JP2003096268A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2003096268A
JP2003096268A JP2001285167A JP2001285167A JP2003096268A JP 2003096268 A JP2003096268 A JP 2003096268A JP 2001285167 A JP2001285167 A JP 2001285167A JP 2001285167 A JP2001285167 A JP 2001285167A JP 2003096268 A JP2003096268 A JP 2003096268A
Authority
JP
Japan
Prior art keywords
less
epoxy resin
spherical silica
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001285167A
Other languages
Japanese (ja)
Other versions
JP5067994B2 (en
Inventor
Hidetoshi Seki
秀俊 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001285167A priority Critical patent/JP5067994B2/en
Publication of JP2003096268A publication Critical patent/JP2003096268A/en
Application granted granted Critical
Publication of JP5067994B2 publication Critical patent/JP5067994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing a semiconductor excellent in flowability and filling properties during molding. SOLUTION: The epoxy resin composition for sealing a semiconductor essentially comprises (A) a phenol aralkyl epoxy resin including a diphenylene backbone, (B) a phenol aralkyl phenol resin including a diphenylene backbone, (C) a curing accelerator and (D) an inorganic filler. The inorganic filler comprises molten spherical silica composed of (1) 75-85 wt.% of the molten spherical silica having an average particle size of 60 μm to less than 80 μm and a logarithmic standard deviation of 0.5 or less, (2) 10-20 wt.% of the molten spherical silica having an average particle size of 5 μm to less than 15 μm and a logarithmic standard deviation of 0.5 or less, (3) 2-8 wt.% of the molten spherical silica having an average particle size of 1 μm to less than 5 μm and a logarithmic standard deviation of 0.5 or less, and 2 wt.% or less of a fine particle silica having a particle size of 0.5 μm or less, as measured by a laser diffraction/ scattering method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、成形性に優れた半
導体封止用エポキシ樹脂組成物及びこれを用いた半導体
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent moldability and a semiconductor device using the same.

【0002】[0002]

【従来の技術】従来、ダイオード、トランジスタ、I
C、LSI等の半導体素子を、外的刺激(機械的、熱的
衝撃、化学的作用等)から保護するためには、生産コス
トの点を考慮してエポキシ樹脂組成物で封入成形するの
が一般的になっている。一方、近年の半導体素子の高集
積化とそれに伴う寸法の増大とは相反しており、最近の
電子機器の小型化による半導体装置の寸法の小型化・薄
型化が求められ、かつプリント回路基板への実装方法も
従来のピン挿入型から表面実装型へ移行し、又環境負荷
の低減のため鉛を含まない半田の導入により、更に実装
温度も高くなる方向にあり、表面実装半田処理時の熱衝
撃による半導体装置のクラックや、半導体素子・リード
フレームとエポキシ樹脂組成物の硬化物との剥離といっ
た問題が生じ易くなり、従来以上に耐熱衝撃性に優れた
特性を付与できるエポキシ樹脂組成物が強く求められて
いる。
2. Description of the Related Art Conventionally, diodes, transistors, I
In order to protect semiconductor elements such as C and LSI from external stimuli (mechanical, thermal shock, chemical action, etc.), encapsulation molding with an epoxy resin composition is performed in consideration of production cost. It is becoming popular. On the other hand, the recent high integration of semiconductor elements and the accompanying increase in size are in conflict with each other.Recent miniaturization of electronic equipment is required to reduce the size and thickness of semiconductor devices. The mounting method has also changed from the conventional pin insertion type to the surface mounting type, and due to the introduction of lead-free solder to reduce the environmental load, the mounting temperature tends to rise, and the heat generated during surface mounting solder processing Problems such as cracks in semiconductor devices due to impact and peeling between the semiconductor element / lead frame and the cured product of the epoxy resin composition are more likely to occur, and epoxy resin compositions that can impart properties with better thermal shock resistance than before are strong. It has been demanded.

【0003】これらのクラックや剥離は、半田処理前の
半導体装置自身が吸水し、半田処理時の高温下でその水
分が爆発的に水蒸気化することによって生じると考えら
れており、それを防ぐためにエポキシ樹脂組成物の硬化
物の低吸水化、即ちエポキシ樹脂組成物に低吸水性を付
与する等の手法がよく用いられている。エポキシ樹脂組
成物の吸水性は構成する樹脂成分の影響が大きく、その
ため低吸水化の手法のひとつとして無機充填材を高充填
化し、樹脂成分の含有量を減少させる技術がある。しか
しながら無機充填材を高充填するに伴い成形溶融時のエ
ポキシ樹脂組成物の流動性、充填性が悪化する。溶融時
のエポキシ樹脂組成物の流動性、充填性が著しく悪化す
ると、エポキシ樹脂組成物の硬化物が低吸水性を有して
いても耐半田クラック性が悪くなる。そこで無機充填材
を高充填し、硬化物が低吸水性の特性を有するエポキシ
樹脂組成物で、かつ溶融時の流動性、充填性が良好なエ
ポキシ樹脂組成物を得るために、溶融時のエポキシ樹脂
組成物の流動性、充填性を向上させることのできる無機
充填材が求められている。
It is considered that these cracks and peeling are caused by water absorption by the semiconductor device itself before the soldering process and explosive vaporization of the water at a high temperature during the soldering process. A technique of reducing water absorption of a cured product of an epoxy resin composition, that is, imparting low water absorption to an epoxy resin composition is often used. The water absorption of the epoxy resin composition is greatly influenced by the constituent resin components. Therefore, as one of the methods of lowering the water absorption, there is a technique of highly filling the inorganic filler to reduce the content of the resin component. However, as the inorganic filler is highly filled, the flowability and filling property of the epoxy resin composition at the time of molding and melting deteriorate. If the fluidity and the filling property of the epoxy resin composition when melted are significantly deteriorated, the solder crack resistance is deteriorated even if the cured product of the epoxy resin composition has low water absorption. Therefore, in order to obtain an epoxy resin composition which is highly filled with an inorganic filler and has a cured product having a property of low water absorption, and which has a good fluidity and a good filling property at the time of melting, There is a demand for an inorganic filler capable of improving the fluidity and filling property of a resin composition.

【0004】又エポキシ樹脂組成物中には、通常難燃性
を付与するために臭素含有化合物等のハロゲン系難燃剤
及びアンチモン化合物が配合されている。近年、地球環
境に配慮した企業活動の重視により有害性のおそれのあ
る物質の削減・撤廃の動きがあり、ハロゲン系難燃剤及
びアンチモン化合物を使用しないで、難燃性に優れたエ
ポキシ樹脂組成物の開発が要求されている。これらに代
わる環境対応難燃剤としては、水酸化アルミニウムや水
酸化マグネシウム等の金属水酸化物や赤燐を含むエポキ
シ樹脂組成物が提案されているが、これを用いた半導体
装置の耐湿信頼性、高温保管性については未だ不十分の
場合もあり、更には成形性、硬化性共、十分に満足の得
られるエポキシ樹脂組成物が得られないという問題があ
り、これらの難燃剤を用いなくとも成形性、硬化性を満
足させるエポキシ樹脂組成物が求められている。
In addition, a halogen-based flame retardant such as a bromine-containing compound and an antimony compound are usually blended in the epoxy resin composition in order to impart flame retardancy. In recent years, there has been a movement to reduce or eliminate substances that may be harmful due to the emphasis on corporate activities that consider the global environment. Epoxy resin compositions with excellent flame retardancy without using halogen-based flame retardants and antimony compounds. Development is required. As an environment-friendly flame retardant alternative to these, an epoxy resin composition containing a metal hydroxide such as aluminum hydroxide or magnesium hydroxide or red phosphorus has been proposed, but the moisture resistance reliability of a semiconductor device using this, There are some cases where the high-temperature storability is still insufficient, and further there is a problem that an epoxy resin composition that is sufficiently satisfactory in terms of both moldability and curability cannot be obtained, and molding is possible even without using these flame retardants. There is a demand for an epoxy resin composition that satisfies the requirements for curability and curability.

【0005】[0005]

【発明が解決しようとする課題】本発明は、成形時の流
動性、充填性、耐半田クラック性及び難燃性に優れた半
導体封止用エポキシ樹脂組成物及びこれを用いた半導体
装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides an epoxy resin composition for semiconductor encapsulation which is excellent in fluidity, filling property, solder crack resistance and flame retardancy during molding, and a semiconductor device using the same. To do.

【0006】[0006]

【課題を解決するための手段】本発明は、[1](A)
一般式(1)で示されるエポキシ樹脂、(B)一般式
(2)で示されるフェノール樹脂、(C)硬化促進剤及
び(D)無機充填材を必須とし、前記無機充填材がレー
ザー回折・散乱法による(1)平均粒径60μm以上〜
80μm未満で対数標準偏差0.5以下の溶融球状シリ
カ75重量%以上〜85重量%以下、(2)平均粒径5
μm以上〜15μm未満で対数標準偏差0.5以下の溶
融球状シリカ10重量%以上〜20重量%以下、(3)
平均粒径1μm以上〜5μm未満で対数標準偏差0.5
以下の溶融球状シリカ2重量%以上〜8重量%以下で構
成され、かつ0.5μm以下の微粒シリカ2重量%以下
である溶融球状シリカを含むことを特徴とする半導体封
止用エポキシ樹脂組成物、
The present invention provides [1] (A)
The epoxy resin represented by the general formula (1), (B) the phenol resin represented by the general formula (2), (C) the curing accelerator and (D) the inorganic filler are essential, and the inorganic filler is laser diffraction / By scattering method (1) Average particle size of 60 μm or more
Fused spherical silica of less than 80 μm and a logarithmic standard deviation of 0.5 or less 75% by weight to 85% by weight, (2) average particle size 5
10 to 20 wt% of fused spherical silica having a logarithmic standard deviation of 0.5 or less and a μm to 15 μm, (3)
Logarithmic standard deviation of 0.5 when the average particle size is 1 μm or more and less than 5 μm
An epoxy resin composition for semiconductor encapsulation, comprising the following fused spherical silica in an amount of from 2% by weight to 8% by weight, and containing 2% by weight or less of fine silica having a particle size of 0.5 μm or less. ,

【0007】[0007]

【化3】 (Rは、水素原子又は炭素数1〜4のアルキル基から選
択される基であり、互いに同一であっても、異なってい
てもよい。nは平均値で、1〜5の正数)
[Chemical 3] (R is a hydrogen atom or a group selected from an alkyl group having 1 to 4 carbon atoms and may be the same or different. N is an average value and is a positive number of 1 to 5).

【0008】[0008]

【化4】 (Rは、水素原子又は炭素数1〜4のアルキル基から選
択される基であり、互いに同一であっても、異なってい
てもよい。nは平均値で、1〜5の正数)
[Chemical 4] (R is a hydrogen atom or a group selected from an alkyl group having 1 to 4 carbon atoms and may be the same or different. N is an average value and is a positive number of 1 to 5).

【0009】[2]前記溶融球状シリカが、全無機充填
材中70〜100重量%である第[1]項記載の半導体
封止用エポキシ樹脂組成物、[3]第[1]又は[2]
項記載のエポキシ樹脂組成物を用いて半導体素子を封止
してなることを特徴とする半導体装置、である。
[2] The epoxy resin composition for semiconductor encapsulation according to item [1], wherein the fused spherical silica is 70 to 100% by weight in the total inorganic filler, [3] item [1] or [2]. ]
A semiconductor device obtained by encapsulating a semiconductor element using the epoxy resin composition as described in the above item.

【0010】[0010]

【発明実施の形態】本発明で用いられる一般式(1)で
示されるエポキシ樹脂は、エポキシ基間に疎水性構造を
有しており、このエポキシ樹脂と一般式(2)で示され
るフェノール樹脂を用いたエポキシ樹脂組成物の硬化物
は、疎水性の構造を多く含むことから吸水率が低く、又
架橋密度が低いためガラス転移温度を越えた高温域での
弾性率が低いという特徴があり表面実装の半田処理時の
熱応力を低減し、耐半田クラック性、半田処理後の基材
との密着性に優れている。更にエポキシ基間の疎水性構
造は、剛直なビフェニル骨格であることから、架橋密度
が低い割には耐熱性の低下が少ないという特徴を有して
いる。一般式(1)で示されるエポキシ樹脂の具体例を
以下に示すが、これらに限定されるものでない。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin represented by the general formula (1) used in the present invention has a hydrophobic structure between epoxy groups, and the epoxy resin and the phenol resin represented by the general formula (2) are used. The cured product of the epoxy resin composition using is characterized in that it has a low water absorption rate because it contains many hydrophobic structures, and that it has a low elastic modulus in the high temperature range above the glass transition temperature because of its low crosslink density. It reduces thermal stress during surface mount solder processing and has excellent solder crack resistance and adhesion to the base material after solder processing. Further, since the hydrophobic structure between the epoxy groups is a rigid biphenyl skeleton, it has a characteristic that the heat resistance is not deteriorated in spite of the low crosslink density. Specific examples of the epoxy resin represented by the general formula (1) are shown below, but the epoxy resin is not limited to these.

【0011】[0011]

【化5】 (式中のnは平均値で、1〜5の正数)[Chemical 5] (N in the formula is an average value and is a positive number of 1 to 5)

【0012】一般式(1)で示されるエポキシ樹脂は、
分子内にエポキシ基を有するモノマー、オリゴマー、ポ
リマー、例えばビスフェノールA型エポキシ樹脂、フェ
ノールノボラック型エポキシ樹脂、オルソクレゾールノ
ボラック型エポキシ樹脂、ナフトールノボラック型エポ
キシ樹脂、ジシクロペンタジエン変性フェノール型エポ
キシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エ
ポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ア
ルキル変性トリフェノールメタン型エポキシ樹脂及びト
リアジン核含有エポキシ樹脂等のエポキシ樹脂と併用し
ても差し支えない。併用する場合の一般式(1)のエポ
キシ樹脂の配合量としては、全エポキシ樹脂中に70重
量%以上が好ましく、70重量%未満だとエポキシ樹脂
組成物が燃焼し易くなったり、硬化物の吸水率が高くな
ったり、弾性率が高くなり、耐半田クラック性に悪影響
を及ぼすおそれがある。
The epoxy resin represented by the general formula (1) is
Monomers, oligomers and polymers having an epoxy group in the molecule, such as bisphenol A type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, naphthol novolac type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, biphenyl type It may be used in combination with an epoxy resin such as an epoxy resin, a stilbene type epoxy resin, a triphenol methane type epoxy resin, an alkyl modified triphenol methane type epoxy resin and a triazine nucleus-containing epoxy resin. When used in combination, the amount of the epoxy resin represented by the general formula (1) is preferably 70% by weight or more based on the total amount of the epoxy resin. If it is less than 70% by weight, the epoxy resin composition may easily burn or a cured product may be obtained. There is a possibility that the water absorption rate becomes high, or the elastic modulus becomes high, which adversely affects the solder crack resistance.

【0013】本発明で用いられる一般式(2)で示され
るフェノール樹脂は、水酸基間に疎水性構造を有してお
り、前記一般式(1)で示されるエポキシ樹脂と一般式
(2)で示されるフェノール樹脂を用いたエポキシ樹脂
組成物の硬化物は、疎水性の構造を多く含むことから吸
水率が低く、又架橋密度が低いため、 ガラス転移温度
を越えた高温域での弾性率が低いという特徴があり表面
実装時の半田リフローでの熱応力を低減し、耐半田クラ
ック性、半田処理後の基材との密着性に優れている。更
にフェニル基間の疎水性構造は剛直なビフェニル骨格で
あることから、架橋密度が低い割には耐熱性の低下が少
ないという特徴を有する。一般式(2)で示されるフェ
ノール樹脂の具体例を以下に示すが、これに限定される
ものでない。
The phenolic resin represented by the general formula (2) used in the present invention has a hydrophobic structure between hydroxyl groups, and is represented by the epoxy resin represented by the general formula (1) and the general formula (2). The cured product of the epoxy resin composition using the phenolic resin shown has a low water absorption rate because it contains many hydrophobic structures, and also has a low crosslink density, so that the elastic modulus in the high temperature range above the glass transition temperature is high. It has the characteristic of being low, reducing thermal stress during solder reflow during surface mounting, and has excellent solder crack resistance and adhesion to the base material after solder processing. Further, since the hydrophobic structure between the phenyl groups is a rigid biphenyl skeleton, it has a characteristic that the heat resistance is not deteriorated in spite of the low crosslink density. Specific examples of the phenol resin represented by the general formula (2) are shown below, but the invention is not limited thereto.

【0014】[0014]

【化6】 (式中のnは平均値で、1〜5の正数)[Chemical 6] (N in the formula is an average value and is a positive number of 1 to 5)

【0015】一般式(2)で示されるフェノール樹脂
は、分子内にフェノール性水酸基を有するモノマー、オ
リゴマー、ポリマー、例えばフェノールノボラック樹
脂、クレゾールノボラック樹脂、フェノールアラルキル
樹脂、テルペン変性フェノール樹脂、ジシクロペンタジ
エン変性フェノール樹脂、ビスフェノールA、トリフェ
ノールメタン等のフェノール樹脂と併用しても差し支え
ない。併用する場合の一般式(2)で示されるフェノー
ル樹脂の配合量としては、全フェノール樹脂中に70重
量%以上が好ましい。70重量%未満だと燃焼し易くな
ったり、吸水率が高くなったり、弾性率が高くなり、耐
半田クラック性に悪影響を及ぼすおそれがある。一般式
(1)で示されるエポキシ樹脂と一般式(2)で示され
るフェノール樹脂とを組合せて用いた場合には、半導体
装置の低吸水性、吸水後の半田処理での耐半田クラック
性、密着性等の高信頼性の特性が得られる。 全エポキ
シ樹脂のエポキシ基と全フェノール樹脂のフェノール性
水酸基の当量比としては、エポキシ基数/フェノール性
水酸基数=0.7〜1.5の範囲が好ましく、更に好ま
しくは0.9〜1.2である。0.7〜1.5の範囲を
外れると、エポキシ樹脂組成物の硬化性の低下或いは硬
化物のガラス転移温度の低下、耐湿信頼性の低下等が生
じるので好ましくない。
The phenol resin represented by the general formula (2) is a monomer, oligomer or polymer having a phenolic hydroxyl group in the molecule, such as phenol novolac resin, cresol novolac resin, phenol aralkyl resin, terpene modified phenol resin, dicyclopentadiene. It may be used in combination with a modified phenol resin, a bisphenol A, or a phenol resin such as triphenol methane. When used in combination, the blending amount of the phenol resin represented by the general formula (2) is preferably 70% by weight or more in the total phenol resin. If it is less than 70% by weight, it may be easily burned, the water absorption may be high, or the elastic modulus may be high, which may adversely affect the solder crack resistance. When the epoxy resin represented by the general formula (1) and the phenol resin represented by the general formula (2) are used in combination, low water absorption of the semiconductor device, solder crack resistance in solder treatment after water absorption, Highly reliable characteristics such as adhesion can be obtained. The equivalent ratio of the epoxy groups of all epoxy resins to the phenolic hydroxyl groups of all phenolic resins is preferably in the range of number of epoxy groups / number of phenolic hydroxyl groups = 0.7 to 1.5, and more preferably 0.9 to 1.2. Is. When it is out of the range of 0.7 to 1.5, the curability of the epoxy resin composition is lowered, the glass transition temperature of the cured product is lowered, and the moisture resistance reliability is lowered, which is not preferable.

【0016】本発明に用いられる硬化促進剤としては、
エポキシ基とフェノール性水酸基との硬化反応を促進さ
せるものであればよく、一般に封止材料に使用されてい
るものを広く使用することができる。例えば1,8−ジ
アザビシクロ(5,4,0)ウンデセン−7等のアミン
系化合物、トリフェニルホスフィン、テトラフェニルホ
スフォニウム・テトラフェニルボレート塩等の有機リン
系化合物、2−メチルイミダゾール等のイミダゾール化
合物等が挙げられ、これらは単独でも混合して用いても
よい。
The curing accelerator used in the present invention includes
Any material that accelerates the curing reaction between the epoxy group and the phenolic hydroxyl group may be used, and those generally used for sealing materials may be widely used. For example, amine compounds such as 1,8-diazabicyclo (5,4,0) undecene-7, organic phosphorus compounds such as triphenylphosphine, tetraphenylphosphonium / tetraphenylborate salts, imidazoles such as 2-methylimidazole. Examples thereof include compounds, which may be used alone or in combination.

【0017】本発明で用いられる溶融球状シリカは、レ
ーザー回折・散乱法による(1)平均粒径60μm以上
〜80μm未満で対数標準偏差0.5以下の溶融球状シ
リカ75重量%以上〜85重量%以下、(2)平均粒径
5μm以上〜15μm未満で対数標準偏差0.5以下の
溶融球状シリカ10重量%以上〜20重量%以下、
(3)平均粒径1μm以上〜5μm未満で対数標準偏差
0.5以下の溶融球状シリカ2重量%以上〜8重量%以
下で構成され、かつ0.5μm以下の微粒シリカを2重
量%以下含むものである。本発明で言う対数標準偏差
は、下記の式で表される値Aを用いた(参照:「粉体工
学の基礎」粉体工学の基礎編集委員会編 日刊工業新聞
社刊)。Aの値が小さいほど粒度分布が狭いことを意味
している。 A={ln(D2/D1)}×0.5 ここで、D1は積算残留分率84.1%のときの粒子
径、D2は積算残留分率15.9%のときの粒子径であ
る。積算残留分率とは、(100−粒度頻度の積算)を
言う。図1で示す粒度分布で例を示すと、D1=54.
2μm、D2=97.8μmとすると A={ln(9
7.8/54.2)}×0.5=0.3 となる。
The fused spherical silica used in the present invention is (1) fused spherical silica having an average particle size of 60 μm or more and less than 80 μm and a logarithmic standard deviation of 0.5 or less 75% by weight or more and 85% by weight or less by a laser diffraction / scattering method. Hereinafter, (2) fused spherical silica having an average particle size of 5 μm or more and less than 15 μm and a logarithmic standard deviation of 0.5 or less 10% by weight or more and 20% by weight or less,
(3) Constituting 2 wt% to 8 wt% of fused spherical silica having an average particle size of 1 μm to less than 5 μm and a logarithmic standard deviation of 0.5 or less, and containing 2 wt% or less of fine silica of 0.5 μm or less. It is a waste. For the logarithmic standard deviation referred to in the present invention, the value A represented by the following formula was used (see: "Basics of powder engineering" edited by Nikkan Kogyo Shimbun, edited by the Fundamental Editing Committee of Powder Engineering). The smaller the value of A, the narrower the particle size distribution. A = {ln (D2 / D1)} × 0.5 where D1 is the particle diameter when the cumulative residual fraction is 84.1%, and D2 is the particle diameter when the cumulative residual fraction is 15.9%. . The cumulative residual fraction refers to (100-accumulation of particle size frequency). An example of the particle size distribution shown in FIG. 1 is D1 = 54.
If 2 μm and D2 = 97.8 μm, A = {ln (9
7.8 / 54.2)} × 0.5 = 0.3.

【0018】レーザー回折・散乱法による前記粒径の溶
融球状シリカからなる構成要件を満たさない場合、溶融
球状シリカの最蜜充填性が低下する。最蜜充填性が小さ
い溶融球状シリカを用いたエポキシ樹脂組成物は、流動
する際に溶融球状シリカ同士の衝突頻度が高まり、エポ
キシ樹脂組成物が十分な流動性、充填性を得られないの
で好ましくない。更に前記粒径の溶融球状シリカから構
成される溶融球状シリカは、0.5μm以下の微粒シリ
カを2重量%以下含むものであり、この値を越えると全
体の比表面積が増加し溶融球状シリカ/樹脂間の接触面
積が増えるため、エポキシ樹脂組成物は十分な流動性、
充填性を確保することができないため好ましくない。
When the constitutional requirements of the fused spherical silica having the above-mentioned particle diameter by the laser diffraction / scattering method are not satisfied, the maximum filling property of the fused spherical silica is lowered. The epoxy resin composition using the fused spherical silica having the smallest honey-filling property has a high collision frequency of the fused spherical silica particles when flowing, and the epoxy resin composition cannot obtain sufficient fluidity and filling property, which is preferable. Absent. Further, the fused spherical silica composed of the fused spherical silica having the above-mentioned particle diameter contains 2% by weight or less of fine silica having a particle size of 0.5 μm or less. Since the contact area between the resins increases, the epoxy resin composition has sufficient fluidity,
It is not preferable because the filling property cannot be secured.

【0019】本発明に用いられる溶融球状シリカは、全
無機充填材中70〜100重量%含まれることが望まし
い。70重量%未満だと十分な流動性が得られないおそ
れがある。。併用するときの他の無機充填材としては、
一般に封止材料に用いられているものでよく、例えば溶
融破砕シリカ、溶融球状シリカ、結晶シリカ、角とり結
晶シリカ、2次凝集シリカ、アルミナ、球状アルミナ、
チタンホワイト、水酸化アルミニウム、窒化珪素、窒化
アルミニウム等が挙げられ、粒度分布については必要に
応じて適宜選択すればよい。又本発明に用いられる溶融
球状シリカを含む無機充填材の配合量は、全エポキシ樹
脂組成物中70〜95重量%が好ましい。70重量%未
満だと吸水性が高くなり耐半田クラック性が低下するの
で好ましくない。95重量%を越えると実用上必要な流
動性を確保できないので好ましくない。
The fused spherical silica used in the present invention is preferably contained in the total inorganic filler in an amount of 70 to 100% by weight. If it is less than 70% by weight, sufficient fluidity may not be obtained. . As other inorganic fillers when used in combination,
It may be one generally used as a sealing material, for example, fused crushed silica, fused spherical silica, crystalline silica, chamfered crystalline silica, secondary agglomerated silica, alumina, spherical alumina,
Titanium white, aluminum hydroxide, silicon nitride, aluminum nitride, etc. may be mentioned, and the particle size distribution may be appropriately selected as necessary. The blending amount of the inorganic filler containing fused spherical silica used in the present invention is preferably 70 to 95% by weight based on the total epoxy resin composition. If it is less than 70% by weight, the water absorption is high and the solder crack resistance is deteriorated, which is not preferable. If it exceeds 95% by weight, the fluidity necessary for practical use cannot be secured, which is not preferable.

【0020】本発明における溶融球状シリカの粒度分布
は、JIS M 8100(粉塊混合物−サンプリング
方法)に準じて、溶融球状シリカを採取し、JIS R
1622−1995(ファインセラミックス原料粒子
径分布測定のための試料調製)に準じて、溶融球状シリ
カを測定用試料として調製し、JIS R 1629−
1997(ファインセラミックス原料のレーザー回折・
散乱法による粒子径分布測定方法)に準じて、(株)島
津製作所・製のレーザー回折式粒度分布測定装置SAL
D−7000(レーザー波長:405nm)を用い、水
等を分散剤として、溶融球状シリカの屈折率が実数部
1.45、虚数部0.00の条件で測定した体積基準の
粒度分布である。又平均粒径は体積基準の積算残留分率
が50%のときの粒子径である。
Regarding the particle size distribution of the fused spherical silica in the present invention, the fused spherical silica is sampled according to JIS M 8100 (powder lump mixture-sampling method), and JIS R
According to 1622-1995 (Preparation of sample for measuring particle size distribution of fine ceramics raw material), fused spherical silica was prepared as a sample for measurement, and JIS R 1629-
1997 (laser diffraction of fine ceramic raw materials
Laser diffraction type particle size distribution analyzer SAL manufactured by Shimadzu Corporation according to the method for measuring particle size distribution by scattering method)
This is a volume-based particle size distribution measured using D-7000 (laser wavelength: 405 nm), using water or the like as a dispersant, and the refractive index of fused spherical silica being a real part 1.45 and an imaginary part 0.00. The average particle diameter is the particle diameter when the volume-based cumulative residual fraction is 50%.

【0021】従来、半導体封止用エポキシ樹脂組成物に
配合する無機充填材としては、一般に溶融球状シリカ、
溶融破砕シリカ、結晶シリカ等が用いられているが、本
発明の特性を有する溶融球状シリカを用いることによ
り、従来の種々の粒度構成の充填材に比べ流動性、充填
性を向上でき、溶融球状シリカの配合量の高いエポキシ
樹脂組成物を得ることができ、その結果としてエポキシ
樹脂組成物の硬化物の耐吸水性の向上に寄与し、半導体
装置の耐半田クラック性を向上させることができる。
Conventionally, as the inorganic filler to be mixed with the epoxy resin composition for semiconductor encapsulation, generally fused spherical silica,
Although fused crushed silica, crystalline silica, etc. are used, by using fused spherical silica having the characteristics of the present invention, it is possible to improve fluidity and filling property as compared with conventional fillers having various particle size constitutions. An epoxy resin composition containing a large amount of silica can be obtained, and as a result, it contributes to the improvement of the water absorption resistance of the cured product of the epoxy resin composition, and the solder crack resistance of the semiconductor device can be improved.

【0022】本発明のエポキシ樹脂組成物は、(A)〜
(D)成分の他、必要に応じて臭素化エポキシ樹脂、酸
化アンチモン、リン化合物、水酸化マグネシウム、水酸
化アルミニウム、硼酸化合物等の難燃剤類、酸化ビスマ
ス水和物等の無機イオン交換体、γ−グリシドキシプロ
ピルトリメトキシシランやγ−アミノプロピルトリエト
キシシラン等のカップリング剤、カーボンブラック、ベ
ンガラ等の着色剤、シリコーンオイル、シリコーンゴム
等の低応力化成分、天然ワックス、合成ワックス、高級
脂肪酸及びその金属塩類もしくはパラフィン等の離型
剤、酸化防止剤等の各種添加剤を配合することもでき
る。
The epoxy resin composition of the present invention comprises (A)-
In addition to the component (D), if necessary, brominated epoxy resin, antimony oxide, phosphorus compound, flame retardants such as magnesium hydroxide, aluminum hydroxide and boric acid compound, inorganic ion exchanger such as bismuth oxide hydrate, Coupling agents such as γ-glycidoxypropyltrimethoxysilane and γ-aminopropyltriethoxysilane, colorants such as carbon black and red iron oxide, low stress components such as silicone oil and silicone rubber, natural wax, synthetic wax, It is also possible to add a releasing agent such as higher fatty acid and its metal salt or paraffin, and various additives such as antioxidant.

【0023】本発明のエポキシ樹脂組成物は、(A)〜
(D)成分及びその他の添加剤等をミキサー等を用いて
常温混合し、ロール、ニーダー、押し出し機等の混錬機
で溶融混錬し、冷却後粉砕する一般的な方法で得られ
る。本発明のエポキシ樹脂組成物を用いて、半導体素子
等の電子部品を封止し、半導体装置を製造するには、ト
ランスファーモールド、コンプレッションモールド、イ
ンジェクションモールド等の成形方法で成形硬化すれば
よい。
The epoxy resin composition of the present invention comprises (A)-
It can be obtained by a general method in which the component (D) and other additives are mixed at room temperature using a mixer or the like, melt-kneaded with a kneader such as a roll, kneader, or extruder, cooled, and then pulverized. In order to manufacture a semiconductor device by sealing an electronic component such as a semiconductor element using the epoxy resin composition of the present invention, molding and curing may be performed by a molding method such as a transfer mold, a compression mold or an injection mold.

【0024】[0024]

【実施例】以下、本発明を実施例で具体的に説明する。 式(9)で示されるエポキシ樹脂A(軟化点60℃、エポキシ当量270) 9.8重量部EXAMPLES The present invention will be specifically described below with reference to examples.   Epoxy resin A represented by formula (9) (softening point 60 ° C., epoxy equivalent 270)                                                             9.8 parts by weight

【0025】[0025]

【化7】 [Chemical 7]

【0026】 式(10)で示されるフェノール樹脂C(軟化点75℃、水酸基当量195) 7.1重量部[0026]   Phenolic resin C represented by formula (10) (softening point 75 ° C., hydroxyl equivalent 195)                                                             7.1 parts by weight

【0027】[0027]

【化8】 [Chemical 8]

【0028】 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 0.2重量部 γ−グリシドキシプロピルトリメトキシシラン 0.3重量部 カーボンブラック 0.3重量部 カルナバワックス 0.3重量部 シリカA(レーザー回折・散乱法により測定した平均粒径72μmで対数標準 偏差0.3の溶融球状シリカ79重量%、平均粒径9.6μmで対数標準偏差0 .2の溶融球状シリカ16重量%、平均粒径3.9μmで対数標準偏差が0.2 の溶融球状シリカ5重量%で構成され、かつ0.5μm以下の微粒シリカを含ま ない) 82.0重量部 上記の全成分をミキサーを用いて混合した後、表面温度
が90℃と45℃の2本ロールを用いて混練し、冷却後
粉砕してエポキシ樹脂組成物を得た。得られたエポキシ
樹脂組成物を以下の方法で評価した。
1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.2 parts by weight γ-glycidoxypropyltrimethoxysilane 0.3 parts by weight carbon black 0.3 parts by weight Carnauba wax 0.3 parts by weight Silica A (79% by weight of fused spherical silica having an average particle size of 72 μm and a logarithmic standard deviation of 0.3, measured by a laser diffraction / scattering method, and an average particle size of 9.6 μm and a logarithmic standard deviation of 0.2). Of 8% by weight of fused spherical silica of 5% by weight of fused spherical silica having an average particle size of 3.9 μm and a logarithmic standard deviation of 0.2 and not containing fine particles of 0.5 μm or less). After mixing all of the above components using a mixer, the mixture was kneaded using a two-roll mill having a surface temperature of 90 ° C. and 45 ° C., cooled and pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods.

【0029】評価方法 スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力6.9Mpa、硬化時間120秒で測定した。
単位はcm。 耐半田クラック性:マルチプランジャー成形機を用い
て、金型温度175℃、注入圧力9.8MPa、硬化時
間120秒の条件で80pQFP(厚さ2.0mm、チ
ップサイズ6mm×6mm)を成形した。ポストキュア
として175℃で8時間処理したパッケージ6個を、8
5℃、相対湿度85%の環境下で168時間処理し、そ
の後IRリフロー処理(最大260℃で10秒)を行な
った。顕微鏡で処理後パッケージの外部クラックを、又
超音波探傷装置で内部の剥離及びクラックの有無を観察
し、不良パッケージの個数を数えた。不良パッケージの
個数がn個であるとき、n/6と表示する。 充填性:マルチプランジャー成形機を用いて、金型温度
180℃、注入圧力9.8MPa、硬化時間60秒の条
件で144pLQFP(パッケージサイズは20mm×
20mm、厚み1.4mm、模擬半導体素子の寸法は1
2mm×12mm、リードフレームはCu製)を10回
連続で成形し、未充填回数が、5回以上を×、1〜4回
を△、発生なしを○で表した。 難燃性:低圧トランスファー成形機を用いて、金型温度
175℃、9.8MPa、硬化時間120秒で試験片を
成形し、ポストキュアとして175℃で8時間処理した
後、UL−94垂直試験(試験片厚さ1.6mm及び
3.2mm)を行ない、難燃性を判断した。
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, mold temperature 175 ° C.
It was measured at an injection pressure of 6.9 MPa and a curing time of 120 seconds.
The unit is cm. Solder crack resistance: 80 pQFP (thickness: 2.0 mm, chip size: 6 mm × 6 mm) was molded using a multi-plunger molding machine under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. . Post-cure 6 packages that were treated at 175 ℃ for 8 hours
It was treated for 168 hours in an environment of 5 ° C. and 85% relative humidity, and then subjected to IR reflow treatment (maximum 260 ° C. for 10 seconds). The number of defective packages was counted by observing external cracks of the package after processing with a microscope and observing internal peeling and cracks with an ultrasonic flaw detector. When the number of defective packages is n, it is displayed as n / 6. Fillability: 144 pLQFP (package size is 20 mm ×, using a multi-plunger molding machine under the conditions of a mold temperature of 180 ° C., an injection pressure of 9.8 MPa, and a curing time of 60 seconds.
20mm, thickness 1.4mm, size of simulated semiconductor device is 1
2 mm × 12 mm, the lead frame is made of Cu) was continuously molded 10 times, and the number of unfilled times was represented by x when it was 5 or more, Δ when 1 to 4 times, and ◯ when no occurrence. Flame retardance: A low-pressure transfer molding machine was used to mold a test piece at a mold temperature of 175 ° C., 9.8 MPa, and a curing time of 120 seconds, and post-curing was performed at 175 ° C. for 8 hours, followed by a UL-94 vertical test. (Test piece thickness 1.6 mm and 3.2 mm) was performed to determine flame retardancy.

【0030】実施例1〜7、比較例1〜7 表1、表2の配合に従い、実施例1と同様にしてエポキ
シ樹脂組成物を得て、実施例1と同様にして評価した。
結果を表1、表2に示す。実施例1以外に使用した原料
の特性を以下に示す。 ビフェニル型エポキシ樹脂B(ジャパンエポキシレジン
(株)製、YX−4000、軟化点105℃、エポキシ
当量193) フェノールアラルキル樹脂D(三井化学(株)製、XL
−225、軟化点75℃、水酸基当量175) 溶融シリカB(レーザー回折・散乱法により測定した平
均粒径が1.6μmの溶融シリカで、対数標準偏差が
0.5以下のピークが存在しない溶融球状シリカ) 溶融シリカC(レーザー回折・散乱法により測定した平
均粒径が22μmの溶融シリカで、対数標準偏差が0.
5以下のピークが存在しない溶融球状シリカ)
Examples 1 to 7 and Comparative Examples 1 to 7 Epoxy resin compositions were obtained in the same manner as in Example 1 according to the formulations shown in Tables 1 and 2 and evaluated in the same manner as in Example 1.
The results are shown in Tables 1 and 2. The characteristics of the raw materials used other than those in Example 1 are shown below. Biphenyl type epoxy resin B (manufactured by Japan Epoxy Resin Co., Ltd., YX-4000, softening point 105 ° C., epoxy equivalent 193) Phenol aralkyl resin D (manufactured by Mitsui Chemicals, Inc., XL
-225, softening point 75 ° C., hydroxyl equivalent 175) fused silica B (fused silica having an average particle size of 1.6 μm measured by a laser diffraction / scattering method and having no peak with a logarithmic standard deviation of 0.5 or less) Spherical silica) Fused silica C (fused silica having an average particle size of 22 μm measured by a laser diffraction / scattering method and a logarithmic standard deviation of 0.
(Fused spherical silica with no peak below 5)

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】本発明のエポキシ樹脂組成物は成形時の
流動性、充填性に優れており、これを用いた半導体装置
の耐半田クラック性及び難燃性向上に寄与する。
The epoxy resin composition of the present invention is excellent in fluidity and filling during molding, and contributes to improvement of solder crack resistance and flame retardancy of a semiconductor device using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒度分布の粒子径と積算残留分率の関係を示す
FIG. 1 is a diagram showing the relationship between the particle size of the particle size distribution and the cumulative residual fraction.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CC04X CD04W CD05W CD06W CD13W CD20W DJ017 EU116 EU136 EW016 EW176 EY016 FD017 FD14X FD156 GQ01 GQ05 4J036 AC01 AC02 AC03 AD01 AD08 AF01 AF05 AF06 DC41 DC46 DD07 DD09 FA05 FB08 GA04 GA06 JA07 4M109 AA01 EA02 EB04 EB13    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4J002 CC04X CD04W CD05W CD06W                       CD13W CD20W DJ017 EU116                       EU136 EW016 EW176 EY016                       FD017 FD14X FD156 GQ01                       GQ05                 4J036 AC01 AC02 AC03 AD01 AD08                       AF01 AF05 AF06 DC41 DC46                       DD07 DD09 FA05 FB08 GA04                       GA06 JA07                 4M109 AA01 EA02 EB04 EB13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(A)一般式(1)で示されるエポキシ樹
脂、(B)一般式(2)で示されるフェノール樹脂、
(C)硬化促進剤及び(D)無機充填材を必須とし、前
記無機充填材がレーザー回折・散乱法による(1)平均
粒径60μm以上〜80μm未満で対数標準偏差0.5
以下の溶融球状シリカ75重量%以上〜85重量%以
下、(2)平均粒径5μm以上〜15μm未満で対数標
準偏差0.5以下の溶融球状シリカ10重量%以上〜2
0重量%以下、(3)平均粒径1μm以上〜5μm未満
で対数標準偏差0.5以下の溶融球状シリカ2重量%以
上〜8重量%以下で構成され、かつ0.5μm以下の微
粒シリカ2重量%以下である溶融球状シリカを含むこと
を特徴とする半導体封止用エポキシ樹脂組成物。 【化1】 (Rは、水素原子又は炭素数1〜4のアルキル基から選
択される基であり、互いに同一であっても、異なってい
てもよい。nは平均値で、1〜5の正数) 【化2】 (Rは、水素原子又は炭素数1〜4のアルキル基から選
択される基であり、互いに同一であっても、異なってい
てもよい。nは平均値で、1〜5の正数)
1. An epoxy resin represented by the general formula (1) (A), a phenol resin represented by the general formula (2) (B),
(C) A curing accelerator and (D) an inorganic filler are essential, and the inorganic filler has a logarithmic standard deviation of 0.5 according to (1) an average particle diameter of 60 μm to 80 μm measured by a laser diffraction / scattering method.
The following fused spherical silica 75% by weight or more and 85% by weight or less, and (2) fused spherical silica 10% by weight or more and 2 with an average particle size of 5 μm or more and less than 15 μm and a logarithmic standard deviation of 0.5 or less.
0% by weight or less, (3) Fused spherical silica having an average particle size of 1 μm or more and less than 5 μm and a logarithmic standard deviation of 0.5 or less 2% by weight or more and 8% by weight or less and 0.5 μm or less An epoxy resin composition for semiconductor encapsulation, comprising a fused spherical silica in an amount of not more than wt%. [Chemical 1] (R is a hydrogen atom or a group selected from an alkyl group having 1 to 4 carbon atoms and may be the same or different. N is an average value and is a positive number of 1 to 5.) Chemical 2] (R is a hydrogen atom or a group selected from an alkyl group having 1 to 4 carbon atoms and may be the same or different. N is an average value and is a positive number of 1 to 5).
【請求項2】前記溶融球状シリカが、全無機充填材中7
0〜100重量%である請求項1記載の半導体封止用エ
ポキシ樹脂組成物。
2. The fused spherical silica is contained in a total inorganic filler of 7
The epoxy resin composition for semiconductor encapsulation according to claim 1, which is 0 to 100% by weight.
【請求項3】請求項1又は2記載のエポキシ樹脂組成物
を用いて半導体素子を封止してなることを特徴とする半
導体装置。
3. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition according to claim 1.
JP2001285167A 2001-09-19 2001-09-19 Epoxy resin composition and semiconductor device Expired - Fee Related JP5067994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285167A JP5067994B2 (en) 2001-09-19 2001-09-19 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285167A JP5067994B2 (en) 2001-09-19 2001-09-19 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003096268A true JP2003096268A (en) 2003-04-03
JP5067994B2 JP5067994B2 (en) 2012-11-07

Family

ID=19108369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285167A Expired - Fee Related JP5067994B2 (en) 2001-09-19 2001-09-19 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP5067994B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557880A1 (en) * 2004-01-21 2005-07-27 Nitto Denko Corporation Resin composition for encapsulating semiconductor
US7354978B2 (en) * 2003-10-20 2008-04-08 Sumitomo Bakelite Co. Semiconductor encapsulant of epoxy resin, phenolic resin and triazole compound
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354978B2 (en) * 2003-10-20 2008-04-08 Sumitomo Bakelite Co. Semiconductor encapsulant of epoxy resin, phenolic resin and triazole compound
EP1557880A1 (en) * 2004-01-21 2005-07-27 Nitto Denko Corporation Resin composition for encapsulating semiconductor
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition

Also Published As

Publication number Publication date
JP5067994B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
KR100997606B1 (en) Epoxy resin composition and semiconductor device
KR100307197B1 (en) Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
JP2006328360A (en) Epoxy resin composition and semiconductor device
JP2003096268A (en) Epoxy resin composition and semiconductor device
JP4802421B2 (en) Epoxy resin composition and semiconductor device
JP2003213084A (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003040981A (en) Epoxy resin composition and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP2009275109A (en) Semiconductor-sealing resin composition, method for producing the same and semiconductor device using the same
JP2003089718A (en) Epoxy resin composition and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP2003238660A (en) Epoxy resin composition and semiconductor device
JP2005139260A (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2000226497A (en) Epoxy resin composition and semiconductor device
KR100479853B1 (en) Method for preparing epoxy resin composition for semiconductor encapsulant and the composition
JP2003277476A (en) Epoxy resin composition and semiconductor device
JP2002293886A (en) Epoxy resin composition and semiconductor device
JP2003192874A (en) Epoxy resin composition and semiconductor device
JP2003192769A (en) Epoxy resin composition and semiconductor device
JP2003206391A (en) Epoxy resin composition and semiconductor device
JP2005281597A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5067994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees