JP2008163138A - Semiconductor-sealing epoxy resin composition and semiconductor device - Google Patents

Semiconductor-sealing epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2008163138A
JP2008163138A JP2006352900A JP2006352900A JP2008163138A JP 2008163138 A JP2008163138 A JP 2008163138A JP 2006352900 A JP2006352900 A JP 2006352900A JP 2006352900 A JP2006352900 A JP 2006352900A JP 2008163138 A JP2008163138 A JP 2008163138A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
hydroxyl group
semiconductor
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006352900A
Other languages
Japanese (ja)
Inventor
Fumihiro Umiga
文広 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006352900A priority Critical patent/JP2008163138A/en
Publication of JP2008163138A publication Critical patent/JP2008163138A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor-sealing epoxy resin composition having preferable flowability at the time of shaping and continuous shaping property, and the excellent warpage characteristics. <P>SOLUTION: The semiconductor-sealing epoxy resin composition comprises an epoxy resin (A), a phenol resin-based curing agent (B), a silane coupling agent (C), and a compound having two or more adjacent carbon atoms comprising an aromatic ring each coupled with a hydroxy group (D), wherein the epoxy resin (A) contains a biphenyl type epoxy resin and/or a bisphenol type epoxy resin, and the phenol resin-based curing agent (B) contains a phenol resin represented by general formula (2). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体封止用エポキシ樹脂組成物及びそれを用いた半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same.

近年の電子機器の小型化、軽量化、高機能化の市場動向において、半導体の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、新規にエリア実装型半導体装置が開発され、従来構造の半導体装置から移行し始めている。エリア実装型半導体装置としては、ボール・グリッド・アレイ(以下、「BGA」という。)、あるいは更に小型化を追求したチップ・サイズ・パッケージ(以下、「CSP」という。)が代表的であるが、これらは従来のクワッド・フラット・パッケージ(以下、「QFP」という。)、スモール・アウトライン・パッケージ(以下、「SOP」という。)に代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。エリア実装型半導体装置の構造としては、ビスマレイミド・トリアジン(以下、「BT」という。)樹脂/銅箔回路基板に代表される硬質回路基板あるいはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その素子搭載面、即ち回路基板の片面のみが半導体封止用樹脂組成物等で成形・封止されている。また回路基板の素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装するマザーボードとの接合を行う特徴を有している。更に素子を搭載する回路基板としては、上記有機回路基板以外にもリードフレーム等の金属回路基板を用いる構造も考案されている。   In recent years, electronic devices have become smaller, lighter, and more functional, and as the integration of semiconductors has progressed year by year and the surface mounting of semiconductor devices has been promoted, new area-mounted semiconductor devices have been developed. It has been developed and is beginning to shift from conventional semiconductor devices. A typical area-mounted semiconductor device is a ball grid array (hereinafter referred to as “BGA”) or a chip size package (hereinafter referred to as “CSP”) in pursuit of further miniaturization. These are approaching the limits of surface-mount semiconductor devices represented by conventional quad flat packages (hereinafter referred to as “QFP”) and small outline packages (hereinafter referred to as “SOP”). It was developed to meet the demand for pinning and speeding up. As the structure of the area mounting type semiconductor device, a hard circuit board represented by a bismaleimide triazine (hereinafter referred to as “BT”) resin / copper foil circuit board or a flexible resin represented by polyimide resin film / copper foil circuit board. A semiconductor element is mounted on one side of a circuit board, and only the element mounting surface, that is, one side of the circuit board is molded and sealed with a resin composition for semiconductor sealing. In addition, solder balls are formed two-dimensionally in parallel on the surface opposite to the element mounting surface of the circuit board, and are joined to the mother board on which the semiconductor device is mounted. Furthermore, as a circuit board on which elements are mounted, a structure using a metal circuit board such as a lead frame in addition to the organic circuit board has been devised.

これらエリア実装型半導体装置の構造は回路基板の素子搭載面のみを樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。ごく希に、リードフレーム等の金属回路基板等では、半田ボール形成面でも数十μm程度の封止樹脂層が存在することもあるが、素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため有機回路基板や金属回路基板と樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合あるいは樹脂組成物の成形・硬化時の硬化収縮による影響により、これらの半導体装置では成形直後から反りが発生しやすい。また、樹脂組成物の流動性不足及び高粘度により、成形時に金線が流れて、金線接触が起こる。このようなことからエポキシ樹脂組成物のレベルアップによる半導体装置の信頼性向上要求が加速的に強くなってきており、無機充填剤の高充填化と樹脂の高流動化が進んでいる。
成形時に低粘度で高流動性を維持するために、溶融粘度の低い樹脂の使用する手法(例えば、特許文献1参照。)や、無機充填剤の配合量を高めるために無機充填剤をシランカップリング剤で表面処理する手法(例えば、特許文献2参照。)が知られている。しかし、これらは種々ある要求特性のいずれかのみを満足するものが多く、成形時の高流動化と実装時の反り特性とを両立する手法は未だ見出されておらず、成形時に低粘度で高流動であり、成形性、反り特性に優れた更なる技術が求められていた。
These area-mounted semiconductor devices have a single-side sealing configuration in which only the element mounting surface of the circuit board is sealed with a resin composition and the solder ball forming surface side is not sealed. Very rarely, a metal circuit board such as a lead frame may have a sealing resin layer of about several tens of μm on the surface where the solder balls are formed, but a sealing of about several hundred μm to several mm on the device mounting surface. Since the resin layer is formed, it is substantially single-sided sealed. For this reason, these semiconductor devices are affected by the mismatch of thermal expansion / shrinkage between the organic circuit board or metal circuit board and the cured resin composition, or by the effect of curing shrinkage during molding / curing of the resin composition. Warpage is likely to occur immediately after molding. Further, due to insufficient fluidity and high viscosity of the resin composition, the gold wire flows during molding and gold wire contact occurs. For these reasons, the demand for improving the reliability of semiconductor devices by increasing the level of the epoxy resin composition has been acceleratingly increased, and higher filling of inorganic fillers and higher flow of resins are progressing.
In order to maintain low viscosity and high fluidity at the time of molding, a technique using a resin having a low melt viscosity (see, for example, Patent Document 1), or an inorganic filler in order to increase the compounding amount of the inorganic filler is a silane cup. A technique for surface-treating with a ring agent (for example, see Patent Document 2) is known. However, many of these satisfy only one of the various required characteristics, and no method has yet been found that achieves both high fluidization during molding and warping characteristics during mounting. There has been a demand for further technology that is highly fluid and excellent in moldability and warpage characteristics.

特開平7−130919号公報JP-A-7-130919 特開平8−20673号公報JP-A-8-20673

本発明は、流動性、連続成形性、反り特性に優れたエポキシ樹脂組成物及びそれを用いた半導体装置を提供するものである。   The present invention provides an epoxy resin composition excellent in fluidity, continuous moldability, and warp characteristics, and a semiconductor device using the same.

本発明は、
(1) エポキシ樹脂(A)、フェノール樹脂系硬化剤(B)、シランカップリング剤(C)、及び芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)を含む半導体封止用エポキシ樹脂組成物であって、前記エポキシ樹脂(A)が下記一般式(1)で表されるエポキシ樹脂を含み、前記フェノール樹脂系硬化剤(B)が下記一般式(2)で表されるフェノール樹脂を含むことを特徴とする半導体封止用エポキシ樹脂組成物、
The present invention
(1) Epoxy resin (A), phenol resin-based curing agent (B), silane coupling agent (C), and compound in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring (D) The epoxy resin composition for semiconductor encapsulation containing the epoxy resin (A) contains an epoxy resin represented by the following general formula (1), and the phenol resin curing agent (B) has the following general formula ( 2) An epoxy resin composition for encapsulating a semiconductor, comprising a phenol resin represented by

Figure 2008163138
(ただし、上記一般式(1)において、Xは単結合、−O−、−S−、−R2CR2−の中から選択される基である。R1は炭素数1〜6のアルキル基であり、互いに同一であっても異なっていてもよい。aは0〜4の整数である。R2は水素又は炭素数1〜4のアルキル基であり、互いに同一であっても異なっていてもよい。)
Figure 2008163138
(However, in the said General formula (1), X is group selected from a single bond, -O-, -S-, -R2CR2-. R1 is a C1-C6 alkyl group, A may be the same or different, and a is an integer of 0 to 4. R2 is hydrogen or an alkyl group having 1 to 4 carbon atoms and may be the same or different.

Figure 2008163138
(ただし、上記一般式(2)において、R3、R4、R5は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。bは0〜3の整数、cは0〜4の整数、dは0〜3の整数である。m、nはモル比を表し、0<m<1、0<n<1で、m+n=1である。)
Figure 2008163138
(However, in the said General formula (2), R3, R4, R5 is group selected from a C1-C4 alkyl group, and may mutually be same or different. B is 0-0. An integer of 3, c is an integer of 0 to 4, and d is an integer of 0 to 3. m and n are molar ratios, and 0 <m <1, 0 <n <1, and m + n = 1. )

(2) 前記一般式(2)で表されるフェノール樹脂において、式(2)中のmとnとのモル比(m/n)が1/5〜5/1の範囲であることを特徴とする第(1)項に記載の半導体封止用エポキシ樹脂組成物、
(3) 前記シランカップリング剤(C)が全エポキシ樹脂組成物に対し0.01重量%以上、1重量%以下の割合で含まれることを特徴とする第(1)項又は第(2)項に記載の半導体封止用記載の半導体封止用エポキシ樹脂組成物、
(4) 前記芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)が全エポキシ樹脂組成物に対し0.01重量%以上、1重量%以下の割合で含まれることを特徴とする第(1)項ないし第(3)項のいずれかに記載の半導体封止用エポキシ樹脂組成物、
(5) 前記芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)が、少なくとも下記一般式(3)で表される化合物又は下記一般式(4)で表される化合物から選ばれる1種以上であることを特徴とする第(1)項ないし第(4)項のいずれかに記載の半導体封止用エポキシ樹脂組成物、
(2) In the phenol resin represented by the general formula (2), the molar ratio (m / n) between m and n in the formula (2) is in the range of 1/5 to 5/1. An epoxy resin composition for semiconductor encapsulation according to item (1),
(3) Item (1) or (2), wherein the silane coupling agent (C) is contained in a proportion of 0.01 wt% or more and 1 wt% or less with respect to the total epoxy resin composition. The epoxy resin composition for semiconductor encapsulation described in the paragraph for semiconductor encapsulation,
(4) The compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring is contained in a proportion of 0.01% by weight or more and 1% by weight or less based on the total epoxy resin composition. The epoxy resin composition for semiconductor encapsulation according to any one of items (1) to (3), wherein:
(5) The compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring is represented by at least the compound represented by the following general formula (3) or the following general formula (4). An epoxy resin composition for semiconductor encapsulation according to any one of (1) to (4), wherein the epoxy resin composition is one or more selected from the following compounds:

Figure 2008163138
(ただし、上記一般式(3)において、R6、R10はどちらか一方が水酸基であり、一方が水酸基のとき他方は水素、水酸基又は水酸基以外の置換基から選ばれる基である。R7、R8、R9は水素、水酸基又は水酸基以外の置換基から選ばれる基であり、互いに同一であっても、異なっていてもよい。)
Figure 2008163138
(ただし、上記一般式(4)において、R11、R17はどちらか一方が水酸基であり、一方が水酸基のとき他方は水素、水酸基又は水酸基以外の置換基から選ばれる基である。R12、R13、R14、1R5、1R6は水素、水酸基又は水酸基以外の置換基から選ばれる基であり、互いに同一であっても、異なっていてもよい。)
Figure 2008163138
(However, in the general formula (3), one of R6 and R10 is a hydroxyl group, and when one is a hydroxyl group, the other is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R7, R8, R9 is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group, and may be the same or different.
Figure 2008163138
(However, in the general formula (4), one of R11 and R17 is a hydroxyl group, and when one is a hydroxyl group, the other is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R12, R13, R14, 1R5, and 1R6 are groups selected from hydrogen, a hydroxyl group, or a substituent other than a hydroxyl group, and may be the same or different.

(6) 更に、硬化促進剤(E)を含むことを特徴とする第(1)項ないし第(5)項のいずれかに記載の半導体封止用エポキシ樹脂組成物、
(7) 更に、無機充填剤(F)を全エポキシ樹脂組成物中に対し80重量%以上、92重量%以下の割合で含むことを特徴とする第(1)項ないし第(6)項のいずれかに記載の半導体封止用エポキシ樹脂組成物、
(8) 第(1)項ないし第(7)項のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて、半導体素子を封止してなることを特徴とする半導体装置、
(9) 第(1)項ないし第(7)項のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて、回路基板の片面に半導体素子が搭載された回路基板面側の片面のみを封止してなることを特徴とする半導体装置、
である。
(6) The epoxy resin composition for semiconductor encapsulation according to any one of (1) to (5), further comprising a curing accelerator (E),
(7) The inorganic filler (F) is further contained in a proportion of 80% by weight or more and 92% by weight or less with respect to the total epoxy resin composition. The epoxy resin composition for semiconductor encapsulation according to any one of the above,
(8) A semiconductor device, wherein a semiconductor element is sealed using the epoxy resin composition for semiconductor sealing according to any one of (1) to (7),
(9) Using the epoxy resin composition for semiconductor encapsulation according to any one of items (1) to (7), only one side of the circuit board surface side on which the semiconductor element is mounted on one side of the circuit board A semiconductor device characterized by sealing
It is.

本発明に従うと、成形封止する時の流動性、連続成形性が良好で、且つ反り特性に優れたエポキシ樹脂組成物、並びにそれを用いた半導体装置を得ることができる。   According to the present invention, it is possible to obtain an epoxy resin composition excellent in fluidity and continuous moldability during molding and sealing, and excellent in warping characteristics, and a semiconductor device using the same.

エポキシ樹脂(A)、フェノール樹脂系硬化剤(B)、シランカップリング剤(C)、及び芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)を含むエポキシ樹脂組成物であって、エポキシ樹脂(A)が一般式(1)で表されるエポキシ樹脂を含み、フェノール樹脂系硬化剤(B)が一般式(2)で表されるフェノール樹脂を含むことによって、成形封止する時の流動性、成形性に優れ、かつ反り特性に優れたエポキシ樹脂組成物、並びにそれを用いた半導体装置が得られるものである。
以下、本発明について詳細に説明する。
Epoxy resin (A), phenol resin-based curing agent (B), silane coupling agent (C), and epoxy containing a compound (D) in which a hydroxyl group is bonded to two or more adjacent carbon atoms constituting an aromatic ring. It is a resin composition, and the epoxy resin (A) includes an epoxy resin represented by the general formula (1), and the phenol resin-based curing agent (B) includes a phenol resin represented by the general formula (2). As a result, an epoxy resin composition excellent in fluidity and moldability during molding and sealing, and excellent in warping characteristics, and a semiconductor device using the same can be obtained.
Hereinafter, the present invention will be described in detail.

本発明では、エポキシ樹脂(A)として、下記一般式(1)で表されるエポキシ樹脂を用いる。本発明で用いられる下記一般式(1)で表されるエポキシ樹脂は、結晶性で低分子量の樹脂であるため溶融粘度が低く、これを用いたエポキシ樹脂組成物は流動性に優れ、即ち封止成形時に金流れを発生し難くする効果を充分に得ることができる。また、下記一般式(1)で表されるエポキシ樹脂は2官能であるため、これを用いたエポキシ樹脂組成物の硬化物は架橋密度が低く抑えられ、高温での弾性率が低く、半田処理時等の応力緩和に適しており、耐半田性も良好となる。   In the present invention, an epoxy resin represented by the following general formula (1) is used as the epoxy resin (A). The epoxy resin represented by the following general formula (1) used in the present invention is a crystalline and low molecular weight resin and thus has a low melt viscosity. An epoxy resin composition using the epoxy resin is excellent in fluidity, that is, sealed. The effect of making it difficult to generate a gold flow at the time of molding can be sufficiently obtained. Moreover, since the epoxy resin represented by the following general formula (1) is bifunctional, the cured product of the epoxy resin composition using the epoxy resin has a low crosslinking density, a low elastic modulus at a high temperature, and a solder treatment. Suitable for stress relaxation at times, etc., and good solder resistance.

Figure 2008163138
(ただし、上記一般式(1)において、Xは単結合、−O−、−S−、−R2CR2−の中から選択される基である。R1は炭素数1〜6のアルキル基であり、互いに同一であっても異なっていてもよい。aは0〜4の整数である。R2は水素又は炭素数1〜4のアルキル基であり、互いに同一であっても異なっていてもよい。)
Figure 2008163138
(However, in the said General formula (1), X is group selected from a single bond, -O-, -S-, -R2CR2-. R1 is a C1-C6 alkyl group, A may be the same or different, and a is an integer of 0 to 4. R2 is hydrogen or an alkyl group having 1 to 4 carbon atoms and may be the same or different.

本発明で用いられる一般式(1)で表されるエポキシ樹脂の内では、作業性、実用性のバランスの取れた4,4’−ジグリシドキシビフェニル、あるいは3,3’,5,5’−テトラメチル−4,4’−ジグリシドキシビフェニル及びこの両者の溶融混合物等が好ましい。一般式(1)で表されるエポキシ樹脂の具体例を下記式(5)に示すが、これらに限定されるものではない。   Among the epoxy resins represented by the general formula (1) used in the present invention, 4,4′-diglycidoxybiphenyl or 3,3 ′, 5,5 ′ having a good balance between workability and practicality. -Tetramethyl-4,4'-diglycidoxybiphenyl and a molten mixture of both are preferred. Although the specific example of the epoxy resin represented by General formula (1) is shown to following formula (5), it is not limited to these.

Figure 2008163138
Figure 2008163138

本発明では、エポキシ樹脂(A)として、一般式(1)で表されるエポキシ樹脂を配合することによる特徴を損なわない範囲で、他のエポキシ樹脂を併用することができる。併用する場合、一般式(1)で表されるエポキシ樹脂の配合割合は、全エポキシ樹脂中の少なくとも50重量%以上が好ましく、更に好ましくは80重量%以上である。上記範囲内であると、樹脂組成物の流動性と成形性の向上を図ることができ、また、樹脂硬化物の耐半田性の向上を図ることができる。併用可能なエポキシ樹脂としては特に限定はしないが、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。併用するエポキシ樹脂は、成形時の溶融粘度が非常に低い一般式(1)で表されるエポキシ樹脂を配合することによる特徴を損なわないよう、極力粘度の低いものを使用することが望ましい。   In the present invention, as the epoxy resin (A), another epoxy resin can be used in combination as long as the characteristics of the epoxy resin represented by the general formula (1) are not impaired. When used together, the blending ratio of the epoxy resin represented by the general formula (1) is preferably at least 50% by weight or more, more preferably 80% by weight or more based on the total epoxy resin. Within the above range, the fluidity and moldability of the resin composition can be improved, and the solder resistance of the cured resin can be improved. Although it does not specifically limit as an epoxy resin which can be used together, For example, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a triphenolmethane type epoxy resin, a phenol aralkyl type epoxy resin having a phenylene skeleton and / or a biphenylene skeleton, naphthol Type epoxy resin, naphthalene type epoxy resin, naphthol aralkyl type epoxy resin having phenylene skeleton and / or biphenylene skeleton, alkyl modified triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene modified phenol type epoxy resin, etc. These may be used alone or in combination of two or more. It is desirable to use an epoxy resin having a viscosity as low as possible so as not to impair the characteristics of the epoxy resin represented by the general formula (1) having a very low melt viscosity at the time of molding.

また、本発明に用いるエポキシ樹脂(A)全体の配合割合としては、特に限定されないが、全エポキシ樹脂組成物中に、3重量%以上、13重量%以下であることが好ましく、5重量%以上、11重量%以下であることがより好ましい。エポキシ樹脂(A)全体の配合割合が上記範囲内であると、耐半田性、耐湿性、硬化性、流動性の低下等を引き起こす恐れが少ない。   Further, the blending ratio of the entire epoxy resin (A) used in the present invention is not particularly limited, but it is preferably 3% by weight or more and 13% by weight or less in the total epoxy resin composition, and 5% by weight or more. 11% by weight or less is more preferable. When the blending ratio of the entire epoxy resin (A) is within the above range, there is little possibility of causing a decrease in solder resistance, moisture resistance, curability, fluidity, and the like.

本発明では、フェノール樹脂系硬化剤(B)として、下記一般式(2)で表されるフェノール樹脂を用いる。本発明で用いられる下記一般式(2)で表されるフェノール樹脂は、基本的にフェノールノボラック型とトリフェノールメタン型の構造をあわせもつ。フェノールノボラック型からは、構造面で、樹脂骨格の架橋点間距離が短く、良好な硬化性、成形性を有するといった特徴を有している。また、トリフェノールメタン型からは、一分子中に3個以上の水酸基を有しており、架橋密度が高く、これを用いたエポキシ樹脂組成物の硬化物は、高Tgで線膨張係数が小さく、また強度が大きい特徴がある。そのため、下記一般式(2)で表されるフェノール樹脂を使用したエポキシ樹脂組成物は、良好な硬化性で優れた成形性を持ち、また、成形・硬化後及び熱処理後の熱膨張、熱収縮が比較的小さく、特にエリア実装型半導体装置の構造のような片面封止パッケージにおいて反り量が小さく、優れた反り特性を得ることができる。また、下記一般式(2)中のmとnとのモル比(m/n)は、1/5〜5/1が好ましく、より好ましくは1/2〜2/1の範囲である。これはフェノールノボラック型の比率が高くなると硬化性が良くなり成形性は向上するものの、流動性が悪くなり、また、高Tgが得られず反り特性が不十分となる事があり、トリフェノールメタン型の比率が高くなるとTgは向上し反り特性は良くなるものの、吸湿性が高くなり耐湿性や耐半田性が低下するためである。本発明で用いられる下記一般式(2)で表されるフェノール樹脂の製法は特に限定するものではないが、例えば、ヒドロキシベンズアルデヒドもしくはその誘導体と、ホルムアルデヒドと、フェノールもしくはその誘導体と、の縮合反応により得ることができ、各原料の配合比を変えることにより、下記一般式(2)中のmとnとのモル比(m/n)を調整することができる。   In the present invention, a phenol resin represented by the following general formula (2) is used as the phenol resin-based curing agent (B). The phenol resin represented by the following general formula (2) used in the present invention basically has both a phenol novolac type and a triphenolmethane type structure. The phenol novolac type is characterized in that, in terms of structure, the distance between the crosslinking points of the resin skeleton is short, and it has good curability and moldability. Further, the triphenolmethane type has three or more hydroxyl groups in one molecule, has a high crosslinking density, and a cured product of an epoxy resin composition using this has a high Tg and a small linear expansion coefficient. In addition, there is a feature that strength is large. Therefore, the epoxy resin composition using the phenol resin represented by the following general formula (2) has excellent moldability with good curability, and also has thermal expansion and thermal shrinkage after molding / curing and after heat treatment. Is relatively small, and particularly in a single-side sealed package such as the structure of an area-mounted semiconductor device, the amount of warpage is small, and excellent warpage characteristics can be obtained. Further, the molar ratio (m / n) between m and n in the following general formula (2) is preferably 1/5 to 5/1, and more preferably 1/2 to 2/1. This is because when the ratio of phenol novolac type is increased, curability is improved and moldability is improved, but fluidity is deteriorated, and high Tg cannot be obtained and warping characteristics may be insufficient. This is because as the mold ratio increases, the Tg improves and the warp characteristics improve, but the hygroscopicity increases and the moisture resistance and solder resistance decrease. The production method of the phenol resin represented by the following general formula (2) used in the present invention is not particularly limited, but for example, by a condensation reaction of hydroxybenzaldehyde or a derivative thereof, formaldehyde and phenol or a derivative thereof. The molar ratio (m / n) between m and n in the following general formula (2) can be adjusted by changing the blending ratio of each raw material.

Figure 2008163138
(ただし、上記一般式(2)において、R3、R4、R5は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。bは0〜3の整数、cは0〜4の整数、dは0〜3の整数である。m、nはモル比を表し、0<m<1、0<n<1で、m+n=1である。)
Figure 2008163138
(However, in the said General formula (2), R3, R4, R5 is group selected from a C1-C4 alkyl group, and may mutually be same or different. B is 0-0. An integer of 3, c is an integer of 0 to 4, and d is an integer of 0 to 3. m and n are molar ratios, and 0 <m <1, 0 <n <1, and m + n = 1. )

本発明で用いられる一般式(2)で表されるフェノール樹脂の具体例として下記式(6)に示すが、これらに限定されるものではない。   Specific examples of the phenol resin represented by the general formula (2) used in the present invention are shown in the following formula (6), but are not limited thereto.

Figure 2008163138
(ただし、上記式(6)において、m、nはモル比を表し、0<m<1、0<n<1で、m+n=1である。)
Figure 2008163138
(In the above formula (6), m and n represent molar ratios, and 0 <m <1, 0 <n <1, and m + n = 1.)

また、本発明では、フェノール樹脂系硬化剤(B)として、一般式(2)で表されるフェノール樹脂を配合することによる特徴を損なわない範囲で、他のフェノール樹脂系硬化剤を併用することができる。併用する場合、一般式(2)で表されるフェノール樹脂の配合割合は、全フェノール樹脂系硬化剤中の少なくとも50重量%以上が好ましく、更に好ましくは80重量%以上である。上記範囲内であると、樹脂組成物の成形性、反り特性の向上を図ることができる。併用可能なフェノール樹脂系硬化剤としては特に限定はしないが、例えば、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェニレン骨格を有するフェノールアラルキル樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂、ナフトールアラルキル樹脂等が挙げられ、これらは1種類を単独で用いても2種以上を併用してもよい。   In the present invention, as the phenol resin-based curing agent (B), other phenol resin-based curing agents are used in combination as long as the characteristics of the phenol resin represented by the general formula (2) are not impaired. Can do. When used together, the blending ratio of the phenol resin represented by the general formula (2) is preferably at least 50% by weight or more, more preferably 80% by weight or more in the total phenol resin curing agent. Within the above range, the moldability and warpage characteristics of the resin composition can be improved. Although it does not specifically limit as a phenol resin hardening | curing agent which can be used together, For example, a terpene modified phenol resin, a dicyclopentadiene modified phenol resin, a phenol aralkyl resin having a phenylene skeleton, a phenol aralkyl resin having a biphenylene skeleton, a naphthol aralkyl resin, etc. These may be used alone or in combination of two or more.

本発明で用いられるフェノール樹脂系硬化剤(B)の配合割合は、特に限定されないが、全エポキシ樹脂組成物中に、2重量%以上、8重量%以下であることが好ましく、2.5重量%以上、6.5重量%以下であることがより好ましい。フェノール樹脂系硬化剤(B)の配合割合が上記範囲内であると、耐半田性、耐湿性、硬化性、流動性の低下等を引き起こす恐れが少ない。   The blending ratio of the phenol resin-based curing agent (B) used in the present invention is not particularly limited, but is preferably 2% by weight or more and 8% by weight or less in the total epoxy resin composition, and is 2.5% by weight. % Or more and 6.5% by weight or less is more preferable. When the blending ratio of the phenol resin curing agent (B) is within the above range, there is little possibility of causing a decrease in solder resistance, moisture resistance, curability, fluidity, and the like.

本発明に用いられる全エポキシ樹脂のエポキシ基数(Ep)と全フェノール樹脂系硬化剤のフェノール性水酸基数(Ph)との当量比(Ep/Ph)としては、好ましくは0.5以上2以下であり、特に好ましくは0.7以上1.5以下である。上記範囲内であると、耐湿性、硬化性等の低下を引き起こす恐れが少ない。   The equivalent ratio (Ep / Ph) between the number of epoxy groups (Ep) of all epoxy resins used in the present invention and the number of phenolic hydroxyl groups (Ph) of all phenol resin curing agents is preferably 0.5 or more and 2 or less. Yes, particularly preferably from 0.7 to 1.5. If it is within the above range, there is little possibility of causing a decrease in moisture resistance, curability and the like.

本発明で用いられるシランカップリング剤(C)は、エポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等、特に限定するものではなく、エポキシ樹脂と無機充填剤との間で反応し、エポキシ樹脂と無機充填剤の界面強度を向上させるものであればよい。エポキシシランとしては、例えば、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられ、アミノシランとしては、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニルγ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−6−(アミノヘキシル)3−アミノプロピルトリメトキシシラン、N−(3−(トリメトキシシリルプロピル)−1,3−ベンゼンジメタナンなどが挙げられ、ウレイドシランとしては、例えば、γ−ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザンなどが挙げられ、メルカプトシランとしては、例えば、γ−メルカプトプロピルトリメトキシシランが挙げられる。これらのシランカップリング剤(C)は1種類を単独で用いても2種以上を併用してもよい。   The silane coupling agent (C) used in the present invention is not particularly limited, such as epoxy silane, amino silane, ureido silane, mercapto silane, etc., and reacts between the epoxy resin and the inorganic filler, and the epoxy resin and the inorganic filler. What is necessary is just to improve the interface strength of a filler. Examples of the epoxy silane include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane. Examples of aminosilane include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, and N-β (aminoethyl) γ. -Aminopropylmethyldimethoxysilane, N-phenylγ-aminopropyltriethoxysilane, N-phenylγ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-6- (amino (Hexyl) 3-aminopropi Rutrimethoxysilane, N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane, and the like. Examples of ureidosilane include γ-ureidopropyltriethoxysilane, hexamethyldisilazane, and the like. Examples of the mercaptosilane include γ-mercaptopropyltrimethoxysilane, and these silane coupling agents (C) may be used alone or in combination of two or more.

シランカップリング剤(C)は、後述する芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)(以下化合物(D)と称する)との相乗効果により、エポキシ樹脂組成物の粘度を下げ、流動性を向上させる効果を有するため、シランカップリング剤(C)は化合物(D)の効果を充分に得るためにも必須である。これにより、比較的粘度が高い樹脂を多く配合した場合や、無機充填剤を多量に配合した場合においても、エポキシ樹脂組成物として充分な流動性を得ることが出来る。   The silane coupling agent (C) is an epoxy resin due to a synergistic effect with the compound (D) (hereinafter referred to as the compound (D)) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring described later. Since it has the effect of lowering the viscosity of the resin composition and improving the fluidity, the silane coupling agent (C) is essential in order to sufficiently obtain the effect of the compound (D). As a result, sufficient fluidity as an epoxy resin composition can be obtained even when a large amount of a resin having a relatively high viscosity is blended or when a large amount of an inorganic filler is blended.

本発明で用いられるシランカップリング剤(C)の配合量は、全エポキシ樹脂組成物中0.01重量%以上1重量%以下が好ましく、より好ましくは0.05重量%以上0.8以下である。上記範囲内であると、エポキシ樹脂組成物の粘度を下げ、流動性を向上させる効果が充分に得ることができる。また、上記範囲内であると、エポキシ樹脂硬化物の吸水性の増加や、半導体装置における耐半田性の低下を引き起こす恐れが少ない。   The blending amount of the silane coupling agent (C) used in the present invention is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.05% by weight or more and 0.8 or less in the total epoxy resin composition. is there. Within the above range, the effect of lowering the viscosity of the epoxy resin composition and improving the fluidity can be sufficiently obtained. Moreover, when it is in the above range, there is little possibility of causing an increase in water absorption of the cured epoxy resin and a decrease in solder resistance in the semiconductor device.

本発明で用いられる芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)(以下化合物(D)と称する)は、特に限定するものではなく、また水酸基以外の置換基を有していてもよく、例えば、下記一般式(3)で表される化合物、下記一般式(4)で表される化合物等が挙げられる。   The compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring used in the present invention (hereinafter referred to as compound (D)) is not particularly limited, and other than the hydroxyl group It may have a substituent, and examples thereof include a compound represented by the following general formula (3), a compound represented by the following general formula (4), and the like.

Figure 2008163138
(ただし、上記一般式(3)において、R6、R10はどちらか一方が水酸基であり、一方が水酸基のとき他方は水素、水酸基又は水酸基以外の置換基から選ばれる基である。R7、R8、R9は水素、水酸基又は水酸基以外の置換基から選ばれる基であり、互いに同一であっても、異なっていてもよい。)
Figure 2008163138
(However, in the general formula (3), one of R6 and R10 is a hydroxyl group, and when one is a hydroxyl group, the other is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R7, R8, R9 is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group, and may be the same or different.

Figure 2008163138
(ただし、上記一般式(4)において、R11、R17はどちらか一方が水酸基であり、一方が水酸基のとき他方は水素、水酸基又は水酸基以外の置換基から選ばれる基である。R12、R13、R14、1R5、1R6は水素、水酸基又は水酸基以外の置換基から選ばれる基であり、互いに同一であっても、異なっていてもよい。)
Figure 2008163138
(However, in the general formula (4), one of R11 and R17 is a hydroxyl group, and when one is a hydroxyl group, the other is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R12, R13, R14, 1R5, and 1R6 are groups selected from hydrogen, a hydroxyl group, or a substituent other than a hydroxyl group, and may be the same or different.

本発明で用いられる一般式(3)で表される化合物の具体例としては、例えば、下記式(7)で表されるカテコール、ピロガロール、没食子酸、没食子酸エステル又はこれらの誘導体が挙げられる。また、本発明で用いられる一般式(4)で表される化合物の具体例としては、例えば、1,2−ジヒドロキシナフタレン、下記式(8)で表される2,3−ジヒドロキシナフタレンおよびこれらの誘導体が挙げられる。これらの化合物(D)は1種類を単独で用いても2種以上を併用してもよい。これらのうち、流動性と硬化性の制御のしやすさ、低揮発性の点から母核はナフタレン環である化合物(1、2−ジヒドロキシナフタレン、2、3−ジヒドロキシナフタレンおよびその誘導体)がより好ましい。   Specific examples of the compound represented by the general formula (3) used in the present invention include catechol, pyrogallol, gallic acid, gallic acid ester and derivatives thereof represented by the following formula (7). Specific examples of the compound represented by the general formula (4) used in the present invention include, for example, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene represented by the following formula (8), and these compounds. Derivatives. These compounds (D) may be used individually by 1 type, or may use 2 or more types together. Of these, compounds (1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof) whose mother nucleus is a naphthalene ring are more preferable in terms of easy control of fluidity and curability and low volatility. preferable.

Figure 2008163138
Figure 2008163138

Figure 2008163138
Figure 2008163138

かかる化合物(D)の配合量は全エポキシ樹脂組成物中0.01重量%以上1重量%以下が好ましく、より好ましくは0.02重量%以上0.5重量%以下である。上記範囲内であると、シランカップリング剤(C)との相乗効果による期待するような粘度特性および流動特性を得ることができる。また、上記範囲内であると、エポキシ樹脂組成物の硬化性や成形性の低下、或いは、エポキシ樹脂硬化物の物性の低下を引き起こす恐れが少ない。   The compounding amount of the compound (D) is preferably 0.01% by weight or more and 1% by weight or less, more preferably 0.02% by weight or more and 0.5% by weight or less in the total epoxy resin composition. Within the above range, it is possible to obtain viscosity characteristics and flow characteristics as expected due to a synergistic effect with the silane coupling agent (C). Moreover, there exists little possibility of causing the fall of the sclerosis | hardenability and moldability of an epoxy resin composition, or the fall of the physical property of an epoxy resin hardened | cured material as it is in the said range.

本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他、硬化促進剤(E)、無機充填剤(F)を用いることができる。   In addition to the components (A) to (D), the epoxy resin composition of the present invention can use a curing accelerator (E) and an inorganic filler (F).

本発明に用いることができる硬化促進剤(E)としては、エポキシ樹脂のエポキシ基とフェノール樹脂系硬化剤のフェノール性水酸基との硬化反応を促進させるものであれば良く、一般に半導体封止用材料に用いられているものを使用することができ、特に限定するものではない。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体;トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物;2−メチルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは1種類を単独で用いても2種以上を併用してもよい。   The curing accelerator (E) that can be used in the present invention may be any material that promotes the curing reaction between the epoxy group of the epoxy resin and the phenolic hydroxyl group of the phenol resin-based curing agent. What is used for this can be used, and it does not specifically limit. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof; amine compounds such as tributylamine and benzyldimethylamine; imidazole compounds such as 2-methylimidazole; triphenyl Organic phosphines such as phosphine and methyldiphenylphosphine; tetrasubstituted phosphonium / tetrasubstituted borates such as tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetrabenzoate borate, etc., and these are used alone. Also, two or more of them may be used in combination.

硬化促進剤(E)の配合割合は、特に限定されないが、全エポキシ樹脂組成物中0.05重量%以上、1重量%以下であることが好ましく、0.1重量%以上、0.5重量%以下であることがより好ましい。硬化促進剤(E)の配合割合が上記範囲内であると、硬化性の低下や流動性の低下を引き起こす恐れが少ない。   The blending ratio of the curing accelerator (E) is not particularly limited, but is preferably 0.05% by weight or more and 1% by weight or less in the total epoxy resin composition, and is 0.1% by weight or more and 0.5% by weight. % Or less is more preferable. When the blending ratio of the curing accelerator (E) is within the above range, there is little possibility of causing a decrease in curability and a decrease in fluidity.

本発明で用いることができる無機充填剤(F)としては、例えば溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機充填剤の配合量を特に多くする場合は、溶融シリカを用いるのが好ましい。溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、かつエポキシ樹脂組成物の溶融粘度の上昇を抑えるためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布がより広くなるように調整することが望ましい。また、難燃性を向上させるため、三酸化アンチモン、金属水酸化物等の無機系難燃剤・難燃助剤を用いることもできる。   Examples of the inorganic filler (F) that can be used in the present invention include fused silica, crystalline silica, alumina, silicon nitride, and aluminum nitride. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. Fused silica can be used in either crushed or spherical shape, but in order to increase the blending amount of fused silica and to suppress the increase in the melt viscosity of the epoxy resin composition, it is preferable to mainly use a spherical one. . In order to further increase the blending amount of the spherical silica, it is desirable to adjust so that the particle size distribution of the spherical silica becomes wider. Moreover, in order to improve a flame retardance, inorganic flame retardants and flame retardant adjuvants, such as antimony trioxide and a metal hydroxide, can also be used.

無機充填剤(F)の配合割合は、特に限定されないが、全エポキシ樹脂組成物中80重量%以上、92重量%以下が好ましい。上記範囲内であると、低吸湿性、低熱膨張性が得られずに耐半田性が不十分となるのを抑えることができ、また、流動性が低下して成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線流れ等の不都合が生じたりするのを抑えることができる。   The blending ratio of the inorganic filler (F) is not particularly limited, but is preferably 80% by weight or more and 92% by weight or less in the total epoxy resin composition. Within the above range, low moisture absorption and low thermal expansion can not be obtained and solder resistance can be prevented from becoming insufficient, and fluidity can be reduced, resulting in poor filling during molding. It is possible to suppress the occurrence of inconvenience such as the flow of the gold wire in the semiconductor device due to the increase in viscosity.

本発明のエポキシ樹脂組成物は、(A)〜(F)成分を主成分とするが、これら以外に必要に応じて、臭素化エポキシ樹脂、リン化合物等の有機系難燃剤;カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類、パラフィン等の離型剤;カーボンブラック、ベンガラ等の着色剤;シリコーンオイル、シリコーンゴム、合成ゴム等の低応力剤;酸化ビスマス水和物等の酸化防止剤等、の各種添加剤を適宜配合してもよい。更に、必要に応じて無機充填剤をカップリング剤やエポキシ樹脂もしくはフェノール樹脂系硬化剤で予め被覆処理して用いてもよく、被覆処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接無機充填剤に添加し、混合機を用いて混合する方法等がある。   The epoxy resin composition of the present invention has components (A) to (F) as main components, but in addition to these, an organic flame retardant such as a brominated epoxy resin and a phosphorus compound; Synthetic waxes such as natural wax and polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and metal salts thereof, mold release agents such as paraffin; colorants such as carbon black and bengara; silicone oil, silicone rubber, synthetic rubber, etc. Various additives such as a low stress agent; an antioxidant such as bismuth oxide hydrate may be appropriately blended. Furthermore, if necessary, an inorganic filler may be used after being coated with a coupling agent, an epoxy resin or a phenolic resin-based curing agent. As a coating method, the solvent is removed after mixing with a solvent. And a method of directly adding to an inorganic filler and mixing using a mixer.

本発明の半導体封止用エポキシ樹脂組成物は、(A)〜(F)成分及びその他の添加剤等を、例えば、ミキサー等を用いて混合したもの、更にその後、加熱ニーダ、熱ロール、押し出し機等の混練機を用いて加熱混練し、続いて冷却、粉砕したものなど、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。   The epoxy resin composition for semiconductor encapsulation of the present invention is obtained by mixing the components (A) to (F) and other additives using, for example, a mixer, and then heating kneader, hot roll, extrusion. It is possible to use a material in which the degree of dispersibility, fluidity, etc. is appropriately adjusted as necessary, such as a product obtained by kneading with a kneading machine such as a machine, followed by cooling and pulverization.

本発明の半導体封止用エポキシ樹脂組成物を用いて半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。   In order to encapsulate an electronic component such as a semiconductor element by using the epoxy resin composition for encapsulating a semiconductor of the present invention and produce a semiconductor device, it is cured by a conventional molding method such as a transfer mold, a compression mold, or an injection mold. What is necessary is just to shape | mold.

本発明で封止を行う半導体素子としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられる。
本発明の半導体装置の形態としては、特に限定されないが、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)等が挙げられる。
上記トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま、或いは80℃〜200℃程度の温度で、10分〜10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。
The semiconductor element that performs sealing in the present invention is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
The form of the semiconductor device of the present invention is not particularly limited. For example, the dual in-line package (DIP), the plastic lead chip carrier (PLCC), the quad flat package (QFP), the small outline, and the like. Package (SOP), Small Outline J Lead Package (SOJ), Thin Small Outline Package (TSOP), Thin Quad Flat Package (TQFP), Tape Carrier Package (TCP), Ball Grid Examples include an array (BGA), a chip size package (CSP), and the like.
The semiconductor device encapsulated by the molding method such as the transfer mold is completely cured as it is or at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours, and then applied to an electronic device or the like. Installed.

図1は、本発明に係る半導体封止用エポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドとリードフレーム5との間は金線4によって接続されている。半導体素子1は、封止用樹脂組成物の硬化体6によって封止されている。   FIG. 1 is a view showing a cross-sectional structure of an example of a semiconductor device using the epoxy resin composition for semiconductor encapsulation according to the present invention. The semiconductor element 1 is fixed on the die pad 3 via the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the lead frame 5 are connected by a gold wire 4. The semiconductor element 1 is sealed with a cured body 6 of a sealing resin composition.

図2は、本発明に係る半導体封止用エポキシ樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。基板8上にダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドと基板8上の電極パッドとの間は金線4によって接続されている。封止用樹脂組成物の硬化体6によって、基板8の半導体素子1が搭載された片面側のみが封止されている。基板8上の電極パッドは基板8上の非封止面側の半田ボール9と内部で接合されている。   FIG. 2 is a view showing a cross-sectional structure of an example of a single-side sealed semiconductor device using the epoxy resin composition for semiconductor sealing according to the present invention. The semiconductor element 1 is fixed on the substrate 8 through the die bond material cured body 2. The electrode pad of the semiconductor element 1 and the electrode pad on the substrate 8 are connected by a gold wire 4. Only the single side | surface side in which the semiconductor element 1 of the board | substrate 8 was mounted is sealed by the hardening body 6 of the resin composition for sealing. The electrode pads on the substrate 8 are bonded to the solder balls 9 on the non-sealing surface side on the substrate 8 inside.

以下、本発明を実施例で具体的に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. The blending ratio is parts by weight.
Example 1

エポキシ樹脂A:下記式(5)で表される3,3’,5,5’−テトラメチル−4,4’−ジグリシドキシビフェニルを主成分とするエポキシ樹脂(ジャバンエポキシレジン(株)製、YX−4000H。融点105℃、エポキシ当量191。)
7.60重量部

Figure 2008163138
Epoxy resin A: an epoxy resin (manufactured by Jaban Epoxy Resin Co., Ltd.) mainly composed of 3,3 ′, 5,5′-tetramethyl-4,4′-diglycidoxybiphenyl represented by the following formula (5) YX-4000H, melting point 105 ° C., epoxy equivalent 191.)
7.60 parts by weight
Figure 2008163138

フェノール樹脂系硬化剤A:下記式(6)で表されるフェノール樹脂(エアウォーター(株)製、HE910−20。下記式(6)においてm/n=1/1。軟化点88℃、水酸基当量101。) 4.00重量部

Figure 2008163138
Phenol resin curing agent A: phenol resin represented by the following formula (6) (manufactured by Air Water Co., HE910-20. M / n = 1/1 in the following formula (6), softening point 88 ° C., hydroxyl group Equivalent 101.) 4.00 parts by weight
Figure 2008163138

γ−グリシドキシプロピルトリメトキシシラン 0.30重量部
2,3−ジヒドロキシナフタレン(試薬) 0.10重量部
トリフェニルホスフィン 0.40重量部
球状溶融シリカ(平均粒径10.0μm) 83.00重量部
水酸化アルミニウム(住友化学(株)製、CL−303) 4.00重量部
ステアリン酸ワックス(日本油脂(株)製、商品名:SR−サクラ)
0.30重量部
カーボンブラック 0.30重量部
をミキサーを用いて混合した後、表面温度が95℃と25℃の2軸ロールを用いて20回混練し、得られた混練物シートを冷却後粉砕して、エポキシ樹脂組成物とした。得られたエポキシ樹脂組成物、並びにこれを用いて得られた樹脂硬化物及び半導体装置の特性を以下の方法で評価した。
γ-glycidoxypropyltrimethoxysilane 0.30 parts by weight 2,3-dihydroxynaphthalene (reagent) 0.10 parts by weight Triphenylphosphine 0.40 parts by weight Spherical fused silica (average particle size 10.0 μm) 83.00 Part by weight Aluminum hydroxide (Sumitomo Chemical Co., Ltd., CL-303) 4.00 parts by weight Stearic acid wax (Nippon Yushi Co., Ltd., trade name: SR-Sakura)
0.30 parts by weight Carbon black 0.30 parts by weight was mixed using a mixer, then kneaded 20 times using a biaxial roll having surface temperatures of 95 ° C. and 25 ° C., and the obtained kneaded material sheet was cooled. An epoxy resin composition was obtained by pulverization. The properties of the obtained epoxy resin composition and the cured resin and semiconductor device obtained using the epoxy resin composition were evaluated by the following methods.

評価方法
スパイラルフロー:低圧トランスファー成形機(コータキ精機株式会社製、KTS−15)を用いて、EMMI−1−66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件でエポキシ樹脂組成物を注入し、流動長を測定した。単位はcm。
Evaluation method: Spiral flow: Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66, a mold temperature of 175 ° C. and an injection pressure of 6. The epoxy resin composition was injected under the conditions of 9 MPa and pressure holding time of 120 seconds, and the flow length was measured. The unit is cm.

連続成形性:低圧トランスファー自動成形機(第一精巧製、GP−ELF)を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間70秒で、エポキシ樹脂組成物により半導体素子等を封止して、80ピン・クワッド・フラット・パッケージ(pQFP;Cu製リードフレーム、半導体装置のサイズ:14mm×20mm、厚さ2mm、パッドサイズ:6.5mm×6.5mm、半導体素子のサイズ6.0mm×6.0mm、厚さ0.35mm)を得る成形を、連続で500ショットまで行った。判定基準は、未充填等の不具合が全くなく、500ショットまで連続成形できたものを○、それ以外を×とした。   Continuous moldability: Using a low-pressure transfer automatic molding machine (Daiichi Seisaku, GP-ELF), a die temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 70 seconds, and a semiconductor element or the like with an epoxy resin composition Sealed, 80-pin quad flat package (pQFP; Cu lead frame, semiconductor device size: 14 mm × 20 mm, thickness 2 mm, pad size: 6.5 mm × 6.5 mm, semiconductor element size 6 0.0 mm × 6.0 mm, thickness 0.35 mm) was continuously performed up to 500 shots. As the judgment criteria, the case where there was no defect such as unfilling and continuous molding up to 500 shots was marked with ◯, and the others were marked with x.

金線流れ率:低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間90秒の条件で、エポキシ樹脂組成物により半導体素子等を封止成形して、352ピン・ボール・グリッド・アレイ(352pBGA;回路基板は厚さ0.56mmのビスマレイミド・トリアジン樹脂/ガラスクロス回路基板、半導体装置のサイズ:30mm×30mm、厚さ1.17mm、半導体素子のサイズ:15mm×15mm、厚さ0.35mm)を作製し、175℃、2時間で後硬化した。室温まで冷却後、軟X線透視装置(ソフテックス(株)製、PRO−TEST100)で観察して、金線の流れ率を(流れ量)/(金線長)の比率で評価した。金線流れ率の判断基準は、金線流れ率が、3%以下:◎、3%超〜5%以下:○、5%超〜:×とした。   Gold wire flow rate: Using a low-pressure transfer molding machine (TOWA, Y series), the semiconductor element and the like are sealed with an epoxy resin composition at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 90 seconds. 352 pin ball grid array (352pBGA; circuit board is 0.56mm thick bismaleimide triazine resin / glass cloth circuit board, semiconductor device size: 30mm x 30mm, thickness 1.17mm The size of the semiconductor element: 15 mm × 15 mm, thickness 0.35 mm) was prepared and post-cured at 175 ° C. for 2 hours. After cooling to room temperature, it was observed with a soft X-ray fluoroscope (PRO-TEST100, manufactured by Softex Corp.), and the flow rate of the gold wire was evaluated by the ratio of (flow rate) / (gold wire length). The gold wire flow rate was determined based on a gold wire flow rate of 3% or less: ◎ over 3% to 5% or less: ◯ over 5%: x

ガラス転移温度(Tg):低圧トランスファー成形機(コータキ精機株式会社製、KTS−30)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、エポキシ樹脂組成物を注入成形して試験片(幅2mm×長さ30mm×厚さ1.0mm)を作製し、175℃、4時間で後硬化したものを用いた。測定には、動的粘弾性測定装置(オリエンテック社製、RHEOVIVRON DDV−25FP)を用い、5℃/分の割合で昇温しながら、周波数10Hzの歪みを与えて動的粘弾性の測定を行い、tanδのピーク値からガラス転移温度(Tg)を判定した。単位は℃。   Glass transition temperature (Tg): Epoxy resin composition using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. A test piece (width 2 mm × length 30 mm × thickness 1.0 mm) was prepared and post-cured at 175 ° C. for 4 hours. For the measurement, a dynamic viscoelasticity measuring device (Orientec Co., Ltd., RHEOVIVRON DDV-25FP) is used to measure the dynamic viscoelasticity by applying a strain of a frequency of 10 Hz while raising the temperature at a rate of 5 ° C / min. The glass transition temperature (Tg) was determined from the peak value of tan δ. The unit is ° C.

パッケージ反り量(後硬化後及びIRリフロー処理後):低圧トランスファー成形機(TOWA製、Yシリーズ)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒の条件で、エポキシ樹脂組成物により半導体素子を搭載した回路基板等を封止成形して、225ピンのボール・グリッド・アレイ(225pBGA;回路基板は厚さ0.36mm、ビスマレイミド・トリアジン/ガラスクロス回路基板、半導体装置のサイズ:24×24mm、厚さ1.17mm、半導体素子のサイズ:9×9mm、厚さ0.35mm、半導体素子と回路基板のボンディングパッドとを25μm径の金線でボンディングしている。)を作製した。得られた半導体装置を更に後硬化として175℃で8時間加熱処理した。室温に冷却後半導体装置のゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。さらに、その後、IRリフロー処理(260℃、JEDEC条件に従う)を行い、同様に室温に冷却後、反り量を測定した。なお、中央部が凹の反り(スマイル反り)は+、中央部が凸の反り(クライ反り)は−で示し、単位はμmとした。   Package warpage (after post-curing and after IR reflow treatment): epoxy using a low-pressure transfer molding machine (TOWA, Y series) under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds. A circuit board or the like on which a semiconductor element is mounted by a resin composition is encapsulated to form a 225-pin ball grid array (225 pBGA; circuit board is 0.36 mm thick, bismaleimide triazine / glass cloth circuit board, semiconductor The size of the device: 24 × 24 mm, the thickness of 1.17 mm, the size of the semiconductor element: 9 × 9 mm, the thickness of 0.35 mm, and the semiconductor element and the bonding pad of the circuit board are bonded by a 25 μm diameter gold wire. ) Was produced. The obtained semiconductor device was further heat-treated at 175 ° C. for 8 hours as post-curing. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the semiconductor device, and the largest value of the displacement difference was taken as the amount of warpage. Further, after that, IR reflow treatment (260 ° C., according to JEDEC conditions) was performed, and after cooling to room temperature, the amount of warpage was measured. The warp with a concave central portion (smile warp) is indicated by +, the warp with a convex central portion (cry warp) is indicated by-, and the unit is μm.

実施例1〜11、比較例1〜5
表1、表2、表3に示す割合で各成分を配合し、実施例1と同様にしてエポキシ樹脂組成物を得、実施例1と同様にして評価した。結果を表1、表2、表3に示す。
実施例1以外で用いた成分について、以下に示す。
Examples 1-11, Comparative Examples 1-5
Each component was mix | blended in the ratio shown in Table 1, Table 2, and Table 3, the epoxy resin composition was obtained like Example 1, and it evaluated similarly to Example 1. FIG. The results are shown in Table 1, Table 2, and Table 3.
Components used in Examples other than Example 1 are shown below.

エポキシ樹脂B:臭素化ビスフェノールA型エポキシ樹脂(大日本インキ化学工業(株)製、EPICLON152−S。軟化点60℃、エポキシ当量359。)
エポキシ樹脂C:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、YL6810。軟化点45℃、エポキシ当量172。)
エポキシ樹脂D:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、NC3000。軟化点58℃、エポキシ当量274。)
フェノール樹脂系硬化剤B:ビフェニレン骨格を有するフェノールアラルキル樹脂(明和化成(株)製、MEH−7851SS。軟化点65℃、水酸基当量203。)
フェノール樹脂系硬化剤C:下記式(6)で表されるフェノール樹脂(ヒドロキシベンズアルデヒド、ホルムアルデヒド、フェノールを原料として前述の方法により作成したもの、下記式(6)においてm/n=2/1。軟化点88℃、水酸基当量105。)
フェノール樹脂系硬化剤D:下記式(6)で表されるフェノール樹脂(ヒドロキシベンズアルデヒド、ホルムアルデヒド、フェノールを原料として前述の方法により作成したもの、下記式(6)においてm/n=1/2。軟化点88℃、水酸基当量100。)
Epoxy resin B: Brominated bisphenol A type epoxy resin (Dainippon Ink & Chemicals, EPICLON152-S. Softening point 60 ° C., epoxy equivalent 359)
Epoxy resin C: bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., YL6810. Softening point 45 ° C., epoxy equivalent 172)
Epoxy resin D: A phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC3000, softening point 58 ° C., epoxy equivalent 274)
Phenol resin curing agent B: phenol aralkyl resin having a biphenylene skeleton (Maywa Kasei Co., Ltd., MEH-7851SS. Softening point 65 ° C., hydroxyl equivalent 203)
Phenol resin curing agent C: phenol resin represented by the following formula (6) (made by the above-mentioned method using hydroxybenzaldehyde, formaldehyde and phenol as raw materials, m / n = 2/1 in the following formula (6). (Softening point 88 ° C., hydroxyl equivalent 105)
Phenol resin-based curing agent D: phenol resin represented by the following formula (6) (made by the above-mentioned method using hydroxybenzaldehyde, formaldehyde, and phenol as raw materials, m / n = 1/2 in the following formula (6). (Softening point 88 ° C., hydroxyl equivalent 100)

Figure 2008163138
カテコール(試薬)
ピロガロール(試薬)
1,6−ジヒドロキシナフタレン(試薬)
三酸化アンチモン(住友金属鉱山(株)製、アンチモンFS)
Figure 2008163138
Catechol (reagent)
Pyrogallol (reagent)
1,6-dihydroxynaphthalene (reagent)
Antimony trioxide (Sumitomo Metal Mining Co., Ltd., Antimony FS)

Figure 2008163138
Figure 2008163138

Figure 2008163138
Figure 2008163138

Figure 2008163138
Figure 2008163138

実施例1〜11は、一般式(1)で表されるエポキシ樹脂を含むエポキシ樹脂(A)、一般式(2)で表されるフェノール樹脂を含むフェノール樹脂系硬化剤(B)、シランカップリング剤(C)、及び芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)を含む半導体封止用エポキシ樹脂組成物であって、それらの種類及び配合割合を変えたものを含むものであるが、いずれも、流動性(スパイラルフロー)、連続成形性、金線流れ率、ガラス転移温度、パッケージ反り量のバランスに優れた結果が得られた。
一方、一般式(1)で表されるエポキシ樹脂を用いていない比較例1では、流動性が不足して金線流れ率が劣る結果となった。また、ガラス転移温度が低く、後硬化後のパッケージ反り量も若干劣る結果となった。
また、一般式(2)で表されるフェノール樹脂を用いていない比較例2では、連続成形性、ガラス転移温度、パッケージ反り量が劣る結果となった。
また、シランカップリング剤(C)を用いていない比較例3、及び芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)を用いていない比較例4、5では、流動性が不足して金線流れ率が劣る結果となった。
以上の通り、本発明に従うと、成形封止する時の流動性、連続成形性が良好で、且つ反り特性に優れたエポキシ樹脂組成物を得ることができることが判った。
Examples 1-11 are the epoxy resin (A) containing the epoxy resin represented by General formula (1), the phenol resin type hardening | curing agent (B) containing the phenol resin represented by General formula (2), and a silane cup. An epoxy resin composition for encapsulating a semiconductor comprising a ring agent (C) and a compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring, and types and blending ratios thereof However, in all cases, excellent results were obtained in balance between fluidity (spiral flow), continuous formability, gold wire flow rate, glass transition temperature, and package warpage.
On the other hand, in Comparative Example 1 in which the epoxy resin represented by the general formula (1) was not used, the fluidity was insufficient and the gold wire flow rate was inferior. Further, the glass transition temperature was low, and the amount of package warpage after post-curing was slightly inferior.
Moreover, in the comparative example 2 which does not use the phenol resin represented by General formula (2), it resulted in inferior continuous moldability, a glass transition temperature, and the amount of package curvature.
Further, Comparative Example 3 in which no silane coupling agent (C) is used, and Comparative Examples 4, 5 in which a compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring is not used. Then, the liquidity was insufficient and the gold wire flow rate was inferior.
As described above, according to the present invention, it has been found that an epoxy resin composition having excellent fluidity and continuous moldability during molding and sealing and excellent warpage characteristics can be obtained.

本発明のエポキシ樹脂組成物は、成形封止する時の流動性、連続成形性に優れ、且つ反り特性に優れることから、特にエリア実装型半導体装置の構造のような片面封止半導体装置の封止用樹脂組成物として広範に用いることができる。   The epoxy resin composition of the present invention is excellent in fluidity during molding and sealing, continuous moldability, and excellent in warping characteristics. It can be widely used as a resin composition for stopping.

本発明に係るエポキシ樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-section about an example of the semiconductor device using the epoxy resin composition which concerns on this invention. 本発明に係るエポキシ樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。It is the figure which showed the cross-section about an example of the single-side sealing type semiconductor device using the epoxy resin composition which concerns on this invention.

符号の説明Explanation of symbols

1 半導体素子
2 ダイボンド材硬化体
3 ダイパッド
4 金線
5 リードフレーム
6 封止用樹脂組成物の硬化体
7 レジスト
8 基板
9 半田ボール
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Die pad 4 Gold wire 5 Lead frame 6 Curing body of the resin composition for sealing 7 Resist 8 Substrate 9 Solder ball

Claims (9)

エポキシ樹脂(A)、
フェノール樹脂系硬化剤(B)、
シランカップリング剤(C)、
及び芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)
を含む半導体封止用エポキシ樹脂組成物であって、
前記エポキシ樹脂(A)が下記一般式(1)で表されるエポキシ樹脂を含み、
前記フェノール樹脂系硬化剤(B)が下記一般式(2)で表されるフェノール樹脂を含むことを特徴とする半導体封止用エポキシ樹脂組成物。
Figure 2008163138
(ただし、上記一般式(1)において、Xは単結合、−O−、−S−、−R2CR2−の中から選択される基である。R1は炭素数1〜6のアルキル基であり、互いに同一であっても異なっていてもよい。aは0〜4の整数である。R2は水素又は炭素数1〜4のアルキル基であり、互いに同一であっても異なっていてもよい。)
Figure 2008163138
(ただし、上記一般式(2)において、R3、R4、R5は炭素数1〜4のアルキル基から選択される基であり、互いに同一であっても、異なっていてもよい。bは0〜3の整数、cは0〜4の整数、dは0〜3の整数である。m、nはモル比を表し、0<m<1、0<n<1で、m+n=1である。)
Epoxy resin (A),
Phenolic resin curing agent (B),
Silane coupling agent (C),
And a compound in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring (D)
An epoxy resin composition for semiconductor encapsulation containing
The epoxy resin (A) includes an epoxy resin represented by the following general formula (1),
The said epoxy resin hardening | curing agent (B) contains the phenol resin represented by following General formula (2), The epoxy resin composition for semiconductor sealing characterized by the above-mentioned.
Figure 2008163138
(However, in the said General formula (1), X is group selected from a single bond, -O-, -S-, -R2CR2-. R1 is a C1-C6 alkyl group, A may be the same or different, and a is an integer of 0 to 4. R2 is hydrogen or an alkyl group having 1 to 4 carbon atoms and may be the same or different.
Figure 2008163138
(However, in the said General formula (2), R3, R4, R5 is group selected from a C1-C4 alkyl group, and may mutually be same or different. B is 0-0. An integer of 3, c is an integer of 0 to 4, and d is an integer of 0 to 3. m and n are molar ratios, and 0 <m <1, 0 <n <1, and m + n = 1. )
前記一般式(2)で表されるフェノール樹脂において、式(2)中のmとnとのモル比(m/n)が1/5〜5/1の範囲であることを特徴とする請求項1に記載の半導体封止用エポキシ樹脂組成物。   In the phenol resin represented by the general formula (2), the molar ratio (m / n) between m and n in the formula (2) is in the range of 1/5 to 5/1. Item 2. An epoxy resin composition for semiconductor encapsulation according to Item 1. 前記シランカップリング剤(C)が全エポキシ樹脂組成物に対し0.01重量%以上、1重量%以下の割合で含まれることを特徴とする請求項1又は請求項2に記載の半導体封止用エポキシ樹脂組成物。   3. The semiconductor encapsulation according to claim 1, wherein the silane coupling agent (C) is contained in a proportion of 0.01 wt% or more and 1 wt% or less with respect to the total epoxy resin composition. Epoxy resin composition. 前記芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)が全エポキシ樹脂組成物に対し0.01重量%以上、1重量%以下の割合で含まれることを特徴とする請求項1ないし請求項3のいずれかに記載の半導体封止用エポキシ樹脂組成物。   The compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring is contained in a proportion of 0.01% by weight or more and 1% by weight or less based on the total epoxy resin composition. The epoxy resin composition for semiconductor encapsulation according to any one of claims 1 to 3, wherein the epoxy resin composition is for semiconductor encapsulation. 前記芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(D)が、少なくとも下記一般式(3)で表される化合物又は下記一般式(4)で表される化合物から選ばれる1種以上であることを特徴とする請求項1ないし請求項4のいずれかに記載の半導体封止用エポキシ樹脂組成物。
Figure 2008163138
(ただし、上記一般式(3)において、R6、R10はどちらか一方が水酸基であり、一方が水酸基のとき他方は水素、水酸基又は水酸基以外の置換基から選ばれる基である。R7、R8、R9は水素、水酸基又は水酸基以外の置換基から選ばれる基であり、互いに同一であっても、異なっていてもよい。)
Figure 2008163138
(ただし、上記一般式(4)において、R11、R17はどちらか一方が水酸基であり、一方が水酸基のとき他方は水素、水酸基又は水酸基以外の置換基から選ばれる基である。R12、R13、R14、1R5、1R6は水素、水酸基又は水酸基以外の置換基から選ばれる基であり、互いに同一であっても、異なっていてもよい。)
The compound (D) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting the aromatic ring is at least a compound represented by the following general formula (3) or a compound represented by the following general formula (4) 5. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the epoxy resin composition is one or more selected from the group consisting of:
Figure 2008163138
(However, in the general formula (3), one of R6 and R10 is a hydroxyl group, and when one is a hydroxyl group, the other is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R7, R8, R9 is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group, and may be the same or different.
Figure 2008163138
(However, in the general formula (4), one of R11 and R17 is a hydroxyl group, and when one is a hydroxyl group, the other is a group selected from hydrogen, a hydroxyl group or a substituent other than a hydroxyl group. R12, R13, R14, 1R5, and 1R6 are groups selected from hydrogen, a hydroxyl group, or a substituent other than a hydroxyl group, and may be the same or different.
更に、硬化促進剤(E)を含むことを特徴とする請求項1ないし請求項5のいずれかに記載の半導体封止用エポキシ樹脂組成物。   Furthermore, the hardening accelerator (E) is included, The epoxy resin composition for semiconductor sealing in any one of the Claims 1 thru | or 5 characterized by the above-mentioned. 更に、無機充填剤(F)を全エポキシ樹脂組成物中に対し80重量%以上、92重量%以下の割合で含むことを特徴とする請求項1ないし請求項6のいずれかに記載の半導体封止用エポキシ樹脂組成物。   The semiconductor encapsulant according to any one of claims 1 to 6, further comprising an inorganic filler (F) in a proportion of 80 wt% to 92 wt% with respect to the total epoxy resin composition. Stopping epoxy resin composition. 請求項1ないし請求項7のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて、半導体素子を封止してなることを特徴とする半導体装置。   A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to any one of claims 1 to 7. 請求項1ないし請求項7のいずれかに記載の半導体封止用エポキシ樹脂組成物を用いて、回路基板の片面に半導体素子が搭載された回路基板面側の片面のみを封止してなることを特徴とする半導体装置。   Using the epoxy resin composition for semiconductor sealing according to any one of claims 1 to 7, sealing only one side of the circuit board surface side on which the semiconductor element is mounted on one side of the circuit board. A semiconductor device characterized by the above.
JP2006352900A 2006-12-27 2006-12-27 Semiconductor-sealing epoxy resin composition and semiconductor device Pending JP2008163138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352900A JP2008163138A (en) 2006-12-27 2006-12-27 Semiconductor-sealing epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352900A JP2008163138A (en) 2006-12-27 2006-12-27 Semiconductor-sealing epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2008163138A true JP2008163138A (en) 2008-07-17

Family

ID=39693046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352900A Pending JP2008163138A (en) 2006-12-27 2006-12-27 Semiconductor-sealing epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2008163138A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084719A (en) * 2009-09-16 2011-04-28 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP2011084718A (en) * 2009-09-16 2011-04-28 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP2012007091A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2013053180A (en) * 2011-08-31 2013-03-21 Hitachi Chemical Co Ltd Resin composition, resin sheet, prepreg sheet, resin cured product sheet, structure, and semiconductor device for power or for light source
JP2015110695A (en) * 2013-12-06 2015-06-18 昭和電工株式会社 Phenolic resin composition, thermosetting resin composition, and cured product
JP5761026B2 (en) * 2009-11-19 2015-08-12 住友ベークライト株式会社 Semiconductor device
KR20180033081A (en) * 2016-09-23 2018-04-02 스미토모 베이클리트 컴퍼니 리미티드 Thermosetting resin composition, resin encapsulating substrate and electronic device
JP2018168379A (en) * 2018-05-30 2018-11-01 京セラ株式会社 Epoxy resin molding material for sealing and electronic component
JP2022066237A (en) * 2016-07-29 2022-04-28 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275228A (en) * 2001-01-11 2002-09-25 Sumikin Chemical Co Ltd Phenolic polymer, method for producing the same and epoxy resin curing agent using the same
JP2002327035A (en) * 2001-02-28 2002-11-15 Sumikin Chemical Co Ltd Phenolic polymer, its production method, curing agent for epoxy resin, epoxy resin composition for semiconductor sealing and semiconductor device using the same
JP2003165823A (en) * 2001-11-30 2003-06-10 Sumikin Air Water Chemical Inc Epoxy resin, method for producing the same and its application
JP2006143950A (en) * 2004-11-24 2006-06-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006233016A (en) * 2005-02-24 2006-09-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275228A (en) * 2001-01-11 2002-09-25 Sumikin Chemical Co Ltd Phenolic polymer, method for producing the same and epoxy resin curing agent using the same
JP2002327035A (en) * 2001-02-28 2002-11-15 Sumikin Chemical Co Ltd Phenolic polymer, its production method, curing agent for epoxy resin, epoxy resin composition for semiconductor sealing and semiconductor device using the same
JP2003165823A (en) * 2001-11-30 2003-06-10 Sumikin Air Water Chemical Inc Epoxy resin, method for producing the same and its application
JP2006143950A (en) * 2004-11-24 2006-06-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006233016A (en) * 2005-02-24 2006-09-07 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084719A (en) * 2009-09-16 2011-04-28 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP2011084718A (en) * 2009-09-16 2011-04-28 Sumitomo Bakelite Co Ltd Resin composition for sealing semiconductor and semiconductor device
JP5761026B2 (en) * 2009-11-19 2015-08-12 住友ベークライト株式会社 Semiconductor device
JP2012007091A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2013053180A (en) * 2011-08-31 2013-03-21 Hitachi Chemical Co Ltd Resin composition, resin sheet, prepreg sheet, resin cured product sheet, structure, and semiconductor device for power or for light source
JP2015110695A (en) * 2013-12-06 2015-06-18 昭和電工株式会社 Phenolic resin composition, thermosetting resin composition, and cured product
JP2022066237A (en) * 2016-07-29 2022-04-28 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
KR20180033081A (en) * 2016-09-23 2018-04-02 스미토모 베이클리트 컴퍼니 리미티드 Thermosetting resin composition, resin encapsulating substrate and electronic device
JP2018053243A (en) * 2016-09-23 2018-04-05 住友ベークライト株式会社 Thermosetting resin composition, resin encapsulated substrate, and electronic device
JP6996169B2 (en) 2016-09-23 2022-01-17 住友ベークライト株式会社 Thermosetting resin compositions, resin-sealed substrates, and electronic devices
KR102352497B1 (en) * 2016-09-23 2022-01-18 스미토모 베이클리트 컴퍼니 리미티드 Thermosetting resin composition, resin encapsulating substrate and electronic device
JP2018168379A (en) * 2018-05-30 2018-11-01 京セラ株式会社 Epoxy resin molding material for sealing and electronic component

Similar Documents

Publication Publication Date Title
JP5564793B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008163138A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP4973322B2 (en) Epoxy resin composition and semiconductor device
JP5332094B2 (en) Semiconductor sealing resin composition and semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2008166314A (en) Semiconductor device and epoxy resin composition for sealing
JP2006152185A (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4973146B2 (en) Epoxy resin composition, sealing epoxy resin composition, and electronic component device
JP2012251048A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP5029133B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP5024073B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP4645147B2 (en) Epoxy resin composition and semiconductor device
JP2005281584A (en) Epoxy resin composition and semiconductor device
JP3973137B2 (en) Epoxy resin composition and semiconductor device
JP4894387B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5093977B2 (en) Area mounted semiconductor device
JP2008063371A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2006143865A (en) Epoxy resin composition and semiconductor device
JP4930145B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006176554A (en) Epoxy resin composition and semiconductor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115