる硬化促進剤としては、エポキシ樹脂のエポキシ基と硬化剤の水酸基との反応(硬化反応)を促進するためのものであり、従来公知の硬化促進剤を用いることができる。硬化促進剤の具体例としては、例えば、トリフェニルホスフィン、トリブチルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート等の有機ホスフィン類;1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7(DBU)、トリエチレンジアミン、ベンジルジメチルアミン等の三級アミン類;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類等が挙げられる。これらは、単独でも、2種以上を組み合わせて用いてもよい。   As a hardening accelerator used by this invention, it is for accelerating | stimulating reaction (hardening reaction) with the epoxy group of an epoxy resin, and the hydroxyl group of a hardening | curing agent, A conventionally well-known hardening accelerator can be used. Specific examples of the curing accelerator include, for example, organic phosphines such as triphenylphosphine, tributylphosphine, tetraphenylphosphonium and tetraphenylborate; 1,8-diaza-bicyclo (5,4,0) undecene-7 (DBU) ), Tertiary amines such as triethylenediamine, benzyldimethylamine; imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and the like. . These may be used alone or in combination of two or more.

硬化促進剤の含有量は、全樹脂成分(エポキシ樹脂と硬化剤の合計量)に対して、0.4〜3質量%であることが好ましい。硬化促進剤の含有量が少なすぎると、硬化促進効果を高めることができない傾向にある。また、多すぎると、成形性に不具合を生じる傾向があり、また、硬化促進剤の含有量が多すぎて経済的に不利となる傾向がある。   It is preferable that content of a hardening accelerator is 0.4-3 mass% with respect to all the resin components (total amount of an epoxy resin and a hardening | curing agent). When there is too little content of a hardening accelerator, it exists in the tendency which cannot improve a hardening acceleration effect. Moreover, when too large, there exists a tendency which produces a malfunction in a moldability, and there exists a tendency which becomes too economically disadvantageous because there is too much content of a hardening accelerator.

本発明において用いられる無機充填材は、従来公知の無機充填材を用いることができる。具体的には、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素等が挙げられる。これらは、単独でも、2種以上を組み合わせて用いてもよい。これらの中でも、流動性及び充填性の点から、溶融シリカが好ましく、さらに球状のものが好ましく、真球状に近いものほど好ましい。   A conventionally well-known inorganic filler can be used for the inorganic filler used in this invention. Specific examples include fused silica, crystalline silica, alumina, silicon nitride and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of fluidity and filling properties, fused silica is preferable, spherical ones are more preferable, and those close to true spheres are more preferable.

本発明のエポキシ樹脂組成物において用いられる無機充填材の含有量は、組成物全量の60質量%〜95質量%であり、好ましくは70〜92質量%である。前記無機充填材の含有量が60質量%未満の場合には、低吸湿性、低線膨張率が得られないために低反り性と耐リフロー性が低下する傾向がある。また、95質量%を超える場合には、流動性が低下して、未充填ボイドなどが生じてパッケージクラックが発生しやすい傾向がある。なお、本発明のエポキシ樹脂組成物では、上記のように無機充填材の配合量を多くしても、耐ハンダリフロー性と低反り性を兼ね備えながら、流動性にも優れたエポキシ樹脂組成物が得られる。   The content of the inorganic filler used in the epoxy resin composition of the present invention is 60% to 95% by mass, preferably 70 to 92% by mass, based on the total amount of the composition. When the content of the inorganic filler is less than 60% by mass, low hygroscopicity and low linear expansion cannot be obtained, so that low warpage and reflow resistance tend to decrease. Moreover, when it exceeds 95 mass%, fluidity | liquidity falls, there exists a tendency for an unfilled void etc. to arise and for a package crack to generate | occur | produce easily. In the epoxy resin composition of the present invention, an epoxy resin composition having excellent fluidity while having both solder reflow resistance and low warpage, even if the amount of the inorganic filler is increased as described above. can get.

本発明のエポキシ樹脂組成物には上記以外の組成として、本発明の目的とする所望の特性を阻害しない範囲で従来公知の添加剤、例えば離型剤、シランカップリング剤、難燃剤、着色剤、シリコーン可とう剤、イオントラップ剤等を必要に応じてその発現量を添加してもさしつかえない。   In the epoxy resin composition of the present invention, as a composition other than the above, conventionally known additives such as a mold release agent, a silane coupling agent, a flame retardant, and a colorant as long as they do not impair the desired characteristics of the present invention. In addition, the amount of expression of a silicone flexible agent, an ion trap agent, etc. may be added as necessary.

前記離型剤としては、例えばカルナバワックス、ステアリン酸、モンタン酸、カルボシキル基含有ポリオレフィン等が挙げられる。これらは、単独でも、2種以上を組み合わせて用いてもよい。   Examples of the mold release agent include carnauba wax, stearic acid, montanic acid, carboxyl group-containing polyolefin, and the like. These may be used alone or in combination of two or more.

前記シランカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン等が挙げられる。   Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, and the like.

前記難燃化剤としては、例えば、水酸化マグネシウムや水酸化アルミニウム等の金属水酸化物、赤リンや有機リン等のリン系難燃剤等が挙げられる。また、金属水酸化物は、チタネート系カップリング剤で予め表面処理されたものであってもよい。一般的に、半導体封止用エポキシ樹脂組成物には、難燃性を付与するために、臭素系難燃剤等のハロゲン系難燃剤、テトラブロモビスフェノールA型エポキシ樹脂等のハロゲン含有エポキシ樹脂、やアンチモン化合物等の難燃剤が配合されている。しかしながら、これらの難燃剤は、環境面や衛生面等の点から問題があり、規制される傾向にある。本発明のエポキシ樹脂組成物では、ハロゲン系難燃剤、ハロゲン含有エポキシ樹脂やアンチモン化合物を実質的に含有しなくても、上記金属水酸化物やリン系難燃剤等を含有させることで、難燃性を発揮できるので、臭素化エポキシ樹脂、及びアンチモン化合物を実質的に含有しないことが好ましい。   Examples of the flame retardant include metal hydroxides such as magnesium hydroxide and aluminum hydroxide, and phosphorus flame retardants such as red phosphorus and organic phosphorus. Further, the metal hydroxide may be surface-treated in advance with a titanate coupling agent. Generally, in order to impart flame retardancy to an epoxy resin composition for semiconductor encapsulation, a halogen-containing epoxy resin such as a brominated flame retardant, a tetrabromobisphenol A type epoxy resin, Flame retardants such as antimony compounds are blended. However, these flame retardants have problems from the viewpoints of environment and hygiene, and tend to be regulated. In the epoxy resin composition of the present invention, the flame retardant can be obtained by containing the metal hydroxide, the phosphorus flame retardant, or the like even when the halogen flame retardant, the halogen-containing epoxy resin or the antimony compound is not substantially contained. Therefore, it is preferable that the brominated epoxy resin and the antimony compound are not substantially contained.

前記着色剤としては、例えば、カーボンブラックや染料等が挙げられる。また、前記シリコーン可とう剤としては、例えば、シリコーンエラストマ、シリコーンオイル、シリコーンゲル、シリコーンゴム等が挙げられる。   Examples of the colorant include carbon black and dyes. Examples of the silicone flexible agent include silicone elastomer, silicone oil, silicone gel, and silicone rubber.

本発明の半導体封止用エポキシ樹脂組成物を調製するにあたっては、まず上記のエポキシ樹脂、硬化剤、硬化促進剤、無機充填材及びその他の材料を所定の量配合し、次にミキサーやブレンダーなどで均一に混合した後、ニーダーやロール等で加熱しながら混練するようにする。また混練後に、必要に応じて冷却固化し、粉砕して粉状に形成してもよい。   In preparing the epoxy resin composition for semiconductor encapsulation of the present invention, first, the above-mentioned epoxy resin, curing agent, curing accelerator, inorganic filler and other materials are blended in predetermined amounts, and then a mixer, blender, etc. After mixing uniformly, knead while heating with a kneader or roll. Further, after kneading, if necessary, it may be cooled and solidified and pulverized to form a powder.

また、本発明の片面封止型半導体装置を製造するにあたっては、リードフレームや基板等に半導体素子を搭載した後、これを上記の半導体封止用エポキシ樹脂組成物で形成される封止樹脂で封止するようにする。この封止にはトランスファー成形(トランスファーモールド)を採用することができ、半導体素子を搭載したリードフレームや基板等を金型のキャビティに配置した後、キャビティに上記の半導体封止用エポキシ樹脂組成物を充填し、これを加熱して硬化させて封止樹脂を形成するものである。このトランスファー成形を採用した場合の金型の温度は、160〜190℃、成形時間は、45〜150秒間に設定することができるが、金型の温度や成形時間及びその他の成形条件は、従来の封止成形と同様に設定することができ、半導体封止用エポキシ樹脂組成物の材料の種類や製造される半導体装置の種類によって適宜設定変更できる。   Further, in manufacturing the single-side sealed semiconductor device of the present invention, a semiconductor element is mounted on a lead frame, a substrate or the like, and then this is a sealing resin formed from the above-described epoxy resin composition for semiconductor sealing. Try to seal. Transfer molding (transfer mold) can be employed for this sealing, and after placing a lead frame or substrate mounted with semiconductor elements in the cavity of the mold, the above epoxy resin composition for semiconductor sealing is placed in the cavity. And is cured by heating to form a sealing resin. When this transfer molding is adopted, the mold temperature can be set to 160 to 190 ° C., and the molding time can be set to 45 to 150 seconds. However, the mold temperature, molding time and other molding conditions are conventionally set. It can be set in the same manner as in the sealing molding, and can be appropriately changed depending on the type of material of the epoxy resin composition for semiconductor sealing and the type of semiconductor device to be manufactured.

以下本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

表1に示す配合割合(質量部)で、エポキシ樹脂、硬化剤、硬化促進剤、無機充填材等の各成分をブレンダーで6分間混合し均一化した後、100℃に加熱した2本ロールで溶融混練し、冷却後粉砕機で粉砕して半導体封止用エポキシ樹脂組成物を調製した。実施例及び比較例においては次の原材料を用いた。
(エポキシ樹脂)
・ナフタレン型構造を有するエポキシ樹脂(A):下記一般式(II)に示すナフタレン型構造を有するエポキシ樹脂(大日本インキ化学工業(株)製のEXA−7320、軟化点:58℃、150℃におけるICI粘度:0.07Pa・s、エポキシ当量:250)
With the blending ratio (parts by mass) shown in Table 1, the components such as epoxy resin, curing agent, curing accelerator and inorganic filler were mixed and homogenized for 6 minutes with a blender, and then heated to 100 ° C. The mixture was melt-kneaded, cooled and pulverized with a pulverizer to prepare an epoxy resin composition for semiconductor encapsulation. In the examples and comparative examples, the following raw materials were used.
(Epoxy resin)
-Epoxy resin (A) having naphthalene structure: Epoxy resin having a naphthalene structure represented by the following general formula (II) (EXA-7320 manufactured by Dainippon Ink & Chemicals, Inc., softening point: 58 ° C, 150 ° C ICI viscosity: 0.07 Pa · s, epoxy equivalent: 250)

Figure 2009235164
Figure 2009235164

・ビフェニル型エポキシ樹脂:ジャパンエポキシレジン(株)製のYX4000HK(エポキシ当量:195)
・オルソクレゾールノボラック型エポキシ樹脂:大日本インキ化学工業(株)製のN663EXP(エポキシ当量:200)
(硬化剤)
・フェノールノボラック樹脂:明和化成(株)製のH−1M、水酸基当量105
(硬化促進剤)
・トリフェニルホスフィン:北興化学工業(株)製のTPP
(無機充填材)
・溶融シリカ:電気化学工業(株)製のFB60
(その他の成分)
・メルカプトシランカップリング剤:信越化学工業(株)のKBM803
・カルナバワックス:大日化学(株)製のF1−100
・カーボンブラック:三菱化学(株)製の♯40
上記のように調製した各組成物を用いて、以下に示す方法により評価を行った。
(低反り性)
ビスマレイミドトリアジン樹脂(BT)基板(35mm×35mm×0.5mm(t))に、1個の評価用チップ(8mm×9mm×0.35mm(t))を、銀ペーストを用いてマトリクス状に搭載した。そして、外形寸法29mm×29mm×0.80mm(t)の片面封止型の半導体パッケージである、BGA(Ball Grid Array)パッケージをトランスファー成形した。そして、得られたBGAの反り量(μm)を、表面粗さ測定器((株)ミツトヨ製のSJ−402)で計測し、以下の基準で評価した。BGAの反り量(μm)は、BGAの対角線2本の両端を結んだ線とBGA表面との距離の最大値を測定した。なお、上記パッケージを形成できなかったものを、「測定不可」と評価した。
Biphenyl type epoxy resin: YX4000HK (epoxy equivalent: 195) manufactured by Japan Epoxy Resin Co., Ltd.
Orthocresol novolac type epoxy resin: N663EXP (epoxy equivalent: 200) manufactured by Dainippon Ink & Chemicals, Inc.
(Curing agent)
Phenol novolac resin: H-1M manufactured by Meiwa Kasei Co., Ltd., hydroxyl equivalent 105
(Curing accelerator)
・ Triphenylphosphine: TPP manufactured by Hokuko Chemical Co., Ltd.
(Inorganic filler)
Fused silica: FB60 manufactured by Electrochemical Industry Co., Ltd.
(Other ingredients)
Mercaptosilane coupling agent: KBM803 from Shin-Etsu Chemical Co., Ltd.
Carnauba wax: F1-100 manufactured by Dainichi Chemical Co., Ltd.
Carbon black: # 40 manufactured by Mitsubishi Chemical Corporation
Using each composition prepared as described above, evaluation was performed by the following method.
(Low warpage)
A bismaleimide triazine resin (BT) substrate (35 mm × 35 mm × 0.5 mm (t)) with one evaluation chip (8 mm × 9 mm × 0.35 mm (t)) in a matrix using silver paste equipped. Then, a BGA (Ball Grid Array) package, which is a single-side sealed semiconductor package having an outer dimension of 29 mm × 29 mm × 0.80 mm (t), was transfer molded. And the curvature amount (micrometer) of obtained BGA was measured with the surface roughness measuring device (SJ-402 by Mitutoyo Corporation), and the following references | standards evaluated. For the amount of warpage (μm) of BGA, the maximum value of the distance between the line connecting the two ends of two diagonal lines of BGA and the BGA surface was measured. In addition, what could not form the said package was evaluated as "impossible to measure".

◎:100μm以下
○:100〜130μm
△:130〜180μm
×:180μm以上
なお、トランスファー成形の条件は、以下の通りである。
・金型圧力 :175℃
・注入圧力 :70kgf/cm
・成形時間 :120秒
・後硬化 :175℃、6時間
(耐熱信頼性)
低反り性の評価で得られた、封止厚29mm×29mm×0.80mm(t)のBGAを30℃、60%Rhの恒温恒湿機内で、96時間放置して吸湿させた。そして、吸湿処理した後のBGAを、IRリフロー装置により、260℃の条件でリフロー処理を行った。そして、超音波測定装置を用いて、24個のBGAのパッケージ内部の剥離の有無を確認し、24個のBGA中の剥離が発生したBGAの数を数えた。その際、基板と封止樹脂との剥離、及びチップと封止樹脂との剥離をそれぞれ数えた。なお、上記パッケージを形成できなかったものを、「確認不可」と評価した。
(未充填発生パッケージ数)
低反り性の評価で得られた、封止厚29mm×29mm×0.80mm(t)のBGA24個の封止表面を実体顕微鏡で観察した。そして、未充填箇所のあるパッケージ数を数え、試験パッケージ数(24個)に対する未充填箇所のあるパッケージ数で評価した。
A: 100 μm or less ○: 100-130 μm
Δ: 130-180 μm
X: 180 μm or more The conditions for transfer molding are as follows.
・ Mold pressure: 175 ℃
Injection pressure: 70 kgf / cm 2
・ Molding time: 120 seconds ・ Post-curing: 175 ° C., 6 hours (heat resistance reliability)
BGA having a sealing thickness of 29 mm × 29 mm × 0.80 mm (t) obtained by evaluation of low warpage property was allowed to stand for 96 hours in a constant temperature and humidity chamber at 30 ° C. and 60% Rh to absorb moisture. Then, the BGA after the moisture absorption treatment was subjected to a reflow treatment at a temperature of 260 ° C. using an IR reflow apparatus. And the presence or absence of peeling inside the package of 24 BGAs was confirmed using an ultrasonic measurement device, and the number of BGAs in which peeling occurred in 24 BGAs was counted. At that time, the peeling between the substrate and the sealing resin and the peeling between the chip and the sealing resin were counted. In addition, the thing which could not form the said package was evaluated as "confirmation impossible."
(Number of unfilled packages)
The sealing surfaces of 24 BGAs having a sealing thickness of 29 mm × 29 mm × 0.80 mm (t) obtained by the evaluation of low warpage were observed with a stereomicroscope. Then, the number of packages with unfilled locations was counted, and the number of packages with unfilled locations relative to the number of test packages (24) was evaluated.

以上の結果を下記表1にまとめた。   The above results are summarized in Table 1 below.

Figure 2009235164
Figure 2009235164

表1に示した結果から、上記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)と平均のエポキシ当量が200以下のビフェニル型エポキシ樹脂(B)とを併用し、さらに、無機充填材である溶融シリカを、組成物全量の60質量%〜95質量%含有させた実施例1〜5は、耐熱信頼性と低反り性とがともに良好であり、未充填が発生したパーケージ数も少なかった。このことから、優れた低反り性と充填性と耐熱信頼性(耐リフロー性)とを兼ね備えた半導体封止用エポキシ樹脂組成物が得られたことがわかった。   From the results shown in Table 1, the epoxy resin (A) having a naphthalene type structure represented by the above general formula (I) and the biphenyl type epoxy resin (B) having an average epoxy equivalent of 200 or less are used in combination. In Examples 1 to 5 containing 60 mass% to 95 mass% of the total amount of the fused silica as the filler, both the heat resistance reliability and the low warpage are good, and the number of packages in which unfilling occurred. There were few. From this, it was found that an epoxy resin composition for semiconductor encapsulation having excellent low warpage, filling properties, and heat reliability (reflow resistance) was obtained.

これに対して、上記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)と平均のエポキシ当量が200以下のビフェニル型エポキシ樹脂(B)とを併用していない比較例1〜5は、以下のような不具合が発生した。   In contrast, Comparative Examples 1 to 5 in which the epoxy resin (A) having a naphthalene structure represented by the general formula (I) and the biphenyl type epoxy resin (B) having an average epoxy equivalent of 200 or less are not used in combination. The following problems occurred.

エポキシ樹脂として、上記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)のみを含有する比較例1は、パッケージに未充填が発生した。   In Comparative Example 1 containing only the epoxy resin (A) having a naphthalene type structure represented by the general formula (I) as an epoxy resin, the package was unfilled.

エポキシ樹脂として、上記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)を含有していない比較例2〜4は、耐熱信頼性(耐リフロー性)が低下した。   As the epoxy resin, Comparative Examples 2 to 4 which did not contain the epoxy resin (A) having a naphthalene type structure represented by the above general formula (I) had low heat reliability (reflow resistance).

上記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)と前記ビフェニル型エポキシ樹脂(B)以外のエポキシ樹脂とを併用した比較例5は、耐熱信頼性(耐リフロー性)が低下した。   The comparative example 5 which used together the epoxy resin (A) which has the naphthalene type structure shown to the said general formula (I), and epoxy resins other than the said biphenyl type epoxy resin (B), heat resistance reliability (reflow resistance) falls. did.

無機充填材である溶融シリカの含有量が、組成物全量に対して60質量%未満である比較例6は、応力が大きくなり、耐熱信頼性が低下し、且つ低反り性が低下した。   In Comparative Example 6 in which the content of fused silica, which is an inorganic filler, is less than 60% by mass with respect to the total amount of the composition, stress increases, heat resistance reliability decreases, and low warpage decreases.

無機充填材である溶融シリカの含有量が、組成物全量に対して95質量%を超える比較例7は、上記パッケージを形成できない場合が多く、低反り性及び耐熱信頼性を評価できなかった。そして、パッケージを形成できた場合であっても、未充填が多かった。   In Comparative Example 7, in which the content of fused silica as an inorganic filler exceeds 95% by mass with respect to the total amount of the composition, the above-mentioned package cannot be formed in many cases, and the low warpage property and heat resistance reliability could not be evaluated. And even if it was a case where a package was able to be formed, there were many unfilled.

Claims (8)

半導体素子が搭載された基板の片面を封止するために用いられる半導体封止用エポキシ樹脂組成物であって、
エポキシ樹脂、硬化剤、硬化促進剤及び無機充填材を含有し、
前記エポキシ樹脂が、下記一般式(I)に示すナフタレン型構造を有するエポキシ樹脂(A)と、平均のエポキシ当量が200以下のビフェニル型エポキシ樹脂(B)とを含有し、
前記無機充填剤の含有量が、組成物全量の60質量%〜95質量%であることを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 2009235164

(式中、R〜Rは、独立して、水素原子、アルキル基、アルコキシ基、アリール基、及びアリル基から選択される原子又は基を示し、Gは、グリシジル基を示し、nは、1〜5を示す。)
An epoxy resin composition for semiconductor sealing used for sealing one side of a substrate on which a semiconductor element is mounted,
Contains epoxy resin, curing agent, curing accelerator and inorganic filler,
The epoxy resin contains an epoxy resin (A) having a naphthalene type structure represented by the following general formula (I), and a biphenyl type epoxy resin (B) having an average epoxy equivalent of 200 or less,
Content of the said inorganic filler is 60 mass%-95 mass% of the composition whole quantity, The epoxy resin composition for semiconductor sealing characterized by the above-mentioned.
Figure 2009235164

Wherein R 1 to R 4 independently represent an atom or group selected from a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, and an allyl group, G represents a glycidyl group, and n represents 1 to 5 are shown.)
前記ビフェニル型エポキシ樹脂(B)に対する前記ナフタレン型構造を有するエポキシ樹脂(A)の質量比(A/B)が、0.3〜4である請求項1に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein a mass ratio (A / B) of the epoxy resin (A) having the naphthalene structure to the biphenyl epoxy resin (B) is 0.3 to 4. object. 前記ナフタレン型構造を有するエポキシ樹脂(A)の平均のエポキシ当量が、240〜290である請求項1又は請求項2に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, wherein an average epoxy equivalent of the epoxy resin (A) having a naphthalene structure is 240 to 290. 前記ナフタレン型構造を有するエポキシ樹脂(A)の含有量が、前記エポキシ樹脂全量に対して、30質量%以上である請求項1〜3のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。   Content of the epoxy resin (A) which has the said naphthalene type structure is 30 mass% or more with respect to the said epoxy resin whole quantity, The epoxy resin composition for semiconductor sealing of any one of Claims 1-3 object. 前記硬化剤が、フェノールノボラック樹脂である請求項1〜4のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to any one of claims 1 to 4, wherein the curing agent is a phenol novolac resin. 前記ナフタレン型構造を有するエポキシ樹脂(A)の150℃における粘度が、0.09Pa・s以下である請求項1〜5のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to any one of claims 1 to 5, wherein the epoxy resin (A) having a naphthalene structure has a viscosity at 150 ° C of 0.09 Pa · s or less. ハロゲン系難燃剤、ハロゲン含有エポキシ樹脂、及びアンチモン化合物を実質的に含有しない請求項1〜6のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to any one of claims 1 to 6, which does not substantially contain a halogen-based flame retardant, a halogen-containing epoxy resin, and an antimony compound. 請求項1〜7のいずれか1項に記載の半導体封止用エポキシ樹脂を用いて、半導体素子搭載用基板の片面に搭載された半導体素子を封止して得られることを特徴とする片面封止型半導体装置。   A single-sided seal obtained by sealing a semiconductor element mounted on one side of a substrate for mounting a semiconductor element using the epoxy resin for semiconductor sealing according to any one of claims 1 to 7. Stop-type semiconductor device.
JP2008080327A 2008-03-26 2008-03-26 Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition Pending JP2009235164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080327A JP2009235164A (en) 2008-03-26 2008-03-26 Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080327A JP2009235164A (en) 2008-03-26 2008-03-26 Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition

Publications (1)

Publication Number Publication Date
JP2009235164A true JP2009235164A (en) 2009-10-15

Family

ID=41249531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080327A Pending JP2009235164A (en) 2008-03-26 2008-03-26 Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition

Country Status (1)

Country Link
JP (1) JP2009235164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246543A (en) * 2010-05-25 2011-12-08 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
CN115632002A (en) * 2022-12-22 2023-01-20 天津德高化成新材料股份有限公司 Packaging method of low-warpage mini LED display screen and display screen

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294028A (en) * 2001-03-29 2002-10-09 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2006143950A (en) * 2004-11-24 2006-06-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006257240A (en) * 2005-03-16 2006-09-28 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2006316263A (en) * 2005-04-14 2006-11-24 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic component device
JP2007002110A (en) * 2005-06-24 2007-01-11 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP2007161833A (en) * 2005-12-13 2007-06-28 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2007169655A (en) * 2007-01-22 2007-07-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2007231159A (en) * 2006-03-01 2007-09-13 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2007270126A (en) * 2006-03-07 2007-10-18 Sumitomo Bakelite Co Ltd Resin composition for semiconductor sealing use and semiconductor device
JP2007314678A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Epoxy resin composition for semiconductor sealing and semiconductor device
JP2008024757A (en) * 2006-07-18 2008-02-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing and electronic part apparatus
JP2009130221A (en) * 2007-11-26 2009-06-11 Sumitomo Bakelite Co Ltd Semiconductor apparatus and sealing resin composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294028A (en) * 2001-03-29 2002-10-09 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2006143950A (en) * 2004-11-24 2006-06-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006257240A (en) * 2005-03-16 2006-09-28 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2006316263A (en) * 2005-04-14 2006-11-24 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic component device
JP2007002110A (en) * 2005-06-24 2007-01-11 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP2007161833A (en) * 2005-12-13 2007-06-28 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2007231159A (en) * 2006-03-01 2007-09-13 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP2007270126A (en) * 2006-03-07 2007-10-18 Sumitomo Bakelite Co Ltd Resin composition for semiconductor sealing use and semiconductor device
JP2007314678A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Epoxy resin composition for semiconductor sealing and semiconductor device
JP2008024757A (en) * 2006-07-18 2008-02-07 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing and electronic part apparatus
JP2007169655A (en) * 2007-01-22 2007-07-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2009130221A (en) * 2007-11-26 2009-06-11 Sumitomo Bakelite Co Ltd Semiconductor apparatus and sealing resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246543A (en) * 2010-05-25 2011-12-08 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
CN115632002A (en) * 2022-12-22 2023-01-20 天津德高化成新材料股份有限公司 Packaging method of low-warpage mini LED display screen and display screen
CN115632002B (en) * 2022-12-22 2023-04-21 天津德高化成新材料股份有限公司 Packaging method of low-warpage mini LED display screen and display screen

Similar Documents

Publication Publication Date Title
JP4386453B2 (en) Resin-sealed semiconductor device
JP2012224758A (en) Epoxy resin composition and semiconductor device
JP7276151B2 (en) EPOXY RESIN COMPOSITION FOR BALL GRID ARRAY PACKAGE SEALING, EPOXY RESIN CURED MATERIAL, AND ELECTRONIC PARTS DEVICE
JP2016040383A (en) Epoxy resin composition for encapsulating electronic component and electronic component device using the same
JP7338661B2 (en) Epoxy resin composition, cured epoxy resin and electronic component device
JP2007023097A (en) Resin composition for encapsulation and encapsulated electronic part device
JP7126186B2 (en) Resin composition for encapsulation, cured product thereof, and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
JP2010031233A (en) Semiconductor sealing epoxy resin composition, and one side sealing type semiconductor device produced by sealing semiconductor device using the same
JP2009235164A (en) Semiconductor sealing epoxy resin composition, and single side sealing type semiconductor device manufactured by sealing semiconductor device using the composition
JP2006213849A (en) Sealing resin composition and semiconductor sealing apparatus
JP2012251048A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2009007405A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2963260B2 (en) Epoxy resin composition
JP2008156403A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
KR101758448B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JP2013234305A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP2007077237A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device by using the same
JP2009256475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2010031119A (en) Semiconductor-sealing epoxy resin composition and semiconductor device using it
JP3982344B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122